
Inmanta Documentation
Release 2023.1.1

Inmanta NV

Feb 20, 2023

CONTENTS

1 Quickstart 3

2 Installation 15

3 Architecture 27

4 Language Reference 31

5 Model developer documentation 41

6 Platform developer documentation 81

7 Administrator documentation 95

8 Frequently asked questions 125

9 Glossary 127

10 Inmanta Reference 131

11 Troubleshooting 321

12 Changelog 331

13 PDF version 363

Python Module Index 365

Index 367

i

ii

Inmanta Documentation, Release 2023.1.1

Welcome to the Inmanta documentation!

Inmanta is an automation and orchestration tool to efficiently deploy and manage your software services, includ-
ing all (inter)dependencies to other services and the underpinning infrastructure. It eliminates the complexity of
managing large-scale, heterogeneous infrastructures and highly distributed systems.

The key characteristics of Inmanta are:

• Integrated: Inmanta integrates configuration management and orchestration into a single tool, taking in-
frastructure as code to a whole new level.

• Powerful configuration model: Infrastructure and application services are described using a high-level
configuration model that allows the definition of (an unlimited amount of) your own entities and abstraction
levels. It works from a single source, which can be tested, versioned, evolved and reused.

• Dependency management: Inmanta’s configuration model describes all the relations between and depen-
dencies to other services, packages, underpinning platforms and infrastructure services. This enables effi-
cient deployment as well as provides an holistic view on your applications, environments and infrastructure.

• End-to-end compliance: The architecture of your software service drives the configuration, guaranteeing
consistency across the entire stack and throughout distributed systems at any time. This compliance with
the architecture can be achieved thanks to the integrated management approach and the configuration model
using dependencies.

The Inmanta project is mainly developed and maintained by Inmanta.

CONTENTS 1

https://www.inmanta.com

Inmanta Documentation, Release 2023.1.1

2 CONTENTS

CHAPTER

ONE

QUICKSTART

Inmanta is intended to manage complex infrastructures, often in the cloud or other virtualized environments. In
this guide we start simple and manage a 3-node CLOS network with a spine and two leaf switches. First we install
containerlab and then configure SR Linux containers using Inmanta open source orchestrator and gNMI.

1. First, we use Containerlab to spin-up Inmanta server and its PostgreSQL database, then three SR Linux
containers, connected in a CLOS like topology

2. After that, we configure IP addresses and OSPF on them using Inmanta.

Note: This guide is meant to quickly set up an Inmanta LAB environment to experiment with. It is not recom-
mended to run this setup in production, as it might lead to instabilities in the long term.

1.1 Prerequisites

Python version 3.9, Docker, Containerlab and Inmanta need to be installed on your machine and our SR
Linux repository has to be cloned in order to proceed. Please make sure to follow the links below to that end.

1. Install Docker.

2. Install Containerlab.

3. Prepare a development environment by creating a python virtual environment and installing Inmanta:

mkdir -p ~/.virtualenvs
python3 -m venv ~/.virtualenvs/srlinux
source ~/.virtualenvs/srlinux/bin/activate
pip install inmanta

4. Clone the SR Linux examples repository:

git clone https://github.com/inmanta/examples.git

5. Change directory to SR Linux examples:

cd examples/Networking/SR\ Linux/

This folder contains a project.yml, which looks like this:

name: SR Linux Examples
description: Provides examples for the SR Linux module
author: Inmanta
author_email: code@inmanta.com
license: ASL 2.0
copyright: 2022 Inmanta

(continues on next page)

3

https://containerlab.dev/
https://learn.srlinux.dev/
https://docs.docker.com/install/
https://containerlab.dev/install/
https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

modulepath: libs
downloadpath: libs
repo:
- type: package

url: https://packages.inmanta.com/public/quickstart/python/simple/
install_mode: release
requires:

• The modulepath setting defines that modules will be stored in libs directory.

• The repo setting points to one or more Git repositories containing Inmanta modules.

• The requires setting is used to pin versions of modules, otherwise the latest version is used.

1. Install the required modules inside the SR Linux folder:

inmanta project install

Note: should you face any errors at this stage, please contact us.

In the next sections we will showcase how to set up and configure SR Linux devices.

1.2 Setting up the LAB

Go to the SR Linux folder and then containerlab to spin-up the containers:

cd examples/Networking/SR\ Linux/containerlab
sudo docker pull ghcr.io/nokia/srlinux:latest
sudo clab deploy -t topology.yml

Containerlab will spin-up:

1. an Inmanta server

2. a PostgreSQL Database server

3. Three SR Linux network operating systems.

Depending on your system’s horsepower, give them a few seconds/minutes to fully boot-up.

1.3 Connecting to the containers

At this stage, you should be able to view the Web Console by navigating to:

http://172.30.0.3:8888/console

To get an interactive shell to the Inmanta server:

docker exec -it clab-srlinux-inmanta-server /bin/bash

In order to connect to SR Linux containers, there are two options:

1. Using Docker:

docker exec -it clab-srlinux-spine sr_cli
or
docker exec -it clab-srlinux-leaf1 sr_cli

(continues on next page)

4 Chapter 1. Quickstart

http://172.30.0.3:8888/console

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

or
docker exec -it clab-srlinux-leaf2 sr_cli

2. Using SSH (username and password is admin):

ssh admin@clab-srlinux-spine
ssh admin@clab-srlinux-leaf1
ssh admin@clab-srlinux-leaf2

The output should look something like this:

Welcome to the srlinux CLI.
Type 'help' (and press <ENTER>) if you need any help using this.

--{ running }--[]--
A:spine#

Optionally, you can enter the configuration mode by typing:

enter candidate

Exit the session by typing:

quit

Now that we have the needed containers, we will need to go up a directory where the project files exist:

cd ..

Note: The rest of the this guide assumes commands are executed from the root path of the SR Linux folder, unless
noted otherwise.

1.4 Create an Inmanta project and an environment

A project is a collection of related environments. (e.g. development, testing, production, qa,. . .). We need to
have an environment to manage our infrastructure. An environment is a collection of resources, such as servers,
switches, routers, etc.

There are two ways to create a project and an environment:

1. Using Inmanta CLI (recommended):

Create a project called test
inmanta-cli --host 172.30.0.3 project create -n test
Create an environment called SR_Linux
inmanta-cli --host 172.30.0.3 environment create -p test -n SR_Linux --save

The first option, inmanta-cli, will automatically create a .inmanta file that contains the required information
about the server and environment ID. The compiler uses this file to find the server and to export to the right
environment.

2. Using the Web Console: Connect to the Inmanta container http://172.30.0.3:8888/console, click on the Cre-
ate new environment button, provide a name for the project and the environment then click submit.

If you have chosen the second option, the Web Console, you need to copy the environment ID for later use, either:

1.4. Create an Inmanta project and an environment 5

http://172.30.0.3:8888/console

Inmanta Documentation, Release 2023.1.1

• from the URL, e.g. ec05d6d9-25a4-4141-a92f-38e24a12b721 from the http://172.30.0.3:8888/console/
desiredstate?env=ec05d6d9-25a4-4141-a92f-38e24a12b721.

• or by clicking on the gear icon on the top right of the Web Console, then click on Environment, scroll down
all the way to the bottom of the page and copy the environment ID.

1.5 Configuring SR Linux

There are a bunch of examples present inside the SR Linux folder of the examples repository that you have cloned
in the previous step, setting up the lab.

In this guide, we will showcase two examples on a small CLOS topology to get you started:

1. interface configuration.

2. OSPF configuration.

It could be useful to know that Inmanta uses the gNMI protocol to interface with SR Linux devices.

Note: In order to make sure that everything is working correctly, run inmanta compile. This will ensure that
the modules are in place and the configuration is valid. If you face any errors at this stage, please contact us.

1.6 SR Linux interface configuration

The interfaces.cf file contains the required configuration model to set IP addresses on point-to-point interfaces
between the spine, leaf1 and leaf2 devices according to the aforementioned topology.

Let’s have a look at the partial configuration model:

1 import srlinux
2 import srlinux::interface as srinterface
3 import srlinux::interface::subinterface as srsubinterface
4 import srlinux::interface::subinterface::ipv4 as sripv4
5 import yang
6

7

8

9 ######## Leaf 1 ########
10

11 leaf1 = srlinux::GnmiDevice(
12 auto_agent = true,
13 name = "leaf1",
14 mgmt_ip = "172.30.0.210",
15 yang_credentials = yang::Credentials(
16 username = "admin",
17 password = "admin"
18)
19)
20

21 leaf1_eth1 = srlinux::Interface(
22 device = leaf1,
23 name = "ethernet-1/1",
24 mtu = 9000,
25 subinterface = [leaf1_eth1_subint]
26)
27

(continues on next page)

6 Chapter 1. Quickstart

http://172.30.0.3:8888/console/desiredstate?env=ec05d6d9-25a4-4141-a92f-38e24a12b721
http://172.30.0.3:8888/console/desiredstate?env=ec05d6d9-25a4-4141-a92f-38e24a12b721
https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux#user-content-sr-linux-topology
https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/interfaces.cf
https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/ospf.cf
https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/interfaces.cf
https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux#user-content-sr-linux-topology

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

28 leaf1_eth1_subint = srinterface::Subinterface(
29 parent_interface = leaf1_eth1,
30 x_index = 0,
31 ipv4 = leaf1_eth1_subint_address
32)
33

34 leaf1_eth1_subint_address = srsubinterface::Ipv4(
35 parent_subinterface = leaf1_eth1_subint,
36 address = sripv4::Address(
37 parent_ipv4 = leaf1_eth1_subint_address,
38 ip_prefix = "10.10.11.2/30"
39)
40)

• Lines 1-5 import the required modules/packages.

• Lines 11-19 instantiate the device; GnmiDevice object and set the required parameters.

• Lines 21-26 instantiate the Interface object by selecting the parent interface, ethernet-1/1 and setting
the MTU to 9000.

• Lines 28-32 instantiate the Subinterface object, link to the parent interface object, set an index and link
to the child Ipv4 object.

• Lines 34-40 instantiate the Ipv4 object, link to the parent Subinterface object, set the IP address and
prefix.

The rest of the configuration model follows the same method for leaf2 and spine devices, with the only difference
being the spine having two interfaces, subinterfaces and IP addresses.

Now, we can deploy the model by referring to Deploy the configuration model section.

1.7 SR Linux OSPF configuration

The ospf.cf file contains the required configuration model to first set IP addresses on point-to-point interfaces
between the spine, leaf1 and leaf2 devices according to the aforementioned topology and then configure OSPF
between them.

This model build on top of the interfaces model that was discussed in SR Linux interface configuration. It first
imports the required packages, then configures interfaces on all the devices and after that, adds the required
configuration model for OSPF.

Let’s have a look at the partial configuration model:

1 import srlinux
2 import srlinux::interface as srinterface
3 import srlinux::interface::subinterface as srsubinterface
4 import srlinux::interface::subinterface::ipv4 as sripv4
5 import srlinux::network_instance as srnetinstance
6 import srlinux::network_instance::protocols as srprotocols
7 import srlinux::network_instance::protocols::ospf as srospf
8 import srlinux::network_instance::protocols::ospf::instance as srospfinstance
9 import srlinux::network_instance::protocols::ospf::instance::area as srospfarea

10 import yang
11

12

13

14 ######## Leaf 1 ########
15

(continues on next page)

1.7. SR Linux OSPF configuration 7

https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/ospf.cf
https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux#user-content-sr-linux-topology

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

16 leaf1 = srlinux::GnmiDevice(
17 auto_agent = true,
18 name = "leaf1",
19 mgmt_ip = "172.30.0.210",
20 yang_credentials = yang::Credentials(
21 username = "admin",
22 password = "admin"
23)
24)
25

26 # |interface configuration| #
27

28 leaf1_eth1 = srlinux::Interface(
29 device = leaf1,
30 name = "ethernet-1/1",
31 mtu = 9000,
32 subinterface = [leaf1_eth1_subint]
33)
34

35 leaf1_eth1_subint = srinterface::Subinterface(
36 parent_interface = leaf1_eth1,
37 x_index = 0,
38 ipv4 = leaf1_eth1_subint_address
39)
40

41 leaf1_eth1_subint_address = srsubinterface::Ipv4(
42 parent_subinterface = leaf1_eth1_subint,
43 address = sripv4::Address(
44 parent_ipv4 = leaf1_eth1_subint_address,
45 ip_prefix = "10.10.11.2/30"
46)
47)
48

49 # |network instance| #
50

51 leaf1_net_instance = srlinux::NetworkInstance(
52 device = leaf1,
53 name = "default",
54)
55

56 leaf1_net_instance_int1 = srnetinstance::Interface(
57 parent_network_instance = leaf1_net_instance,
58 name = "ethernet-1/1.0"
59)
60

61 # |OSPF| #
62

63 leaf1_protocols = srnetinstance::Protocols(
64 parent_network_instance = leaf1_net_instance,
65 ospf = leaf1_ospf
66)
67

68 leaf1_ospf_instance = srospf::Instance(
69 parent_ospf = leaf1_ospf,
70 name = "1",
71 router_id = "10.20.30.210",

(continues on next page)

8 Chapter 1. Quickstart

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

72 admin_state = "enable",
73 version = "ospf-v2"
74)
75

76 leaf1_ospf = srprotocols::Ospf(
77 parent_protocols = leaf1_protocols,
78 instance = leaf1_ospf_instance
79)
80

81 leaf1_ospf_area = srospfinstance::Area(
82 parent_instance = leaf1_ospf_instance,
83 area_id = "0.0.0.0",
84)
85

86 leaf1_ospf_int1 = srospfarea::Interface(
87 parent_area = leaf1_ospf_area,
88 interface_name = "ethernet-1/1.0",
89)

• Lines 1-10 import the required modules/packages.

• Lines 16-24 instantiate the device; GnmiDevice object and set the required parameters.

• Lines 28-33 instantiate the Interface object by selecting the parent interface, ethernet-1/1 and setting
the MTU to 9000.

• Lines 35-39 instantiate the Subinterface object, link to the parent interface object, set an index and link
to the child Ipv4 object.

• Lines 41-47 instantiate the Ipv4 object, link to the parent Subinterface object, set the IP address and
prefix.

• Lines 51-54 instantiate NetworkInstance object, set the name to default.

• Lines 56-59 instantiate a network instance Interface object, link to the default network instance object
and use ethernet-1/1.0 as the interface.

• Lines 63-66 instantiate the Protocols object, link to the default network instance object and link to the
OSPF object which we will create shortly.

• Lines 68-74 instantiate an OSPF instance and OSPF Instance, link to the OSPF instance, provide a name,
router ID, admin state and version.

• Lines 76-79 instantiate an OSPF object, link to the Protocols object and link to the OSPF instance.

• Lines 81-84 instantiate an Area object, link to the OSPF instance and provide the area ID.

• Lines 86-89 instantiate an area Interface object, link to the OSPF area object and activates the OSPF on
ethernet-1/1.0 interface.

The rest of the configuration model follows the same method for leaf2 and spine devices, with the only difference
being the spine having two interfaces, subinterfaces and IP addresses and OSPF interface configuration.

Now, we can deploy the model by referring to Deploy the configuration model section.

1.7. SR Linux OSPF configuration 9

Inmanta Documentation, Release 2023.1.1

1.8 Deploy the configuration model

To deploy the project, we must first register it with the management server by creating a project and an environment.
We have covered this earlier at Create an Inmanta project and an environment section.

Export the interfaces configuration model to the Inmanta server:

inmanta -vvv export -f interfaces.cf
or
inmanta -vvv export -f interfaces.cf -d

Export the OSPF configuration model to the Inmanta server:

inmanta -vvv export -f ospf.cf
or
inmanta -vvv export -f ospf.cf -d

Note: The -vvv option sets the output of the compiler to very verbose. The -d option instructs the server to
immediately start the deploy.

When the model is sent to the server, it will start deploying the configuration. To track progress, you can go to the
web-console, select the test project and then the SR_Linux environment and click on Resources tab on the left
pane to view the progress.

When the deployment is complete, you can verify the configuration using the commands provided in Verifying the
configuration section.

If the deployment fails for some reason, consult the troubleshooting page to investigate the root cause of the issue.

1.9 Verifying the configuration

After a successful deployment, you can connect to SR Linux devices and verify the configuration.

Pick all or any of the devices you like, connect to them as discussed in Connecting to the containers section and
check the configuration:

show interface ethernet-1/1.0
show network-instance default protocols ospf neighbor
show network-instance default route-table ipv4-unicast summary
info flat network-instance default

1.10 Resetting the LAB environment

To fully clean up or reset the LAB, go to the containerlab folder and run the following commands:

cd containerlab
sudo clab destroy -t topology.yml

This will give you a clean LAB the next time you run:

sudo clab deploy -t topology.yml --reconfigure

10 Chapter 1. Quickstart

http://172.30.0.3:8888/console

Inmanta Documentation, Release 2023.1.1

1.11 Reusing existing modules

We host modules to set up and manage many systems on our Github. These are available under https://github.com/
inmanta/.

When you use an import statement in your model, Inmanta downloads these modules and their dependencies
when you run inmanta project install. V2 modules (See V2 module format) need to be declared as Python
dependencies in addition to using them in an import statement. Some of our public modules are hosted in the v2
format on https://pypi.org/.

1.12 Update the configuration model

The provided configuration models can be easily modified to reflect your desired configuration. Be it a change in
IP addresses or adding new devices to the model. All you need to do is to create a new or modify the existing
configuration model, say interfaces.cf to introduce your desired changes.

For instance, let’s change the IP address of interface ethernet-1/1.0 to 100.0.0.1/24 in the interfaces.cf config-
uration file:

1 import srlinux
2 import srlinux::interface as srinterface
3 import srlinux::interface::subinterface as srsubinterface
4 import srlinux::interface::subinterface::ipv4 as sripv4
5 import yang
6

7

8

9 ######## Leaf 1 ########
10

11 leaf1 = srlinux::GnmiDevice(
12 auto_agent = true,
13 name = "leaf1",
14 mgmt_ip = "172.30.0.210",
15 yang_credentials = yang::Credentials(
16 username = "admin",
17 password = "admin"
18)
19)
20

21 leaf1_eth1 = srlinux::Interface(
22 device = leaf1,
23 name = "ethernet-1/1",
24 mtu = 9000,
25 subinterface = [leaf1_eth1_subint]
26)
27

28 leaf1_eth1_subint = srinterface::Subinterface(
29 parent_interface = leaf1_eth1,
30 x_index = 0,
31 ipv4 = leaf1_eth1_subint_address
32)
33

34 leaf1_eth1_subint_address = srsubinterface::Ipv4(
35 parent_subinterface = leaf1_eth1_subint,
36 address = sripv4::Address(
37 parent_ipv4 = leaf1_eth1_subint_address,

(continues on next page)

1.11. Reusing existing modules 11

https://github.com/inmanta/
https://github.com/inmanta/
https://pypi.org/

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

38 ip_prefix = "100.0.0.1/24"
39)
40)

Additionally, you can add more SR Linux devices to the topology.yml file and explore the possible combinations.

1.13 Modify or Create your own modules

Inmanta enables developers of a configuration model to make it modular and reusable. We have made some videos
that can walk you through the entire process in a short time.

Please check our YouTube playlist to get started.

1.13.1 Module layout

A configuration module requires a specific layout:

• The name of the module is determined by the top-level directory. Within this module directory, a module.
yml file has to be specified.

• The only mandatory subdirectory is the model directory containing a file called _init.cf. What is defined
in the _init.cf file is available in the namespace linked with the name of the module. Other files in the
model directory create subnamespaces.

• The files directory contains files that are deployed verbatim to managed machines.

• The templates directory contains templates that use parameters from the configuration model to generate
configuration files.

• The plugins directory contains Python files that are loaded by the platform and can extend it using the
Inmanta API.

module
|
|__ module.yml
|
|__ files
| |__ file1.txt
|
|__ model
| |__ _init.cf
| |__ services.cf
|
|__ plugins
| |__ functions.py
|
|__ templates

|__ conf_file.conf.tmpl

Custom modules should be placed in the libs directory of the project.

12 Chapter 1. Quickstart

https://www.youtube.com/playlist?list=PL8UgC-AkgG7ZfqzTBpBYh_Uiou8SsjHaW

Inmanta Documentation, Release 2023.1.1

1.14 Next steps

Model developer documentation

1.14. Next steps 13

Inmanta Documentation, Release 2023.1.1

14 Chapter 1. Quickstart

CHAPTER

TWO

INSTALLATION

2.1 Install Inmanta

This page explains how to install the Inmanta orchestrator software and setup an orchestration server. Regardless
what platform you installed it on, Inmanta requires at least the latest Python 3.6 and git to be installed.

2.1.1 Install the software

Optional step 1: Setup SSL and authentication

Follow the instructions in Setting up authentication to configure both SSL and authentication. While not mandatory,
it is highly recommended you do so.

Step 2: Install PostgreSQL 13

For most platforms you can install PostgreSQL 13 following the installation guide for your platform.

For RHEL based systems you can also use the PostgreSQL that comes with the distribution.

sudo dnf module install postgresql:13/server

Step 3: Setup a PostgreSQL database for the Inmanta server

Initialize the PostgreSQL server:

sudo su - postgres -c "postgresql-13-setup --initdb"

Start the PostgreSQL database and make sure it is started at boot.

sudo systemctl enable --now postgresql-13

Create a inmanta user and an inmanta database by executing the following command. This command will request
you to choose a password for the inmanta database.

sudo -u postgres -i bash -c "createuser --pwprompt inmanta"
sudo -u postgres -i bash -c "createdb -O inmanta inmanta"

Change the authentication method for local connections to md5 by changing the following lines in the /var/lib/
pgsql/data/pg_hba.conf file

15

https://www.postgresql.org/download/

Inmanta Documentation, Release 2023.1.1

IPv4 local connections:
host all all 127.0.0.1/32 ident
IPv6 local connections:
host all all ::1/128 ident

to

IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5

Restart the PostgreSQL server to apply the changes made in the pg_hba.conf file:

sudo systemctl restart postgresql-13

Step 4: Set the database connection details

Add a /etc/inmanta/inmanta.d/database.cfg file as such that it contains the correct database connection
details. That file should look as follows:

[database]
host=<ip-address-database-server>
name=inmanta
username=inmanta
password=<password>

Replace <password> in the above-mentioned snippet with the password of the inmanta database. By default In-
manta tries to connect to the local server and uses the database inmanta. See the database section in the configfile
for other options.

Step 5: Set the server address

When virtual machines are started by this server that install the inmanta agent, the correct server.
server-address needs to be configured. This address is used to create the correct boot script for the virtual
machine.

Set this value to the hostname or IP address that other systems use to connect to the server in the configuration file
stored at /etc/inmanta/inmanta.d/server.cfg.

[server]
server-address=<server-ip-address-or-hostname>

Note: If you deploy configuration models that modify resolver configuration it is recommended to use the IP
address instead of the hostname.

16 Chapter 2. Installation

Inmanta Documentation, Release 2023.1.1

Step 6: Configure ssh of the inmanta user

The inmanta user that runs the server needs a working ssh client. This client is required to checkout git repositories
over ssh and if the remote agent is used.

1. Provide the inmanta user with one or more private keys:

a. Generate a new key with ssh-keygen as the inmanta user: sudo -u inmanta ssh-keygen -N
""

b. Install an exiting key in /var/lib/inmanta/.ssh/id_rsa

c. Make sure the permissions and ownership are set correctly.

ls -l /var/lib/inmanta/.ssh/id_rsa

-rw-------. 1 inmanta inmanta 1679 Mar 21 13:55 /var/lib/inmanta/.ssh/id_rsa

2. Configure ssh to accept all host keys or white list the hosts that are allowed or use signed host keys (depends
on your security requirements). This guide configures ssh client for the inmanta user to accept all host keys.
Create /var/lib/inmanta/.ssh/config and create the following content:

Host *
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

Ensure the file belongs to the inmanta user:

sudo chown inmanta:inmanta /var/lib/inmanta/.ssh/config

3. Add the public key to any git repositories and save if to include in configuration models that require remote
agents.

4. Test if you can login into a machine that has the public key and make sure ssh does not show you any prompts
to store the host key.

Step 7: Configure the server bind address

By default the server only listens on localhost, port 8888. This can be changed by altering the server.
bind-address and server.bind-port options in the /etc/inmanta/inmanta.d/server.cfg file.

[server]
bind-address=<server-bind-address>
bind-port=<server-bind-port>

Step 8: Start the Inmanta server

Start the Inmanta server and make sure it is started at boot.

sudo systemctl enable --now inmanta-server

The web-console is now available on the port and host configured in step 7.

2.1. Install Inmanta 17

Inmanta Documentation, Release 2023.1.1

Optional Step 9: Setup influxdb for collection of performance metrics

Follow the instructions in Performance Metering to send performance metrics to influxdb. This is only recom-
mended for production deployments.

Optional Step 10: Configure logging

Logging can be configured by following the instructions in Logging.

RHEL 8 and 9

For RHEL, Almalinux and Rockylinux 8 and 9 based systems use dnf:

sudo tee /etc/yum.repos.d/inmanta-oss-stable.repo <<EOF [inmanta-oss-stable] name=inmanta-oss-stable
baseurl=https://packages.inmanta.com/public/oss-stable/rpm/el/$releasever/$basearch repo_gpgcheck=1 en-
abled=1 gpgkey=https://packages.inmanta.com/public/oss-stable/gpg.A34DD0A274F07713.key gpgcheck=1
sslverify=1 sslcacert=/etc/pki/tls/certs/ca-bundle.crt metadata_expire=300 pkg_gpgcheck=1 autorefresh=1
type=rpm-md EOF

sudo dnf install -y inmanta-oss inmanta-oss-server inmanta-oss-agent

The first package (inmanta-oss) contains all the code and the commands. The server and the agent packages install
config files and systemd unit files. The web-console is installed with the server package.

Debian, Ubuntu and derivatives.

First make sure Python >= 3.9 and git are installed. Inmanta requires many dependencies so it is recommended to
create a virtual env. Next install inmanta with pip install in the newly created virtual env.

Please note, the path to the virtual env is arbitrary. Your desired path can override below example.

Install GCC, python3 >= 3.9 and pip
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install python3-pip

Install wheel and inmanta in a python venv
sudo apt-get install python3-venv
sudo python3 -m venv /opt/inmanta
sudo /opt/inmanta/bin/pip install -U pip wheel
sudo /opt/inmanta/bin/pip install inmanta
sudo /opt/inmanta/bin/inmanta --help

Install PostgreSQL
sudo apt-get install postgresql postgresql-client

Download the configuration files named inmanta.cfg and extensions.cfg (these names are arbitrary) in your
virtual env:

sudo mkdir /opt/inmanta/inmanta.d
sudo apt-get install wget
sudo wget -O /opt/inmanta/inmanta.cfg "https://raw.githubusercontent.com/inmanta/
↪→inmanta-core/master/misc/inmanta.cfg"
sudo wget -O /opt/inmanta/inmanta.d/extensions.cfg "https://raw.githubusercontent.com/
↪→inmanta/inmanta-core/master/misc/extensions.cfg"

18 Chapter 2. Installation

Inmanta Documentation, Release 2023.1.1

If you want to use the web-console you need to install it as well:

Get the pre-built package from our web-console github page. Click on the the package name to go to the package’s
main page, then on the right hand side under Assets, you will see the compressed package. Download and extract
it to your desired directory (preferably, on the same virtual env which was created earlier, in this case, /opt/inmanta).
Next, open the inmanta.cfg file and at the bottom of the file, under the [web-console] section, change the path
value to the dist directory of where you extracted the pre-built package. For instance:

path=/opt/inmanta/web-console/package/dist

Then the Inmanta server can be started using below command (please note, below command has to be run after
completing the Configure server) part:

sudo /opt/inmanta/bin/inmanta -vv -c /opt/inmanta/inmanta.cfg --config-dir /opt/
↪→inmanta/inmanta.d server

Other

First make sure Python >= 3.9 and git are installed. Inmanta requires many dependencies so it is recommended to
create a virtual env. Next install inmanta with pip install in the newly created virtual env.

Please note, the path to the virtual env is arbitrary. Your desired path can override below example.

Install python3 >= 3.9 and git
If git is not already installed, by running git in your terminal, the installation␣
↪→guide will be shown
sudo python3 -m venv /opt/inmanta
sudo /opt/inmanta/bin/pip install -U pip wheel
sudo /opt/inmanta/bin/pip install inmanta
sudo /opt/inmanta/bin/inmanta --help

Install PostgreSQL using this guide

Download the configuration files named inmanta.cfg and extensions.cfg (these names are arbitrary) in your
virtual env:

sudo mkdir /opt/inmanta/inmanta.d
sudo wget -O /opt/inmanta/inmanta.cfg "https://raw.githubusercontent.com/inmanta/
↪→inmanta-core/master/misc/inmanta.cfg"
sudo wget -O /opt/inmanta/inmanta.d/extensions.cfg "https://raw.githubusercontent.com/
↪→inmanta/inmanta-core/master/misc/extensions.cfg"

If you want to use the web-console you need to install it as well:

Get the pre-built package from our web-console github page. Click on the the package name to go to the package’s
main page, then on the right hand side under Assets, you will see the compressed package. Download and extract
it to your desired directory (preferably, on the same virtual env which was created earlier, in this case, /opt/inmanta).
Next, open the inmanta.cfg file and at the bottom of the file, under the [web-console] section, change the path
value to the dist directory of where you extracted the pre-built package. For instance:

path=/opt/inmanta/web-console/package/dist

Then the Inmanta server can be started using below command (please note, below command has to be run after
completing the Configure server) part:

sudo /opt/inmanta/bin/inmanta -vv -c /opt/inmanta/inmanta.cfg --config-dir /opt/
↪→inmanta/inmanta.d server

2.1. Install Inmanta 19

https://github.com/inmanta/web-console/packages/
https://www.postgresql.org/docs/13/tutorial-install.html
https://github.com/inmanta/web-console/packages/

Inmanta Documentation, Release 2023.1.1

Windows

On Windows only the compile and export commands are supported. This is useful in the Push to server deployment
mode of inmanta. First make sure you have Python >= 3.9 and git. Inmanta requires many dependencies so it is
recommended to create a virtual env. Next install inmanta with pip install in the newly created virtual env.

Install python3 >= 3.9 and git
python3 -m venv C:\inmanta\env
C:\inmanta\env\Script\pip install inmanta
C:\inmanta\env\Script\inmanta --help

Source

Get the source either from our release page on github or clone/download a branch directly.

git clone https://github.com/inmanta/inmanta-core.git
cd inmanta
pip install -c requirements.txt .

Warning: When you use Inmanta modules that depend on python libraries with native code, python headers
and a working compiler are required as well.

2.1.2 Configure server

This guide goes through the steps to set up an Inmanta service orchestrator server. This guide assumes a RHEL 8
based server is used. The rpm packages install the server configuration file in /etc/inmanta/inmanta.cfg.

2.2 Install Inmanta with Docker

This page explains how to setup an orchestration server using docker. This guide assumes you already have docker
and docker-compose installed on your machine.

2.2.1 Pull the image

Use docker pull to get the desired image:

docker pull ghcr.io/inmanta/orchestrator:2022

This command will pull the latest version of the Inmanta OSS Orchestrator image.

2.2.2 Start the server with docker-compose

Here is a minimalistic docker-compose file content that can be used to deploy the server on your machine.

version: '3'
services:

postgres:
container_name: inmanta_db
image: postgres:13
environment:

POSTGRES_USER: inmanta
(continues on next page)

20 Chapter 2. Installation

https://github.com/inmanta/inmanta-core/releases
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

POSTGRES_PASSWORD: inmanta
networks:

inm_net:
ipv4_address: 172.30.0.2

inmanta-server:
container_name: inmanta_orchestrator
image: ghcr.io/inmanta/orchestrator:2022
ports:

- 8888:8888
networks:

inm_net:
ipv4_address: 172.30.0.3

depends_on:
- "postgres"

command: "server --wait-for-host inmanta_db --wait-for-port 5432"

networks:
inm_net:

ipam:
driver: default
config:

- subnet: 172.30.0.0/16

docker-compose up

You should be able to reach the orchestrator to this address: http://172.30.0.3:8888.

The default server config included in the container images assumes that the orchestrator can reach a database
server with hostname inmanta_db and that it can authenticate to it using the username inmanta and password
inmanta. When using a different setup than the one mentioned above, you should overwrite the server config with
one matching your needs. You can find more instructions for overwriting the config in a following section, here.

Warning: We don’t recommend using the setup described above as a production environment. Hosting a
database in a container as shown here is not ideal in term of performance, reliability and raises some serious
data persistence concerns.

2.2.3 Overwrite default server configuration

By default the server will use the file located in the image at /etc/inmanta/inmanta.cfg. If you want to change
it, you can copy this file, edit it, then mount it in the container, where the original file was located.

If you use docker-compose, you can simply update this section of the example above:

inmanta-server:
container_name: inmanta_orchestrator
image: ghcr.io/inmanta/orchestrator:2022
ports:

- 8888:8888
volumes:

- ./resources/my-server-conf.cfg:/etc/inmanta/inmanta.cfg

2.2. Install Inmanta with Docker 21

http://172.30.0.3:8888

Inmanta Documentation, Release 2023.1.1

2.2.4 Starting the ssh server

By default, no ssh server is running in the container. You don’t need it to have a functional orchestrator. If you want
to enable ssh anyway, for easy access to the orchestrator, you can overwrite the startup command of the container
with the following:

server-with-ssh

If you use docker-compose, it should look like:

inmanta-server:
container_name: inmanta_orchestrator
...
command: "server-with-ssh"

Warning: By default, the inmanta user doesn’t have any password, if you want to ssh into the container, you
also need to set the authorized_keys file for the inmanta user. You can do so by mounting your public key to the
following path in the container: /var/lib/inmanta/.ssh/authorized_keys. When starting, the container
will make sure that the file has the correct ownership and permissions.

2.2.5 Waiting for the database

Depending on you setup, you might want your container to wait for the database to be ready to accept connections
before starting the server (as this one would fail, trying to reach the db). You can do this by adding the following
arguments to the startup command of the container:

server --wait-for-host <your-db-host> --wait-for-port <your-db-port>

If you use docker-compose, it should look like:

inmanta-server:
container_name: inmanta_orchestrator
...
command: "server --wait-for-host <your-db-host> --wait-for-port <your-db-port>"

2.2.6 Setting environment variables

You might want your inmanta server to be able to reach some environment variables. There are two ways you can
achieve this:

1. Set the environment variables with docker, either using the --env argument or in your docker-compose file.
Those variables will be accessible to the inmanta server and any agent it starts, but not to any other process
running in the container (if you for example login via ssh to the container and try to install a project again).

2. (Recommended) Set the environment variables in a file and mount it to the following path in the container:
/etc/inmanta/env. This file will be loaded when starting the server and for every session that the inmanta
user starts in the container.

inmanta-server:
container_name: inmanta_orchestrator
image: ghcr.io/inmanta/orchestrator:2022
ports:

- 8888:8888
volumes:

- ./resources/my-server-conf.cfg:/etc/inmanta/inmanta.cfg
- ./resources/my-env-file:/etc/inmanta/env

22 Chapter 2. Installation

Inmanta Documentation, Release 2023.1.1

2.2.7 Changing inmanta user/group id

If you mount a folder of your host in the container, and expect the inmanta user to interact with it, you might face the
issue that the inmanta user inside the container doesn’t have ownership of the files. You could fix this by changing
the ownership in the container, but this change would also be reflected on the host, meaning that you would lose
the ownership of you files. This is a very uncomfortable situation. While Podman has been offering the possibility
to do a mapping of a user id in the container to a user id on the host at runtime, which would solve our problem
here, Docker still doesn’t offer this functionality. The inmanta container allows you to change the user and group
id of the inmanta user inside the container when starting the container to match the user on the host, getting rid
that way of any conflict in the files ownership.

This can be done easily by simply setting those environment variables:

• INMANTA_UID: Will change, when starting the container, the id of the inmanta user.

• INMANTA_GID: Will change, when starting the container, the id of the inmanta group.

If you use docker-compose, you can simply update this section of the example above:

inmanta-server:
container_name: inmanta_orchestrator
...
environment:

INMANTA_UID: 1000
INMANTA_GID: 1000

2.2.8 Log rotation

By default, the container won’t do any log rotation, to let you the choice of dealing with the logs according to your
own preferences. We recommend that you do so by mounting a folder inside of the container at the following path:
/var/log. This path contains all the logs of inmanta (unless you specified a different path in the config of the
server) and the logs of the SSH server.

2.3 Configure agents

Inmanta agents can be started automatically (auto-started agents) or manually (manually-started agents). This
section describes how both types of agents can be set up and configured. Inmanta agents only run on Linux.

2.3.1 Auto-started agents

Auto-started agents always run on the Inmanta server. The Inmanta server manages the full lifecycle of these agents.

Configuring auto-started agents via environment settings

Auto-started agents can be configured via the settings of the environment where the auto-started agent belongs to.
The following options are configurable:

• autostart_agent_map

• autostart_agent_deploy_interval

• autostart_agent_deploy_splay_time

• autostart_agent_repair_interval

• autostart_agent_repair_splay_time

• autostart_on_start

2.3. Configure agents 23

Inmanta Documentation, Release 2023.1.1

The autostart_agent_map requires an entry for each agent that should be autostarted. The key is the name of
the agent and the value is either local: for agents that map to the Inmanta server or an SSH connection string
when the agent maps to a remote machine. The SSH connection string requires the following format: ssh://
<user>@<host>:<port>?<options>. Options is a ampersand-separated list of key=value pairs. The following
options can be provided:

Option
name

Default
value

Description

retries 10 The amount of times the orchestrator will try to establish the SSH connection when
the initial attempt failed.

retry_wait 30 The amount of second between two attempts to establish the SSH connection.
python python The Python3 interpreter available on the remote side. This executable has to be dis-

coverable through the system PATH.

Auto-started agents start when they are required by a specific deployment or when the Inmanta server starts if
the autostart_on_start setting is set to true. When the agent doesn’t come up when required, consult the
troubleshooting documentation to investigate the root cause of the issue.

Configuring the autostart_agent_map via the std::AgentConfig entity

The std::AgentConfig entity provides functionality to add an entry to the autostart_agent_map of a specific
environment. As such, the auto-started agents can be managed in the configuration model.

Special Requirements for remote std::File, std::Package, std::Service and exec::Run

When using the agents built-in ssh capability, to perform actions over ssh on remote hosts, the following require-
ments must be met:

• The Inmanta server should have passphraseless SSH access on the machine it maps to. More information on
how to set up SSH connectivity can be found at Step 6: Configure ssh of the inmanta user

• The remote machine should have a Python 2 or 3 interpreter installed. The binary executed by default is
python.

• The user to log into the remote machine should either be root or have the ability to do a passwordless sudo.
To enable passwordless sudo for the user username, add a file to /etc/sudoers.d/ containing username
ALL=(ALL) NOPASSWD: ALL. It is advisable to use a safe editor such as visudo or sudoedit for this. For
more details, go here.

2.3.2 Manually-started agents

Manually started agents can be run on any Linux device, but they should be started and configured manually as the
name suggests.

Requirements

The following requirements should be met for agents that don’t map to the host running the agent process (i.e. The
managed device is remote with respect to the Inmanta agent and the agent has to execute I/O operations on the
remote machine using self._io):

• The Inmanta agent should have passphraseless SSH access on the machine it maps to. More information on
how to set up SSH connectivity can be found at Step 6: Configure ssh of the inmanta user

• The remote machine should have a Python 2 or 3 interpreter installed. The binary executed by default is
python.

24 Chapter 2. Installation

https://www.sudo.ws/man/sudoers.man.html

Inmanta Documentation, Release 2023.1.1

Step 1: Installing the required Inmanta packages

In order to run a manually started agent, the inmanta-oss-agent package is required on the machine that will
run the agent.

sudo tee /etc/yum.repos.d/inmanta-oss-stable.repo <<EOF
[inmanta-oss-stable]
name=Inmanta OSS stable
baseurl=https://packages.inmanta.com/public/oss-stable/rpm/el/\$releasever/\$basearch
gpgcheck=1
gpgkey=https://packages.inmanta.com/public/oss-stable/gpg.A34DD0A274F07713.key
repo_gpgcheck=1
enabled=1
enabled_metadata=1
EOF

sudo dnf install -y inmanta-oss-agent

Step 2: Configuring the manually-started agent

The manually-started agent can be configured via a /etc/inmanta/inmanta.d/*.cfg config file. The following
options configure the behavior of the manually started agent:

• config.state-dir

• config.agent-names

• config.environment

• config.agent-map

• config.agent-deploy-splay-time

• config.agent-deploy-interval

• config.agent-repair-splay-time

• config.agent-repair-interval

• config.agent-reconnect-delay

• config.server-timeout

• agent_rest_transport.port

• agent_rest_transport.host

• agent_rest_transport.token

• agent_rest_transport.ssl

• agent_rest_transport.ssl-ca-cert-file

The config.agent-map option can be configured in the same way as the autostart_agent_map for auto-started
agents.

2.3. Configure agents 25

Inmanta Documentation, Release 2023.1.1

Step 3: Starting the manually-started agent

Finally, enable and start the inmanta-agent service:

sudo systemctl enable inmanta-agent
sudo systemctl start inmanta-agent

The logs of the agent are written to /var/log/inmanta/agent.log. When the agent doesn’t come up after
starting the inmanta-agent service, consult the troubleshooting documentation to investigate the root cause of
the issue.

26 Chapter 2. Installation

CHAPTER

THREE

ARCHITECTURE

The Inmanta orchestrator consists of several components:

Git Server PostgreSQL

inmanta-server AgentCompiler

CLIweb-console

*

*

*

*

• The Inmanta server: This server manages the deployment process, it keeps track of all agents and the current
state of all projects. The server stores it state in PostgreSQL. All other state can be recovered after a server
restart or failover.

• A PostgreSQL database: The Inmanta server stores its state in a PostgreSQL database.

• The git server: The source code of the configuration models is stored in (one or more) git repositories.

• The compiler: The compiler converts the source code into deployable resources and exports it to the server.

• CLI and web-console: To control the server, you can use either the web-console or the command line tools.
Both communicate through the server rest API.

• The Inmanta agents: Agents execute configuration changes on targets. A target can be a server, a network
switch or an API or cloud service. An agent can manage local and remote resources. This provides the
flexibility to work in an agent based or agent-less architecture, depending on the requirements.

3.1 Usage modes

Inmanta can be used in three modes:

• embedded: all components are started with the deploy command, the server is terminated after the deploy
is finished. Suitable only for development.

• push to server: the server runs on a external machine. Models are compiled on the developer machine and
pushed to the server directly. Suitable only for small setups or for developement/debug purposes.

• autonomous server: the server runs on a external machine. Models are stored in git repos and compiled by
the server.

27

Inmanta Documentation, Release 2023.1.1

The last two modes support agents on same machine as the server and automatically started, or deployed as an
external process.

3.1.1 All in one

Dev Machine

Compiler

CLI web-console

PostgreSQL

Agent
To target

inmanta-server

In a all-in-one deployment, all components (server, agent and postgres) are started embedded in the compiler and
terminated after the deploy is complete. No specific setup is required. To deploy the current model, use:

inmanta deploy

The all-in-one deployment is ideal of testing, development and one-off deployments. State related to orchestration
is stored locally in data/deploy.

3.1.2 Push to server

Git Server

Inmanta Server

PostgreSQL

inmanta-server

Agent

Dev Machine

Compiler

CLI

web-console

To target

In a push to server model, the server is deployed on an external machine, but models are still compiled on the
developer machine. This gives faster feedback to developers, but makes the compilation less reproducible. It also
complicates collaboration.

Both the developer machine and the server need to have Inmanta installed. To compile and export models to the
server from the developer machine a .inmanta file is required in the project directory (where you find the main.cf
and the project.yaml file) to connect the compiler with the server.

Create a .inmanta file in the project directory and include the following configuration:

[config]
environment=$ENV_ID

[compiler_rest_transport]
(continues on next page)

28 Chapter 3. Architecture

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

host=$SERVER_ADDRESS
port=$SERVER_PORT

Replace $ENV_ID, $SERVER_ADDRESS and $SERVER_PORT with the correct values (See
compiler_rest_transport for more details when using ssl and or auth, config.environment explains
the environment setting). A best practice is to not add the .inmanta to the git repository. Because different
developer may use different orchestration servers.

• inmanta compile compiles the current project but does not upload the result to the orchestration server.

• inmanta export compiles and uploads the current project to the orchestration server. Depending on the
environment settings the server will release and deploy the model or it becomes available in the new state.

• inmanta export -d compiles, uploads and releases the current project. The result will start deploying
immediately.

3.1.3 Autonomous server

Git Server

Inmanta Server

PostgreSQL

inmanta-server

Compiler

Agent

Dev Machine

CLI To target

web-console

With an autonomous server, developers can no longer push models into production directly. Only the server itself
compiles the models. This ensures that every compile is repeatable and allows collaboration because all changes
have to be committed.

3.2 Agent modes

The Inmanta agent performs all changes in the infrastructure. Either the orchestration server starts an agents or an
agent is deployed as a separate process.

• agentless: Autostarted agents allow for an agentless mode: no explicit agents need to be started. When the
agent needs to make changes on machine/vm it can make the changes over remote over ssh. Autostarted
agents are controlled by using std::AgentConfig. ip::Host and subclasses can automatically configure
an agent with the remote_agent attribute.

• external agent: External agent processes need explicit configuration to connect to the orchestration server.
The aws and openstack modules use the platform module to generate a user_data bootscript for virtual ma-
chines to install an agent and connect to the orchestration server. The install_agent boolean controls this
option.

3.2. Agent modes 29

Inmanta Documentation, Release 2023.1.1

3.3 Resource deployment

The agent is responsible for:

• repair the infrastructure at regular intervals

• change the infrastructure at regular intervals

• enforce desired state when the server requests it

3.3.1 Repair

At regular intervals the agent verifies that the current state of all resources it manages matches the desired state
provided by the orchestration server. For a repair the agent verifies all resources, even if the last known current state
already matches the desired state. In the current release all deploys are done through a repair and run by default
every 600 seconds. This is controlled with config.agent-repair-interval, when this option is set to 0 no
repairs are performed.

3.3.2 Deploy changes

For very large infrastructures or infrastructure that is too slow (for example network devices with underpowered
control planes or thousands of managed resources) a repair cannot run often. For example, only once a week.
When this is the case, the agent can deploy only known changes (based on the previous deployed state cached by
the orchestration server). This interval is controlled by config.agent-deploy-interval. This interval should
be a lot shorter than config.agent-repair-interval

When a repair is running and a deploy run is started, the repair is cancelled, the deploy is performed and then the
repair is restarted. This repair starts again from scratch. So when repairs take a very long time, they might never
finish completely when there is a high rate of change.

3.3.3 Push changes

For very interactive changes the server pushes changes to the agent. The server can push full and incremental
desired state to the agent.

• incremental only deploys resource for which the orchestrator knows there are changes, based on the last
known deploy status of the resource.

• full always deploys all resources even if the last know status of the resource already matches desired state.

30 Chapter 3. Architecture

CHAPTER

FOUR

LANGUAGE REFERENCE

The Inmanta language is a declarative language to model the configuration of an infrastructure.

The evaluation order of statements is determined by their dependencies on other statements and not based on the
lexical order. i.e. The code is not necessarily executed top to bottom.

4.1 Modules

The source is organized in modules. Each module is a git repository with the following structure:

module/
+-- files/
+-- model/
| +-- _init.cf
+-- plugins/
+-- templates/
+-- module.yml

Note: The module format described here is the v1 module format. For more details see Understanding Modules.

The module.yml file, the model directory and the model/_init.cf are required.

For example:

test/
+-- files/
+-- model/
| +-- _init.cf
| +-- services.cf
| +-- policy
| | +-- _init.cf
| | +-- other.cf
+-- plugins/
+-- templates/
+-- module.yml

The model code is in the .cf files. Each file forms a namespace. The namespaces for the files are the following.

File Namespace
test/model/_init.cf test
test/model/services.cf test::services
test/model/policy/_init.cf test::policy
test/model/policy/other.cf test::policy::other

31

Inmanta Documentation, Release 2023.1.1

Modules are only loaded when they are imported by a loaded module or the main.cf file of the project.

To access members from another namespace, it must be imported into the current namespace.:

import test::services

Imports can also define an alias, to shorten long names:

import test::services as services

4.2 Variables

Variables can be defined in any lexical scope. They are visible in their defining scope and its children. A lexical
scope is either a namespaces or a code block (area between : and end).

Variable names must start with a lower case character and can consist of the characters: a-zA-Z_0-9-

A value can be assigned to a variable exactly once. The type of the variable is the type of the value. Assigning a
value to the same variable twice will produce a compiler error, unless the values are identical.

Variables from other modules can be referenced by prefixing them with the module name (or alias)

import redhat
os = redhat::fedora23
import ubuntu as ubnt
os2 = ubnt::ubuntu1204

4.3 Literals values

Literal values can be assigned to variables

var1 = 1 # assign an integer, var1 contains now a number
var2 = 3.14 # assign a float, var2 also contains a number
var3 = "This is a string" # var3 contains a string
var4 = r"This is a raw string" # var4 contains a raw string

var 5 and 6 are both booleans
var5 = true
var6 = false

var7 is a list of values
var7 = ["fedora", "ubuntu", "rhel"]

a dictionary with string keys and any type of values is also a primitive
var8 = { "foo":"bar", "baz": 1}

var9 contains the same value as var2
var9 = var2

next assignment will not return an error because var1 already contains this value
var1 = 1

next assignment would return an error because var1 already has a different value
#var1 = "test"

#ref to a variable from another namespace
(continues on next page)

32 Chapter 4. Language Reference

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

import ip::services
sshservice = ip::services::ssh

4.4 Primitive types

The basic primitive types are string, number, int or bool. These basic types also support type casts:

assert = true
assert = int("1") == 1
assert = number("1.2") == 1.2
assert = number(true) == 1
assert = bool(1.2) == true
assert = bool(0) == false
assert = bool(null) == false
assert = bool("x") == true
like in Python, only empty strings are considered false
assert = bool("false") == true
assert = bool("") == false
assert = string(true) == "true"

Constrained primitive types can be derived from the basic primitive type with a typedef statement. Constrained
primitive types add additional constraints to the basic primitive type with either a Python regex or a logical condi-
tion. The name of the constrained primitive type must not collide with the name of a variable or type in the same
lexical scope.

A regex matches a given string when zero or more characters at the beginning of that string match the regular
expression. A dollar sign should be used at the end of the regex if a full string match is required.

typedef : 'typedef' ID 'as' PRIMITIVE 'matching' condition|regex;

For example

typedef tcp_port as int matching self > 0 and self < 65535
typedef mac_addr as string matching /([0-9a-fA-F]{2})(:[0-9a-fA-F]{2}){5}$/

Lists of primitive types are also primitive types: string[], number[], bool[] or mac_addr[]

dict is the primitive type that represents a dictionary, with string keys. Dict values can be accessed using the []
operator. All members of a dict have to be set when the dict is constructed. e.g.

#correct
a = {"key":"value", "number":7}
value = a["key"]
value = "value"
incorrect, can't assign to dict after construction
a["otherkey"] = "othervalue"

4.4. Primitive types 33

Inmanta Documentation, Release 2023.1.1

4.5 Conditions

Conditions can be used in typedef, implements and if statements. A condition is an expression that evaluates to a
boolean value. It can have the following forms

condition : '(' condition ')'
| condition 'or' condition
| condition 'and' condition
| 'not' condition
| value
| value ('>' | '>=' | '<' | '<=' | '==' | '!=') value
| value 'in' value
| functioncall
| value 'is' 'defined'
;

The is defined keyword checks if a value was assigned to an attribute or a relation of a certain entity. The
following example sets the monitoring configuration on a certain host when it has a monitoring server associated:

entity Host:

end

entity MonitoringServer:

end

Host.monitoring_server [0:1] -- MonitoringServer

implement Host using monitoringConfig when monitoring_server is defined

implementation monitoringConfig for Host:
Set monitoring config

end

Empty lists are considered to be unset.

4.6 Function calls / Plugins

Each module can define plugins. Plugins can contribute functions to the module’s namespace. The function call
syntax is

functioncall : moduleref '.' ID '(' arglist? ')';
arglist : arg

| arglist ',' arg
;

arg : value
| key '=' value
| '**' value
;

For example

std::familyof(host.os, "rhel")
a = param::one("region", "demo::forms::AWSForm")

(continues on next page)

34 Chapter 4. Language Reference

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

hello_world = "Hello World!"
hi_world = std::replace(hello_world, new = "Hi", old = "Hello")
dct = {

"new": "Hi",
"old": "Hello",

}
hi_world = std::replace(hello_world, **dct)

4.7 Entities

Entities model configuration concepts. They are like classes in other object oriented languages: they can be in-
stantiated and they define the structure of their instances.

Entity names must start with an upper case character and can consist of the characters: a-zA-Z_0-9-

Entities can have a number of attributes and relations to other entities. Entity attributes have primitive types, with
an optional default value. An attribute has to have a value unless the nulable variant of the primitive type is used.
An attribute that can be null uses a primitive type with a ? such as string?. A value can also be assigned only
once to an attribute that can be null. To indicate that no value will be assigned, the literal null is available. null
can also be the default value of an attribute.

Entities can inherit from multiple other entities. Entities inherits attributes and relations from parent entities. All
entities inherit from std::Entity.

It is not possible to override or rename attributes or relations. However, it is possible to override defaults. Default
values for attributes defined in the class take precedence over those in the parent classes. When a class has multiple
parents, the left parent takes precedence over the others. A default value can be removed by setting its value to
undef.

The syntax for defining entities is:

entity: 'entity' ID ('extends' classlist)? ':' attribute* 'end';

classlist: class
| class ',' classlist;

attribute: primitve_type ID ('=' literal)?;

Defining entities in a configuration model

entity File:
string path
string content
int mode = 640
string[] list = []
dict things = {}

end

4.7. Entities 35

Inmanta Documentation, Release 2023.1.1

4.8 Relations

A Relation is a unidirectional or bidirectional relation between two entities. The consistency of a bidirectional
double binding is maintained by the compiler: assignment to one side of the relation is an implicit assignment of
the reverse relation.

Relations are defined by specifying each end of the relation together with the multiplicity of each relation end.
Each end of the relation is named and is maintained as a double binding by the compiler.

Defining relations between entities in the domain model

relation: class '.' ID multi '--' class '.' ID multi
| class '.' ID multi annotation_list class '.' ID multi ;

annotation_list: value
| annotation_list ',' value

For example a bidirectional relation:

File.service [1] -- Service.file [1:]

Or a unidirectional relation

uni_relation : class '.' ID multi '--' class
| class '.' ID multi annotation_list class;

For example

Service.file [1:] -- File

Relation multiplicities are enforced by the compiler. If they are violated a compilation error is issued.

Note: In previous version another relation syntax was used that was less natural to read and allowed only bidirec-
tional relations. The relation above was defined as File file [1:] -- [1] Service service This synax
is deprecated but still widely used in many modules.

4.9 Instantiation

Instances of an entity are created with a constructor statement

File(path="/etc/motd")

A constructor can assign values to any of the properties (attributes or relations) of the entity. It can also leave the
properties unassigned. For attributes with default values, the constructor is the only place where the defaults can
be overridden.

Values can be assigned to the remaining properties as if they are variables. To relations with a higher arity, multiple
values can be assigned. Additionally, null can be assigned to relations with a lower arity of 0 to indicate explicitly
that the model will not assign any values to the relation attribute.

Host.files [0:] -- File.host [1]

h1 = Host("test")
f1 = File(host=h1, path="/opt/1")
f2 = File(host=h1, path="/opt/2")
f3 = File(host=h1, path="/opt/3")

(continues on next page)

36 Chapter 4. Language Reference

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

// h1.files equals [f1, f2, f3]

FileSet.files [0:] -- File.set [1]

s1 = FileSet()
s1.files = [f1,f2]
s1.files = f3

// s1.files equals [f1, f2, f3]

s1.files = f3
// adding a value twice does not affect the relation,
// s1.files still equals [f1, f2, f3]

In addition, attributes can be assigned in a constructor using keyword arguments by using **dct where dct is a
dictionary that contains attribute names as keys and the desired values as values. For example:

Host.files [0:] -- File.host [1]
h1 = Host("test")

file1_config = {"path": "/opt/1"}
f1 = File(host=h1, **file1_config)

4.10 Refinements

Entities define what should be deployed. Entities can either be deployed directly (such as files and packages) or
they can be refined. Refinement expands an abstract entity into one or more more concrete entities.

For example, apache::Server is refined as follows

implementation apacheServerDEB for Server:
pkg = std::Package(host=host, name="apache2-mpm-worker", state="installed")
pkg2 = std::Package(host=host, name="apache2", state="installed")
svc = std::Service(host=host, name="apache2", state="running", onboot=true,␣

↪→reload=true, requires=[pkg, pkg2])
svc.requires = self.requires

put an empty index.html in the default documentroot so health checks do not fail
index_html = std::ConfigFile(host=host, path="/var/www/html/index.html", content="

↪→",
requires=pkg)

self.user = "www-data"
self.group = "www-data"

end

implement Server using apacheServerDEB when std::familyof(host.os, "ubuntu")

For each entity one or more refinements can be defined with the implementation statement. Implementation are
connected to entities using the implement statement.

When an instance of an entity is constructed, the runtime searches for refinements. One or more refinements are
selected based on the associated conditions. When no implementation is found, an exception is raised. Entities for
which no implementation is required are implemented using std::none.

In the implementation block, the entity instance itself can be accessed through the variable self.

4.10. Refinements 37

Inmanta Documentation, Release 2023.1.1

implement statements are not inherited, unless a statement of the form implement ServerX using parents
is used. When it is used, all implementations of the direct parents will be inherited, including the ones with a where
clause.

The syntax for implements and implementation is:

implementation: 'implementation' ID 'for' class ':' statement* 'end';
implement: 'implement' class 'using' implement_list

| 'implement' class 'using' implement_list_cond 'when' condition
;

implement_list: implement_list_cond
| 'parents'
| implement_list ',' implement_list
;

implement_list_cond: ID
| ID ',' implement_list_cond
;

4.11 Indexes and queries

Index definitions make sure that an entity is unique. An index definition defines a list of properties that uniquely
identify an instance of an entity. If a second instance is constructed with the same identifying properties, the first
instance is returned instead.

All identifying properties must be set in the constructor.

Indices are inherited. i.e. all identifying properties of all parent types must be set in the constructor.

Defining an index

entity Host:
string name

end

index Host(name)

Explicit index lookup is performed with a query statement

testhost = Host[name="test"]

For indices on relations (instead of attributes) an alternative syntax can be used

entity File:
string path

end

Host.files [0:] -- File.host [1]

index File(host, path)

a = File[host=vm1, path="/etc/passwd"] # normal index lookup
b = vm1.files[path="/etc/passwd"] # selector style index lookup
a == b

38 Chapter 4. Language Reference

Inmanta Documentation, Release 2023.1.1

4.12 For loop

To iterate over the items of a list, a for loop can be used

for i in std::sequence(size, 1):
app_vm = Host(name="app{{i}}")

end

The syntax is:

for: 'for' ID 'in' value ':' statement* 'end';

4.13 If statement

An if statement allows to branch on a condition.

if nodecount > 1:
self.cluster_mode = "multi"

elif node == 1:
self.cluster_mode = "single"

else:
self.cluster_mode = "off"

end

The syntax is:

if : 'if' condition ':' statement* ('elif' condition ':' statement*)* ('else' ':'␣
↪→statement*)? 'end';

The Conditions section describes allowed forms for the condition.

4.14 Conditional expressions

A conditional expression is an expression that evaluates to one of two subexpressions depending on its condition.

x = n > 0 ? n : 0

Which evaluates to n if n > 0 or to 0 otherwise.

The syntax is:

conditional_expression : condition '?' expression ':' expression;

The Conditions section describes allowed forms for the condition.

4.12. For loop 39

Inmanta Documentation, Release 2023.1.1

4.15 Transformations

At the lowest level of abstraction the configuration of an infrastructure often consists of configuration files. To
construct configuration files, templates and string interpolation can be used.

4.15.1 String interpolation

String interpolation allows variables to be included as parameters inside a string.

The included variables are resolved in the lexical scope of the string they are included in.

Interpolating strings

hostname = "serv1.example.org"
motd = "Welcome to {{hostname}}\n"

To prevent string interpolation, use raw strings

this string will go into the variable as is
containing the {{ and \n
motd = r"Welcome to {{hostname}}\n"

4.15.2 Templates

Inmanta integrates the Jinja2 template engine. A template is evaluated in the lexical scope where the
std::template function is called. This function accepts as an argument the path of a template file. The first
part of the path is the module that contains the template and the remainder of the path is the path within the tem-
plate directory of the module.

The integrated Jinja2 engine supports to the entire Jinja feature set, except for subtemplates. During execution
Jinja2 has access to all variables and plug-ins that are available in the scope where the template is evaluated.
However, the :: in paths needs to be replaced with a .. The result of the template is returned by the template
function.

Using a template to transform variables to a configuration file

hostname = "wwwserv1.example.com"
admin = "joe@example.com"
motd_content = std::template("motd/message.tmpl")

The template used in the previous listing

Welcome to {{ hostname }}
This machine is maintainted by {{ admin }}

4.16 Plug-ins

For more complex operations, python plugins can be used. Plugins are exposed in the Inmanta language as function
calls, such as the template function call. A template accepts parameters and returns a value that it computed out
of the variables. Each module that is included can also provide plug-ins. These plug-ins are accessible within the
namespace of the module. The Developing Plugins section of the module guide provides more details about how
to write a plugin.

40 Chapter 4. Language Reference

CHAPTER

FIVE

MODEL DEVELOPER DOCUMENTATION

5.1 Developer Getting Started Guide

This guide explains how to set up the recommended developer setup on a Linux machine. Other development
setups are possible, but this one provides a good starting point.

• Install VS Code and Inmanta extension.

• Setting up Python virtual environments.

• Setting up a project.

• Set project sources

• Setting up a module

• Run tests

• Module developers guide

• Required environment variables

The examples below are using pip your system might require you to use pip3.

5.1.1 Install VS Code and Inmanta extension

The developer setup is based on VSCode with the Inmanta extension.

In order to install VS Code, you can refer to this page.

Inmanta’s extension in VS Code marketplace can be found here.

Further information about Inmanta VS Code extension is available on this page.

5.1.2 Setting up Python virtual environments

For every project that you work on, we recommend using a new virtual environment. If you are unfamiliar with
venv’s, you can check out this page.

To create a virtual environment:

python3 -m venv ~/.virtualenvs/my_project

Then activate it by running:

source ~/.virtualenvs/my_project/bin/activate

Upgrading your pip will save you a lot of time and troubleshooting.

You can do so by running:

41

https://code.visualstudio.com/learn/get-started/basics
https://marketplace.visualstudio.com/items?itemName=inmanta.inmanta
https://github.com/inmanta/vscode-inmanta
https://docs.python.org/3/tutorial/venv.html

Inmanta Documentation, Release 2023.1.1

pip install --upgrade pip wheel

5.1.3 Setting up a project

At the time of this writing, linting and code navigation in IDEs work only if you have a project, so even if you only
work on a single module, it is best to have a project.

There are two scenarios:

1. Working on a New Project.

2. Working on an Existing Project.

Working on a New Project

To create a new project you need to install some essential packages as follows:

pip install inmanta-core pytest-inmanta

Create a new project using the inmanta-project-template:

pip install cookiecutter

cookiecutter https://github.com/inmanta/inmanta-project-template.git

Navigate into the project and install the module dependencies using the inmanta CLI tool:

cd <project_name>

inmanta project install

V1 modules will be downloaded to the downloadpath configured in the project.yml file. V2 modules are
installed in the active Python environment. For more details go here. Once you are done with creating a project,
you can open VS Code by running:

code .

Working on an Existing Project

When working on an existing project, you need to clone them first:

git clone <project_url>

They also come with a requirements.dev.txt to install the development dependencies:

cd <project_name>

pip install -r requirements.dev.txt

The module dependencies are installed using the inmanta CLI tool:

inmanta project install

42 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

5.1.4 Set project sources

When starting a new project, the next step is to set the sources of your project so that it knows where to get its
required modules from.

V1 module source

If you only use opensource v1 modules as provided by Inmanta, you can skip below step.

1. Find the module you want to work on

2. Copy the SSH URL of the repo

3. In your VS code, open the project.yml file and under repo:, add the copied line there but keep in mind
to replace the name of a specific module with a place holder, like below example:

code project.yml

repo:
- url: git@code.inmanta.com:example/my_module.git
type: git

Becomes:

repo:
- url: git@code.inmanta.com:example/{}.git
type: git

• Now, in your main.cf file, if you import a module like, import <my_module> and save the file, you can get
code completion. If you are working on an existing project with a populated main.cf file, code completion
will work as expected.

Please note, code completion and navigation work on modules that are imported in the main.cf file.

V2 module source

Add the pip index where your modules are hosted to project.yml as a repo of type package. For example, for
modules hosted on PyPi:

repo:
- url: https://pypi.org/simple
type: package

5.1.5 Setting up a module

Like projects, there are also two scenarios:

1. Working on a New Module.

2. Working on an Existing Module.

5.1. Developer Getting Started Guide 43

Inmanta Documentation, Release 2023.1.1

Working on a New Module

Same as Working on a New Project part, modules can also be created like:

pip install cookiecutter
cookiecutter --checkout v1 https://github.com/inmanta/inmanta-module-template.git

for a v1 module. If you want to use the module in a project, make sure to put it in the project’s module path.

For a v2 module, use the v2 cookiecutter template, then install the module:

pip install cookiecutter
cookiecutter https://github.com/inmanta/inmanta-module-template.git
inmanta module install -e ./<module-name>

This will install a Python package with the name inmanta-module-<module-name> in the active environment.

If you want to use the v2 module in a project, make sure to set up a v2 module source as outlined in the section
above, then add the module as a dependency of the project as described in Working on an Existing Module. The
location of the module directory is not important for a v2 module.

For more information on how to work on modules, see Understanding Modules and the module template docu-
mentation.

Working on an Existing Module

Modules that you want to work on, have to be added to your Inmanta project using the following command. This
command also installs the module into the project.

inmanta module add --v1 <module-name>

for a v1 module or

inmanta module add --v2 <module-name>

for a v2 module. The latter will implicitly trust any Python package named inmanta-module-<module-name>
in the project’s configured module source.

When starting to work on an existing module, it is recommended to check the readme.md file that comes with the
module to see the instructions on how to install and use them.

5.1.6 Running Test

To run test on modules, it is recommended to set the INMANTA_TEST_ENV environment variable to speed up your
tests and avoid creating virtual environments at each test run.

1. Create a temp directory and export the path:

export INMANTA_TEST_ENV=$(mktemp -d)

2. Install required dependencies

pip install -r requirements.txt -r requirements.dev.txt

3. Run the test

python -m pytest tests

44 Chapter 5. Model developer documentation

https://github.com/inmanta/inmanta-module-template
https://github.com/inmanta/inmanta-module-template

Inmanta Documentation, Release 2023.1.1

5.2 Project creation guide

This guide explains how to create a project. For detailed documentation see: project.yml.

5.2.1 Create a new source project

The Inmanta compiler expects a project with basic configuration. This project is a directory that contains the
source code of the configuration model. This project also matches with a project defined on the server, from which
multiple environments can be deployed.

1 pip install cookiecutter
2 cookiecutter gh:inmanta/inmanta-project-template

Note: The cookiecutter template also sets up git for the new project. This is a best practice to version control your
infrastructure code.

Inside the project the compiler expects a project.yml file that defines metadata about the project, the location to
store modules, repositories where to find modules and possibly specific versions of modules. project.yml provides
an overview about the supported metadata attributes.

An example project.yml could be:

1 name: test
2 description: a test project
3 author: Inmanta
4 author_email: code@inmanta.com
5 license: ASL 2.0
6 copyright: 2020 Inmanta
7 modulepath: libs
8 downloadpath: libs
9 repo:

10 - url: https://github.com/inmanta/
11 type: git
12 - url: https://pypi.org/simple
13 type: package
14 install_mode: release
15 requires:

5.2.2 The main file

The main.cf is the place where the compiler starts executing code first. For example, the main.cf below calls
the print plugin from the std module.

1 std::print("hello world")

Note: The std module is the only module that does not have to be imported explicitly.

Before the project can be executed, the std module has to be installed. This is done by executing the following
command in the project directory:

inmanta project install

The example can be executed with inmanta compile. This prints out “hello world” on stdout.

5.2. Project creation guide 45

Inmanta Documentation, Release 2023.1.1

5.3 Module creation guide

This guide explains how to create a module. For detailed documentation see: module.yml and setup.cfg.

5.3.1 Create a new source module

For a v1 module:

1 pip install cookiecutter
2 cookiecutter --checkout v1 gh:inmanta/inmanta-module-template

For a v2 module:

1 pip install cookiecutter
2 cookiecutter gh:inmanta/inmanta-module-template

Note: The cookiecutter template also sets up git for the new module. This is a best practice to version control
your infrastructure code.

Inside the module the compiler expects a module.yml file (for v1) or a setup.cfg file (for v2) that defines
metadata about the module. module.yml and setup.cfg provide an overview about the supported metadata attributes.

5.4 Understanding Modules

In Inmanta all orchestration model code and related files, templates, plugins and resource handlers are packaged in a
module. Modules can be defined in two different formats, the V1 format and the V2 format. The biggest difference
between both formats is that all Python tools can run on V2 modules, because V2 modules are essentially Python
packages. New modules should use the V2 module format. The following sections describe the directory layout of
the V1 and the V2 module formats and their metadata files.

Note: V2 modules can not depend on V1 modules.

5.4.1 V2 module format

A complete V2 module might contain the following files:

module
|
|__ MANIFEST.in
|__ setup.cfg
|__ pyproject.toml
|
|__ model
| |__ _init.cf
| |__ services.cf
|
|__ inmanta_plugins/<module-name>/
| |__ __init__.py
| |__ functions.py
|
|__ files

(continues on next page)

46 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

| |__ file1.txt
|
|__ templates

|__ conf_file.conf.tmpl

• The root of the module directory contains a setup.cfg file. This is the metadata file of the module. It
contains information, such as the version of the module. More details about the setup.cfg file are defined
in the next section.

• The pyproject.toml file defines the build system that should be used to package the module and install
the module into a virtual environment from source.

• The only mandatory subdirectory is the model directory containing a file called _init.cf. What is defined
in the _init.cf file is available in the namespace linked with the name of the module. Other files in the
model directory create subnamespaces.

• The inmanta_plugins/<module-name>/ directory contains Python files that are loaded by the platform
and can extend it using the Inmanta API. This python code can provide plugins or resource handlers.

The template, file and source plugins from the std module expect the following directories as well:

• The files directory contains files that are deployed verbatim to managed machines.

• The templates directory contains templates that use parameters from the orchestration model to generate
configuration files.

The setup.cfg metadata file

The setup.cfg file defines metadata about the module. The following code snippet provides an example about
what this setup.cfg file looks like:

[metadata]
name = inmanta-module-mod1
version = 1.2.3
license = Apache 2.0

[options]
install_requires =
inmanta-modules-net ~=0.2.4
inmanta-modules-std >1.0,<2.5

cookiecutter~=1.7.0
cryptography>1.0,<3.5

[options.extras_require]
feature-x =
inmanta-modules-mod2

zip_safe=False
include_package_data=True
packages=find_namespace:

[options.packages.find]
include = inmanta_plugins*

• The metadata section defines the following fields:

– name: The name of the resulting Python package when this module is packaged. This name should
follow the naming schema: inmanta-module-<module-name>.

5.4. Understanding Modules 47

Inmanta Documentation, Release 2023.1.1

– version: The version of the module. Modules must use semantic versioning.

– license: The license under which the module is distributed.

– deprecated: Optional field. If set to True, this module will print a warning deprecation message
when used.

• The install_requires config option in the options section of the setup.cfg file defines the dependen-
cies of the module on other Inmanta modules and external Python libraries. These version specs use PEP440
syntax. Adding a new module dependency to the module should be done using the inmanta module add
command instead of altering the setup.cfg file by hand. Dependencies with extras can be defined in this
section using the dependency[extra-a,extra-b] syntax.

• The options.extras_require config option can be used to define optional dependencies, only required
by a specific feature of the inmanta module.

A full list of all available options can be found in here.

The pyproject.toml file

The pyproject.toml file defines the build system that has to be used to build a python package and perform
editable installs. This file should always have the following content:

[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"

The MANIFEST.in file

This file enables setuptools to correctly build the package. It is documented here. An example that includes the
model, files, templates and metadata file in the package looks like this:

include inmanta_plugins/mod1/setup.cfg
recursive-include inmanta_plugins/mod1/model *.cf
graft inmanta_plugins/mod1/files
graft inmanta_plugins/mod1/templates

You might notice that the model, files and templates directories, nor the metadata file reside in the
inmanta_plugins directory. The inmanta build tool takes care of this to ensure the included files are included in
the package installation directory.

5.4.2 V1 module format

A complete module might contain the following files:

module
|
|__ module.yml
|
|__ model
| |__ _init.cf
| |__ services.cf
|
|__ plugins
| |__ functions.py
|
|__ files
| |__ file1.txt

(continues on next page)

48 Chapter 5. Model developer documentation

https://www.python.org/dev/peps/pep-0440/#version-specifiers
https://www.python.org/dev/peps/pep-0440/#version-specifiers
https://packaging.python.org/guides/using-manifest-in/

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

|
|__ templates
| |__ conf_file.conf.tmpl
|
|__ requirements.txt

The directory layout of the V1 module is similar to that of a V2 module. The following difference exist:

• The metadata file of the module is called module.yml instead of setup.cfg. The structure of the module.
yml file also differs from the structure of the setup.cfg file. More information about this module.yml file
is available in the next section.

• The files contained in the inmanta_plugins/<module-name>/ directory in the V2 format, are present in
the plugins directory in the V1 format.

• The requirements.txt file defines the dependencies of this module to other V2 modules and the depen-
dencies to external libraries used by the code in the plugins directory. This file is not present in the V2
module format, since V2 modules defined their dependencies in the setup.cfg file. Dependencies with
extras are supported in the requirements.txt file using the dependency[extra-a,extra-b] syntax.

• The pyproject.toml file doesn’t exist in a V1 module, because V1 modules cannot be packaged into a
Python package.

Module metadata

The module.yml file provides metadata about the module. This file is a yaml file with the following three keys
mandatory:

• name: The name of the module. This name should also match the name of the module directory.

• license: The license under which the module is distributed.

• version: The version of this module. For a new module a start version could be 0.1dev0 These versions are
parsed using the same version parser as python setuptools.

• deprecated: Optional field. If set to True, this module will print a warning deprecation message when used.

For example the following module.yml from the Quickstart

name: lamp
license: Apache 2.0
version: 0.1

The requires key can be used to define the dependencies of this module on other Inmanta modules. Each entry in the
list should contain the name of an Inmanta module, optionally associated with a version constraint. These version
specs use PEP440 syntax. Adding a new entry to the requires list should be done using the inmanta module add
<module-name> command.

An example of a module.yml file that defines requires:

license: Apache 2.0
name: ip
source: git@github.com:inmanta/ip
version: 0.1.15
requires:

- net ~= 0.2.4
- std >1.0 <2.5

source indicates the authoritative repository where the module is maintained.

A full list of all available options can be found in here.

5.4. Understanding Modules 49

https://www.python.org/dev/peps/pep-0440/#version-specifiers

Inmanta Documentation, Release 2023.1.1

5.4.3 Convert a module from V1 to V2 format

To convert a V1 module to the V2 format, execute the following command in the module folder

inmanta module v1tov2

5.4.4 Inmanta module template

To quickly initialize a module use the inmanta module template.

5.4.5 Extending Inmanta

Inmanta offers module developers an orchestration platform with many extension possibilities. When modelling
with existing modules is not sufficient, a module developer can use the Python SDK of Inmanta to extend the
platform. Python code that extends Inmanta is stored in the plugins directory of a module. All python modules in
the plugins subdirectory will be loaded by the compiler when at least a __init__.py file exists, exactly like any
other python package.

The Inmanta Python SDK offers several extension mechanism:

• Plugins

• Resources

• Resource handlers

• Dependency managers

Only the compiler and agents load code included in modules (See Architecture). A module can include external
dependencies. Both the compiler and the agent will install this dependencies with pip install in an virtual
environment dedicated to the compiler or agent. By default this is in .env of the project for the compiler and in
/var/lib/inmanta/agent/env for the agent.

Inmanta uses a special format of requirements that was defined in python PEP440 but never fully implemented in
all python tools (setuptools and pip). Inmanta rewrites this to the syntax pip requires. This format allows module
developers to specify a python dependency in a repo on a dedicated branch. And it allows inmanta to resolve the
requirements of all module to a single set of requirements, because the name of module is unambiguously defined
in the requirement. The format for requires in requirements.txt is the following:

• Either, the name of the module and an optional constraint

• Or a repository location such as git+https://github.com/project/python-foo The correct syntax to use is then:
eggname@git+https://../repository#branch with branch being optional.

5.5 Installing modules

Since modules often have dependencies on other modules, it is common to develop against multiple modules (or
a project and one or more modules) simultaneously. One might for example need to extend a dependent module
to add support for some new feature. Because this use case is so common, this section will describe how to work
on multiple modules simultaneously so that any changes are visible to the compiler. This procedure is of course
applicable for working on a single module as well.

50 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

5.5.1 Setting up the dev environment

To set up the development environment for a project, activate your development Python environment and install
the project with inmanta project install. To set up the environment for a single v2 module, run inmanta
module install -e instead.

The following subsections explain any additional steps you need to take if you want to make changes to one of the
dependent modules as well.

v1 modules

Any modules you find in the project’s modulepath after starting from a clean project and setting up the develop-
ment environment are v1 modules. You can make changes to these modules and they will be reflected in the next
compile. No additional steps are required.

v2 modules

All other modules are v2 and have been installed by inmanta project install into the active Python environ-
ment. If you want to be able to make changes to one of these modules, the easiest way is to check out the module
repo separately and run inmanta module install -e <path> on it, overwriting the published package that
was installed previously. This will install the module in editable form: any changes you make to the checked out
files will be picked up by the compiler. You can also do this prior to installing the project, in which case the pre-
installed module will remain installed in editable form when you install the project, provided it matches the version
constraints. Since these modules are essentially Python packages, you can double check the desired modules are
installed in editable mode by checking the output of pip list --editable.

5.5.2 Working on the dev environment

After setting up, you should be left with a dev environment where all required v2 modules have been installed
(either in editable or in packaged form). If you’re working on a project, all required v1 modules should be checked
out in the modulepath directory.

When you run a compile from the active Python environment context, the compiler will find both the v1 and v2
modules and use them for both their model and their plugins.

Similarly, when you run a module’s unit tests, the installed v2 modules will automatically be used by the compiler.
As for v1 modules, by default, the pytest-inmanta extension makes sure the compile itself runs against an
isolated project, downloading any v1 module dependencies. If you want to compile against local versions of v1
modules, have a look at the --use-module-in-place option in the pytest-inmanta documentation.

5.5.3 Module installation on the server

The orchestrator server generally installs modules from the configured Python package repository, respecting the
project’s constraints on its modules and all inter-module constraints. The server is then responsible for supplying
the agents with the appropriate inmanta_plugins packages.

The only exception to this rule is when using the inmanta export command. It exports a project and all its
modules’ inmanta_plugins packages to the orchestrator server. When this method is used, the orchestrator does
not install any modules from the Python package repository but instead contains all Python code as present in the
local Python environment.

5.5. Installing modules 51

Inmanta Documentation, Release 2023.1.1

5.6 Releasing and distributing modules

5.6.1 V2 modules

Distributing V2 modules

V2 modules are distributed as Python packages. To build a package for a module, run inmanta module build in
the source directory of the module. The resulting Python wheel can then be found in the dist directory of the module.
You can then publish this to the Python package repository of your choice, for example the public PyPi repository.
The inmanta build tool will package a module named my_module under the name inmanta-module-my-module.

5.6.2 V1 modules

Inmanta V1 modules are versioned based on git tags. The current version is reflected in the module.yml file.
The commit should be tagged with the version in the git repository as well. To ease the use inmanta provides a
command (inmanta modules commit) to modify module versions, commit to git and place the correct tag.

Development Versions

To make changes to a module, first create a new git branch:

git checkout -b mywork

When done, first use git to add files:

git add *

To commit, use the module tool. This will create a new dev release.

inmanta module commit --patch -m "Fixed small bug"

This command will set the version to the next dev version (+0.0.1dev) and add a timestamp.

The module tool supports semantic versioning. Use one of --major, --minor or --patch to update version
numbers: <major>.<minor>.<patch>

For the dev releases, no tags are created.

Release Versions

To make an actual release (without .dev at the end):

inmanta module commit -r -m "First Release"

This will remove the .dev version and automatically set the right tags on the module.

To automatically freeze all dependencies of this module to the currently checked out versions

inmanta module freeze --recursive --operator ==

Or for the current project

inmanta project freeze --recursive --operator ==

52 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

Distributing V1 modules

V1 modules are generally simply distributed using a Git repository. They can however also be built as a V2 Python
package and distributed the same as other V2 modules.

Git repository distribution format

Distributing a V1 module using a Git repository happens by storing the source code of that module on a Git
repository that is accessible by the Inmanta orchestrator. The orchestrator will clone the source code of the module
and install it in the Inmanta project. Tagging release versions as outlined above allows specifying constraints on
the module version.

V2 package distribution format

A V2 package can be built for a V1 module with inmanta module build. This package can be distributed as
described in Distributing V2 modules. Modules installed from a package will always act as V2 modules and will
be considered such by the compiler.

5.6.3 Freezing a project

Prior to releasing a new stable version of an inmanta project, you might wish to freeze its module dependencies.
This will ensure that the orchestrator server will always work with the exact versions specified. You can achieve
this with inmanta project freeze --recursive --operator "==". This command will freeze all module
dependencies to their exact version as they currently exist in the Python environment. The recursive option makes
sure all module dependencies are frozen, not just the direct dependencies. In other words, if the project depends on
module a which in turn depends on module b, both modules will be pinned to their current version in setup.cfg.

5.7 Developing Plugins

5.7.1 Adding new plugins

Plugins provide functions that can be called from the DSL. This is the primary mechanism to interface Python
code with the orchestration model at compile time. For Example, this mechanism is also used for std::template and
std::file. In addition to this, Inmanta also registers all plugins with the template engine (Jinja2) to use as filters.

A plugin is a python function, registered with the platform with the plugin() decorator. This plugin accepts
arguments when called from the DSL and can return a value. Both the arguments and the return value must by
annotated with the allowed types from the orchestration model. Type annotations are provided as a string (Python3
style argument annotation). any is a special type that effectively disables type validation.

Through the arguments of the function, the Python code in the plugin can navigate the orchestration model. The
compiler takes care of scheduling the execution at the correct point in the model evaluation.

Note: A module’s Python code lives in the inmanta_plugins.<module_name> namespace.

A simple plugin that accepts no arguments, prints out “hello world” and returns no value requires the following
code:

1 from inmanta.plugins import plugin
2

3 @plugin
4 def hello():
5 print("Hello world!")

5.7. Developing Plugins 53

Inmanta Documentation, Release 2023.1.1

If the code above is placed in the plugins directory of the example module (examples/plugins/__init__.py)
the plugin can be invoked from the orchestration model as follows:

import example

example::hello()

The plugin decorator accepts an argument name. This can be used to change the name of the plugin in the DSL.
This can be used to create plugins that use python reserved names such as print for example:

1 from inmanta.plugins import plugin
2

3 @plugin("print")
4 def printf():
5 """
6 Prints inmanta
7 """
8 print("inmanta")

A more complex plugin accepts arguments and returns a value. The following example creates a plugin that converts
a string to uppercase:

1 from inmanta.plugins import plugin
2

3 @plugin
4 def upper(value: "string") -> "string":
5 return value.upper()

This plugin can be tested with:

import example

std::print(example::upper("hello world"))

Argument type annotations are strings that refer to Inmanta primitive types or to entities. If an entity is passed to a
plugin, the python code of the plugin can navigate relations throughout the orchestration model to access attributes
of other entities.

A base exception for plugins is provided in inmanta.plugins.PluginException. Exceptions raised from a
plugin should be of a subtype of this base exception.

1 from inmanta.plugins import plugin, PluginException
2

3 @plugin
4 def raise_exception(message: "string"):
5 raise PluginException(message)

If your plugin requires external libraries, add them as dependencies of the module. For more details on how to add
dependencies see Understanding Modules.

54 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

5.7.2 Deprecate plugins

To deprecate a plugin the deprecated() decorator can be used in combination with the plugin() decorator.
Using this decorator will log a warning message when the function is called. This decorator also accepts an
optional argument replaced_by which can be used to potentially improve the warning message by telling which
other plugin should be used in the place of the current one.

for example if the plugin below is called:

1 from inmanta.plugins import plugin, deprecated
2

3 @deprecated(replaced_by="my_new_plugin")
4 @plugin
5 def printf():
6 """
7 Prints inmanta
8 """
9 print("inmanta")

it will give following warning:

Plugin 'printf' in module 'inmanta_plugins.<module_name>' is deprecated. It should be␣
↪→replaced by 'my_new_plugin'

Should the replace_by argument be omitted, the warning would look like this:

Plugin 'printf' in module 'inmanta_plugins.<module_name>' is deprecated.

If you want your module to stay compatible with older versions of inmanta you will also need to add a little piece
of code that changes how deprecated() is imported as it does not exist in all versions.

The previous example would then look like this. For older inmanta versions, replace the decorator with a no-op.

1 from inmanta.plugins import plugin
2

3 try:
4 from inmanta.plugins import deprecated
5 except ImportError:
6 deprecated = lambda function=None, **kwargs: function if function is not None␣

↪→else deprecated
7

8

9 @deprecated(replaced_by="my_new_plugin")
10 @plugin
11 def printf():
12 """
13 Prints inmanta
14 """
15 print("inmanta")

5.7. Developing Plugins 55

Inmanta Documentation, Release 2023.1.1

5.8 Finalizers

When writing models it can be useful to have functions that will be run at the end of the compilation. A typical
use case is making sure all resources are properly flushed back and all connections are properly closed. To help
with this, finalizers can be used.

5.8.1 Adding new finalizers

A finalizer is a python function that is registered by using the finalizer() function as decorator or as callback.
This function should be a function that doesn’t take arguments and that doesn’t return anything. Functions registered
this way will be call when the compiler finishes (with no guarantee on the execution order).

an example of a finalizer that will close an open connection using the decorator option requires the following code:

1 from inmanta import compiler
2

3 connection = None
4

5 def get_connection():
6 global connection
7 if connection is None:
8 connection = connect()
9 return connection

10

11 @compiler.finalizer
12 def finalize_connection():
13 if connection:
14 connection.close()

the same example but using the callback option would look like this:

1 from inmanta import compiler
2

3 connection = None
4

5 def get_connection():
6 global connection
7 if not connection:
8 connection = connect()
9 compiler.finalizer(finalize_connection)

10 return connection
11

12 def finalize_connection():
13 if connection:
14 connection.close()

56 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

5.9 Developing South Bound Integrations

The inmanta orchestrator comes with a set of integrations with different platforms (see: Inmanta modules). But it
is also possible to develop your own south bound integrations.

To integrate a new platform into the orchestrator, you must take the following steps:

1. Create a new module to contain the integration (see: Understanding Modules).

2. Model the target platform as set of entities.

3. Create resources and handler, as described below.

5.9.1 Overview

A South Bound integration always consists of three parts:

• one or more entities in the model

• a resource that serializes the entities and captures all information required to enforce the desired state.

• a handler: the python code required to enforce the desired state.

Exporter

Resources
(python)

Server

Resources
(json)

Compiler

Entities

Agent

Resources
(python)

Handler
(python)

Managed
Infrastructure

• In the compiler, a model is constructed that consists of entities. The entities can be related to each other.

• The exporter will search for all entities that can be directly deployed by a handler. These are the resources.
Resources are self-contained and can not refer to any other entity or resource.

• The resources will be sent to the server in json serialized form.

• The agent will present the resources to a handler in order to have the desired state enforced on the managed
infrastructure.

5.9.2 Resource

A resource is represented by a Python class that is registered with Inmanta using the @resource decorator. This
decorator decorates a class that inherits from the Resource class.

The fields of the resource are indicated with a fields field in the class. This field is a tuple or list of strings with
the name of the desired fields of the resource. The orchestrator uses these fields to determine which attributes of
the matching entity need to be included in the resource.

Fields of a resource cannot refer to an instance in the orchestration model or fields of other resources. The resource
serializers allows to map field values. Instead of referring directly to an attribute of the entity it serializes (path in
std::File and path in the resource map one on one). This mapping is done by adding a static method to the resource
class with get_$(field_name) as name. This static method has two arguments: a reference to the exporter and
the instance of the entity it is serializing.

1 from inmanta.resources import resource, Resource
2

3 @resource("std::File", agent="host.name", id_attribute="path")
4 class File(Resource):
5 fields = ("path", "owner", "hash", "group", "permissions", "purged", "reload")
6

(continues on next page)

5.9. Developing South Bound Integrations 57

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

7 @staticmethod
8 def get_hash(exporter, obj):
9 hash_id = md5sum(obj.content)

10 exporter.upload_file(hash_id, obj.content)
11 return hash_id
12

13 @staticmethod
14 def get_permissions(_, obj):
15 return int(x.mode)

Classes decorated with @resource do not have to inherit directly from Resource. The orchestrator already offers
two additional base classes with fields and mappings defined: PurgeableResource and ManagedResource. This
mechanism is useful for resources that have fields in common.

A resource can also indicate that it has to be ignored by raising the IgnoreResourceException exception.

5.9.3 Handler

Handlers interface the orchestrator with resources in the infrastructure. Handlers take care of changing the current
state of a resource to the desired state expressed in the orchestration model.

The compiler collects all python modules from Inmanta modules that provide handlers and uploads them to the
server. When a new orchestration model version is deployed, the handler code is pushed to all agents and imported
there.

Handlers should inherit the class CRUDHandler. The @provider decorator registers the class with the orchestrator.

Each Handler should override 4 methods of the CRUDHandler:

1. read_resource() to read the current state of the system.

2. create_resource() to create the resource if it doesn’t exist.

3. update_resource() to update the resource when required.

4. delete_resource() to delete the resource when required.

The context (See HandlerContext) passed to most methods is used to report results, changes and logs to the
handler and the server.

5.9.4 Built-in Handler utilities

The Inmanta Agent, responsible for executing handlers has built-in utilities to help handler development. This
section describes the most important ones.

Logging

The agent has a built-in logging facility, similar to the standard python logger. All logs written to this logger will
be sent to the server and are available via the web-console and the API. Additionally, the logs go into the agent’s
logfile and into the resource-action log on the server.

To use this logger, use one of the methods: ctx.debug, ctx.info, ctx.warning, ctx.error, ctx.critical
or ctx.exception.

This logger supports kwargs. The kwargs have to be json serializable. They will be available via the API in their
json structured form.

For example:

58 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

def create_resource(self, ctx: HandlerContext, resource: ELB) -> None:
...
ctx.debug("Creating loadbalancer with security group %(sg)s", sg=sg_id)

Caching

The agent maintains a cache, that is kept over handler invocations. It can, for example, be used to cache a connec-
tion, so that multiple resources on the same device can share a connection.

The cache can be invalidated either based on a timeout or on version. A timeout based cache is kept for a specific
time. A version based cache is used for all resource in a specific version. The cache will be dropped when the
deployment for this version is ready.

The cache can be used through the @cache decorator. Any method annotated with this annotation will be cached,
similar to the way lru_cache works. The arguments to the method will form the cache key, the return value will be
cached. When the method is called a second time with the same arguments, it will not be executed again, but the
cached result is returned instead. To exclude specific arguments from the cache key, use the ignore parameter.

For example, to cache the connection to a specific device for 120 seconds:

@cache(timeout=120, ignore=["ctx"])
def get_client_connection(self, ctx, device_id):
...
return connection

To do the same, but additionally also expire the cache when the next version is deployed, the method must have
a parameter called version. for_version is True by default, so when a version parameter is present, the cache is
version bound by default.

@cache(timeout=120, ignore=["ctx"], for_version=True)
def get_client_connection(self, ctx, device_id, version):
...
return connection

To also ensure the connection is properly closed, an on_delete function can be attached. This function is called
when the cache is expired. It gets the cached item as argument.

@cache(timeout=120, ignore=["ctx"], for_version=True,
call_on_delete=lambda connection:connection.close())

def get_client_connection(self, ctx, device_id, version):
...
return connection

5.10 Test plugins

Testing the behavior of an Inmanta plugin can be done by using the project fixture, which is part of the
pytest-inmanta package. This fixture provides functionality to call a plugin directly from a pytest test case.

5.10. Test plugins 59

https://docs.python.org/3/library/functools.html#functools.lru_cache

Inmanta Documentation, Release 2023.1.1

5.10.1 Install the pytest-inmanta package

The pytest-inmanta package can be installed via pip:

pip install pytest-inmanta

5.10.2 Writing a test case

Take the following plugin as an example:

1 # example_module/plugins/__init__.py
2

3 from inmanta.plugins import plugin
4

5 @plugin
6 def hostname(fqdn: "string") -> "string":
7 """
8 Return the hostname part of the fqdn
9 """

10 return fqdn.split(".")[0]

A test case, to test this plugin looks like this:

1 # example_module/tests/test_hostname.py
2

3 def test_hostname(project, inmanta_plugins):
4 host = "test"
5 fqdn = f"{host}.something.com"
6 assert inmanta_plugins.example_module.hostname(fqdn) == host

• Line 3: Creates a pytest test case, which requires the project fixture.

• Line 6: Uses the inmanta_plugins fixture to access the hostname function from the example_module
module’s Python namespace. As such, this line tests whether host is returned when the plugin function
hostname is called with the parameter fqdn.

Note: V2 modules do not need to use the inmanta_plugins fixture. They can just import from the
inmanta_plugins namespace directly at the top of the test file.

For more information see: pytest-inmanta

5.11 Understanding Projects

A project is the basic unit of orchestration. It contains:

• main.cf: the entry point for the compiler to start executing

• project.yml: the project meta data, defines where to find modules and which versions to use. For detailed
documentation see: project.yml.

• requirements.txt: (optional) the python dependencies of the project, defines which python dependen-
cies to install and which versions to use. Dependencies with extras can be defined in this file using the
dependency[extra-a,extra-b] syntax. It has two main use cases:

– It contains the listing of all modules that should be installed as a V2 module.

– It contains version constraints to help pip resolve version conflicts on python packages.

60 Chapter 5. Model developer documentation

https://github.com/inmanta/pytest-inmanta

Inmanta Documentation, Release 2023.1.1

project
|
|__ project.yml
|__ requirements.txt
|__ main.cf

5.12 Model debugging

Warning: This is a beta feature. It does not support the full language yet and it might not work as expected.
Currently known limitations:

• lists and dicts not supported

• string interpolation not supported

• constructor kwargs not supported

• plugins not supported

• conditionals not supported

• for loops not supported

• boolean operations not supported

• explicit index lookups not supported

• only double assignment, exceeding relation arity and incomplete instance errors are supported

Support for the listed language features will be added gradually.

The inmanta DSL is essentially a data flow oriented language. As a model developer you never explicitly manipulate
control flow. Instead you declare data flow: the statement x = y for example declares that the data in y should flow
towards x. Even dynamic statements such as implementations and for loops do not explicitly manipulate control
flow. They too can be interpreted as data flow declarations.

Because of this property conventional debugging methods such as inspecting a stack trace are not directly applicable
to the inmanta language. A stack trace is meant to give the developer insight in the part of the control flow that led
to the error. Extending this idea to the inmanta DSL leads to the concept of a data trace. Since the language is data
flow oriented, a trace of the flow to some erroneous part of the configuration model gives the developer insight in
the cause of the error.

Additionally, a root cause analysis will be done on any incomplete instances and only those root causes will be
reported.

The first section, Enabling the data trace describes how to enable these two tools. The tools themselves are de-
scribed in the sections Interpreting the data trace and Root cause analysis respectively. An example use case is
shown in Usage example, and the final section, Graphic visualization, shortly describes a graphic representation
of the data flow.

5.12. Model debugging 61

Inmanta Documentation, Release 2023.1.1

5.12.1 Enabling the data trace

To show a data trace when an error occurs, compile the model with the --experimental-data-trace flag. For
example:

Listing 1: main.cf

1 x = 1
2 x = 2

Compiling with inmanta compile --experimental-data-trace results in

inmanta.ast.DoubleSetException: value set twice:
old value: 1

set at ./main.cf:1
new value: 2

set at ./main.cf:2

data trace:
x

1
SET BY `x = 1`
AT ./main.cf:1
2
SET BY `x = 2`
AT ./main.cf:2

(reported in x = 2 (./main.cf:2))

5.12.2 Interpreting the data trace

Let’s have another look at the data trace for the model above:

1 x
2 1
3 SET BY `x = 1`
4 AT ./main.cf:1
5 2
6 SET BY `x = 2`
7 AT ./main.cf:2

Line 1 shows the variable where the error occurred. A tree departs from there with branches going to lines 2 and 5
respectively. These branches indicate the data flow to x. In this case line 2 indicates x has been assigned the literal
1 by the statement x = 1 at main.cf:1 and the literal 2 by the statement x = 2 at main.cf:2.

Now let’s go one step further and add an assignment to another variable.

Listing 2: variable-assignment.cf

1 x = 0
2 x = y
3 y = 1

Listing 3: data trace for variable-assignment.cf

1 x
2 y
3 SET BY `x = y`
4 AT ./variable-assignment.cf:2

(continues on next page)

62 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

5 1
6 SET BY `y = 1`
7 AT ./variable-assignment.cf:3
8 0
9 SET BY `x = 0`

10 AT ./variable-assignment.cf:1

As before we can see the data flow to x as declared in the model. Following the tree from x to its leaves leads to
the conclusion that x has indeed received two inconsistent values, and it gives insight into how those values came
to be assigned to x (0 directly and 1 via y).

One more before we move on to entities:

Listing 4: assignment-loop.cf

1 x = y
2 y = z
3 z = x
4

5 x = 0
6 z = u
7 u = 1

Listing 5: data trace for assignment-loop.cf

1 z
2 EQUIVALENT TO {x, y, z} DUE TO STATEMENTS:
3 `x = y` AT ./assignment-loop.cf:1
4 `y = z` AT ./assignment-loop.cf:2
5 `z = x` AT ./assignment-loop.cf:3
6 u
7 SET BY `z = u`
8 AT ./assignment-loop.cf:6
9 1

10 SET BY `u = 1`
11 AT ./assignment-loop.cf:7
12 0
13 SET BY `x = 0`
14 AT ./assignment-loop.cf:5

This model defines an assignment loop between x, y and z. Assignment to either of these variables will result in
a flow of data to all of them. In other words, the variables are equivalent. The data trace shows this information at
lines 2–5 along with the statements that caused the equivalence. The rest of the trace is similar to before, except
that the tree now shows all assignments to any of the three variables part of the equivalence. The tree now no longer
shows just the data flow to x but to the equivalence as a whole, since any data that flows to the equivalence will
also flow to x.

Listing 6: entities.cf

1 entity A:
2 number n
3 end
4

5 implement A using std::none
6

7 x = A(n = 0)
8

(continues on next page)

5.12. Model debugging 63

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

9 template = x
10

11 y = A(n = template.n)
12 y.n = 1

Listing 7: data trace for entities.cf

1 attribute n on __config__::A instance
2 SUBTREE for __config__::A instance:
3 CONSTRUCTED BY `A(n=template.n)`
4 AT ./entities.cf:11
5 template.n
6 SET BY `A(n=template.n)`
7 AT ./entities.cf:11
8 SUBTREE for template:
9 x

10 SET BY `template = x`
11 AT ./entities.cf:9
12 __config__::A instance
13 SET BY `x = A(n=0)`
14 AT ./entities.cf:7
15 CONSTRUCTED BY `A(n=0)`
16 AT ./entities.cf:7
17 0
18 SET BY `A(n=0)`
19 AT ./entities.cf:7
20 1
21 SET BY `y.n = 1`
22 AT ./entities.cf:12

As usual, line 1 states the variable that represents the root of the data flow tree. In this case it’s the attribute n of an
instance of A. Which instance? That is shown in the subtree for that instance on lines 2–4. In this case it’s a very
simple subtree that shows just the construction of the instance and the line number in the configuration model. The
tree for the attribute starts at line 5. The first branch shows the assignment to template.n in the constructor for
y. Then another subtree is shown at lines 8–16, this one more useful. It shows a data flow graph like we’re used to
by now, with template as the root. Then at line 17 the trace shows the data flow template.n <- 0 referring to
entities.cf:7. This line doesn’t assign to template.n directly, but it does assign to the instance at the end of
the subtree for template (the data that flows to template).

Let’s have a look at an implementation:

Listing 8: implementation.cf

1 entity A:
2 number n
3 end
4

5 implement A using i
6

7 implementation i for A:
8 self.n = 42
9 end

10

11 x = A(n = 0)

64 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

Listing 9: data trace for implementation.cf

1 attribute n on __config__::A instance
2 SUBTREE for __config__::A instance:
3 CONSTRUCTED BY `A(n=0)`
4 AT ./implementation.cf:11
5 0
6 SET BY `A(n=0)`
7 AT ./implementation.cf:11
8 42
9 SET BY `self.n = 42`

10 AT ./implementation.cf:8
11 IN IMPLEMENTATION WITH self = __config__::A instance
12 CONSTRUCTED BY `A(n=0)`
13 AT ./implementation.cf:11

The only thing new in this trace can be found at lines 11—13. It highlights that a statement was executed within a
dynamic context and shows a subtree for the self variable.

And finally, an index:

Listing 10: index.cf

1 entity A:
2 number n
3 number m
4 end
5

6 index A(n)
7

8 implement A using std::none
9

10 A(n = 42, m = 0)
11 A(n = 42, m = 1)

Listing 11: data trace for index.cf

1 attribute m on __config__::A instance
2 SUBTREE for __config__::A instance:
3 CONSTRUCTED BY `A(n=42,m=0)`
4 AT ./index.cf:10
5

6 INDEX MATCH: `__config__::A instance`
7 CONSTRUCTED BY `A(n=42,m=1)`
8 AT ./index.cf:11
9 1

10 SET BY `A(n=42,m=1)`
11 AT ./index.cf:11
12 0
13 SET BY `A(n=42,m=0)`
14 AT ./index.cf:10

This data trace highlights the index match between the two constructors at lines 6–8.

5.12. Model debugging 65

Inmanta Documentation, Release 2023.1.1

5.12.3 Root cause analysis

Enabling the data trace also enables a root cause analysis when multiple attributes have not received a value. For
example, compiling the model below results in three errors, one for each of the instances.

1 entity A:
2 number n
3 end
4

5 implement A using std::none
6

7 x = A()
8 y = A()
9 z = A()

10

11 x.n = y.n
12 y.n = z.n

Listing 12: compile output

1 Reported 3 errors
2 error 0:
3 The object __config__::A (instantiated at ./main.cf:7) is not complete: attribute n␣

↪→(./main.cf:2) is not set
4 error 1:
5 The object __config__::A (instantiated at ./main.cf:9) is not complete: attribute n␣

↪→(./main.cf:2) is not set
6 error 2:
7 The object __config__::A (instantiated at ./main.cf:8) is not complete: attribute n␣

↪→(./main.cf:2) is not set

Compiling with data trace enabled will do a root cause analysis on these errors. In this case it will infer that x.n
and y.n are only unset because z.n is unset. Compiling then shows:

Listing 13: compile output with –experimental-data-trace

1 Reported 1 errors
2 error 0:
3 The object __config__::A (instantiated at ./main.cf:9) is not complete: attribute n␣

↪→(./main.cf:2) is not set

In cases where a single error leads to errors for a collection of related attributes, this can greatly simplify the
debugging process.

5.12.4 Usage example

Let’s have a look at the model below:

Listing 14: service.cf

1 entity Port:
2 string host
3 number portn
4 end
5

6 index Port(host, portn)
7

(continues on next page)

66 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

8 entity Service:
9 string name

10 string host
11 number portn
12 end
13

14 Service.port [0:1] -- Port.service [0:1]
15

16

17 implement Port using std::none
18 implement Service using bind_port
19

20

21 implementation bind_port for Service:
22 self.port = Port(host = self.host, portn = self.portn)
23 end
24

25

26 sshd = Service(
27 name = "opensshd",
28 host = "my_host",
29 portn = 22,
30)
31

32

33 custom_service = Service(
34 name = "some_custom_service",
35 host = "my_host",
36 portn = 22,
37)

Compiling this with data trace disabled outputs the following error:

Listing 15: compilation output for service.cf with data trace disabled

Could not set attribute `port` on instance `__config__::Service (instantiated at ./
↪→service.cf:33)` (reported in self.port = Construct(Port) (./service.cf:22))
caused by:
Could not set attribute `service` on instance `__config__::Port (instantiated at ./

↪→service.cf:22,./service.cf:22)` (reported in __config__::Port (instantiated at ./
↪→service.cf:22,./service.cf:22) (./service.cf:22))
caused by:
value set twice:
old value: __config__::Service (instantiated at ./service.cf:26)

set at ./service.cf:22
new value: __config__::Service (instantiated at ./service.cf:33)

set at ./service.cf:22
(reported in self.port = Construct(Port) (./service.cf:22))

The error message refers to service.cf:22 which is part of an implementation. It is not clear which Service
instance is being refined, which makes finding the cause of the error challenging. Enabling data trace results in the
trace below:

Listing 16: data trace for service.cf

1 attribute service on __config__::Port instance
2 SUBTREE for __config__::Port instance:

(continues on next page)

5.12. Model debugging 67

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

3 CONSTRUCTED BY `Port(host=self.host,portn=self.portn)`
4 AT ./service.cf:22
5 IN IMPLEMENTATION WITH self = __config__::Service instance
6 CONSTRUCTED BY `Service(name='opensshd',host='my_host',portn=22)`
7 AT ./service.cf:26
8

9 INDEX MATCH: `__config__::Port instance`
10 CONSTRUCTED BY `Port(host=self.host,portn=self.portn)`
11 AT ./service.cf:22
12 IN IMPLEMENTATION WITH self = __config__::Service instance
13 CONSTRUCTED BY `Service(name='some_custom_service',host='my_host',

↪→portn=22)`
14 AT ./service.cf:33
15 __config__::Service instance
16 SET BY `self.port = Port(host=self.host,portn=self.portn)`
17 AT ./service.cf:22
18 IN IMPLEMENTATION WITH self = __config__::Service instance
19 CONSTRUCTED BY `Service(name='some_custom_service',host='my_host',portn=22)`
20 AT ./service.cf:33
21 CONSTRUCTED BY `Service(name='some_custom_service',host='my_host',portn=22)`
22 AT ./service.cf:33
23 __config__::Service instance
24 SET BY `self.port = Port(host=self.host,portn=self.portn)`
25 AT ./service.cf:22
26 IN IMPLEMENTATION WITH self = __config__::Service instance
27 CONSTRUCTED BY `Service(name='opensshd',host='my_host',portn=22)`
28 AT ./service.cf:26
29 CONSTRUCTED BY `Service(name='opensshd',host='my_host',portn=22)`
30 AT ./service.cf:26

At lines 15 and 23 it shows the two Service instances that are also mentioned in the original error message. This
time, the dynamic implementation context is mentioned and it’s clear that these instances have been assigned in a
refinement for the Service instances constructed at lines 26 and 33 in the configuration model respectively.

Lines 2–14 in the trace give some additional information about the Port instance. It indicates there is an index
match between the Port instances constructed in the implementations for both Service instances. This illustrates
the existence of the two branches at lines 15 and 23, and why the assignment in this implementation resulted in the
exceeding of the relation arity: the right hand side is the same instance in both cases.

5.12.5 Graphic visualization

Warning: This representation is not as complete as the data trace explained above. It does not show infor-
mation about statements responsible for each assignment. It was primarily developed as an aid in developing
the data flow framework on which the data trace and the root cause analysis tools are built. It’s described here
because it’s closely related to the two tools described above. Its actual use in model debugging might be limited.

Note: Using this feature requires one of inmanta’s optional dependencies to be installed: pip install
inmanta[dataflow_graphic]. It also requires the fdp command to be available on your system. This is most
likely packaged in your distribution’s graphviz package.

Let’s compile the model in service.cf again, this time with --experimental-dataflow-graphic. The compile
results in an error, as usual, but this time it’s accompanied by a graphic visualization of the data flow.

68 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

Port

Port

Service

Service

host

__self__

.host

__self__
.host

name

'some_custom_service'

host

'my_host'

portn

22

port

requires

provides

name

'opensshd'

host

portn

port

requires

provides

portn

.portn

.portn

service

requires
provides

sshd

custom_service

index

It shows all assignments, as well as the index match between the two Port constructions. An assignment where
the right hand side is an attribute x.y is shown by an arrow to x, labeled with .y. Variables are represented by
ellipses, values by diamonds and instances by rectangular containers.

5.13 Model Design Guidelines

This section provides design guidelines for experienced developers. It is intended as a way of sharing experience
and improving design.

Warning: We provide guidelines here. These are not absolute rules and not all rules are appropriate at all
times. Trust your own good judgement before anything else.

5.13.1 Overview

South Bound Integration:

1. Keep close to the API. Keep the structure of the inmanta model as close as possible to the API you model.
Refrain from adding abstraction layers when doing pure integration.

2. Prefer modeling relations as relations, avoid reference by string.

5.13.2 Keep close to the API

When doing south bound integrations, it is tempting to improve the existing API. Resist this temptation. It leads to
the following problems:

1. It costs a lot of effort to integrate the API and redesign it at the same time.

2. Often, you don’t understand the API as well as the people who designed it. The improvements you make
when starting out often lead to dead ends. Some features that are trivial to represent in the original API
become impossible to express in your improved API.

3. APIs evolve. When the API changes in the future, it may become very hard to maintain you improved API.

When you want to offer an improved API, do it in two stages: first model and integrate the existing API, then add
an abstraction layer in the model. This neatly separates the integration and abstraction effort.

5.13. Model Design Guidelines 69

Inmanta Documentation, Release 2023.1.1

5.13.3 Prefer modeling relations as relations

Often, APIs have relations. For example, when creating a virtual machine on AWS EC2, it can refer to one or
more SecurityGroups. This is modeled in the AWS handler as an explicit relation: aws::VirtualMachine.
security_groups.

There are different modeling styles possible: 1. Model the relation as a relation between two model enti-
ties. (e.g. aws::VirtualMachine.security_groups) 2. Model the relation as a (textual) reference. (e.g.
aws::database::RDS.subnet_group.)

These styles can be mixed within one module.

Explicit relations have the advantage that consistency can be enforced within the model. Type errors and dangling
reference are easily prevented. Higher functionality, like correct ordering of the deployment is easy to implement.

Textual references have the advantage that it is easy to refer to things that are not in the model.

When starting to build up a model, textual reference are attractive, as the modeling effort required is very limited.
It is however difficult to migrate away from the textual references later on, because this is a breaking change for
any existing model.

One solution to allow reference to unmanaged entities is to extend std::ManagedResource. This allows an entity
to exist in the model, but when managed is set to false, it will never become a resource. However, the entity must
still be valid. All attributes and relations still have to be filled in correctly. For entities with many non-optional
relations, this is also not the best solution.

Another solution is to introduce a parent entity type that explicitly represents the unmanaged entity. It has only
those attributes that are required to correctly refer to it. The concrete, managed entity is a subtype of the unmanaged
version. This requires a bit more types, but it is most evolution friendly. No naming convention for the unmanaged
parent has been established.

As an example, we could implement aws::VirtualMachine.security_groups as follows:

VirtualMachine

string image
string size
...

SecurityGroupReference

string name

This entity is used to refer to
an existing, unmanaged SecurityGroup

SecurityGroup

string description

This entity expresses desired state
about a SecurityGroup

security_groups

1 *

In cases where there is a single relation that can point to multiple specific subtypes, we can use the existing supertype
entity to represent unmanaged entities.

70 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

Rule
NamedObject

string name

Host

...

Network

...

Group

...

This entity is used to refer to
an existing, unmanaged Object

These entities express desired state
over different specific types of Objects.

source1

target
1

5.14 Partial compiles

Warning: This is an advanced feature, targeted at mature models that have the need to scale beyond their cur-
rent capabilities. Care should be taken to implement this safely, and the user should be aware of its limitations.

Small updates to large models can be compiled quickly using partial compiles. We merely recompile a tiny, in-
dependent portion of the model, as opposed to doing it for the entire model. A resource set is made up of the
resources in a specific portion of the model.

The model’s resources must be separated into resource sets in order to employ partial compilations. The model
can then be shrunk to only include the entities for the resource sets that need to be modified. The changes will be
pushed to the server when this smaller model is recompiled and exported in partial mode, but all other resource
sets won’t be impacted.

While the remainder of this document will focus on the straightforward scenario of manually trimming down the
model to facilitate quicker compilations, the partial compile feature is actually most useful in conjunction with
additional tooling (such as a model generator based on a YAML file) or an Inmanta extension (such as LSM) that
offers dynamic entity construction.

5.14.1 Resource sets

Instances of the std::ResourceSet entity serve as the model’s representation of resource sets. The name of the
set and a list of its resources are held by this entity. These ResourceSet instances are found by the default exporter
to ascertain which resources belong to which set.

In the example below, 1000 networks of 5 hosts each are created. Each host is part of its network’s resource set.

Listing 17: main.cf

entity Network:
"""
A network consisting of hosts. Each network is modelled fully independent from␣

↪→others.
"""
int id

end
Network.hosts [0:] -- Host.network [1]

index Network(id)

implementation network_resource_set for Network:
The Host resources for a network are all part of the same resource set
set = std::ResourceSet(name="network-{{ self.id }}")

(continues on next page)

5.14. Partial compiles 71

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

for host in self.hosts:
set.resources += host

end
end

entity Host extends std::Resource:
int id

end
index Host(network, id)

implementation host for Host:
Resource that doesn't belong to any resource set and is shared
std::AgentConfig(autostart=true, agentname="host_agent")

end

implement Network using network_resource_set
implement Host using host

create 1000 networks with 5 hosts each
for i in std::sequence(1000):

network = Network(id=i)
for j in std::sequence(5):

Host(network=network, id=j)
end

end

5.14.2 Partial compiles

When a model is partially compiled, it only includes the entities and resources for the resource sets that need to be
changed (as well as their dependencies on additional resources that aren’t part of a resource set). It is the server’s
responsibility to create a new version of the desired state utilizing the resources from the old version and those
from the partial compile.

Only the resource sets that are present in the partially compiled model will be replaced when a partial export to the
server is performed. Other sets’ resources won’t be impacted in any way. Shared resources are those that aren’t a
part of any resource collection and can always be added.

The resources from the prior example would be updated by a partial export for the model below:

Listing 18: main.cf

entity Network:
"""
A network consisting of hosts. Each network is modelled fully independent from␣

↪→others.
"""
int id

end
Network.hosts [0:] -- Host.network [1]

index Network(id)

implementation network_resource_set for Network:
(continues on next page)

72 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

The Host resources for a network are all part of the same resource set
set = std::ResourceSet(name="network-{{ self.id }}")
for host in self.hosts:

set.resources += host
end

end

entity Host extends std::Resource:
int id

end
index Host(network, id)

implementation host for Host:
Resource that doesn't belong to any resource set and is shared
std::AgentConfig(autostart=true, agentname="host_agent")

end

implement Network using network_resource_set
implement Host using host

turns out network 0 only needs one host
Host(network=Network(id=0), id=0)

As a result, network 0 would be changed to only have one host (the other four resources are removed), but the other
networks would continue to function as they had before (because their resource set was not present in the partial
export). The comparable complete model would seem as follows:

Listing 19: main.cf

entity Network:
"""
A network consisting of hosts. Each network is modelled fully independent from␣

↪→others.
"""
int id

end
Network.hosts [0:] -- Host.network [1]

index Network(id)

implementation network_resource_set for Network:
The Host resources for a network are all part of the same resource set
set = std::ResourceSet(name="network-{{ self.id }}")
for host in self.hosts:

set.resources += host
end

end

entity Host extends std::Resource:
int id

end
index Host(network, id)

(continues on next page)

5.14. Partial compiles 73

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

implementation host for Host:
Resource that doesn't belong to any resource set and is shared
std::AgentConfig(autostart=true, agentname="host_agent")

end

implement Network using network_resource_set
implement Host using host

create network 0 with only one host
Host(network=Network(id=0), id=0)
create 999 networks with 5 hosts each
for i in std::sequence(999, start=1):

network = Network(id=i)
for j in std::sequence(5):

Host(network=network, id=j)
end

end

Keep in mind that each resource set contains a collection of independent resources. In this example scenario, since
the host instances for other sets do not exist at compilation time, it would be impossible to enforce a host index that
was based just on the id and excluded the network.

The model developer is accountable for the following: Each resource set in a partial compilation needs to be
separate from and independent of the resource sets that aren’t included in the partial model. When performing
partial compilations, this is a crucial assumption. If this condition is not satisfied, partial compilations may end
up being incompatible with one another (a full compilation with the identical changes would fail), as the index
example shows. This can result in undefinable behavior.

Constraints and rules

When using partial compiles, the following rules have to be followed:

• A resource cannot be a part of more than one resource set at once.

• A resource does not have to be part of a resource set.

• Resources cannot be migrated using a partial compile to a different resource set. A full compile is necessary
for this process.

• A resource set that is contained in a partial export must be complete, meaning that all of its resources must
be present.

• Resources that weren’t assigned to a specific resource set can never be updated or removed by a partial build.
Although, adding resources is allowed.

• The new version of the model that emerges from a partial compilation should have a dependency graph that
is closed within the resource sets that were exported. i.e., it should not depend on any resource sets other
than those that were exported.

• Multiple resource sets may be updated simultaneously via a partial build.

For a guide on how to design a model in order to take these into account, see Modeling guidelines.

74 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

Exporting a partial model to the server

Two arguments can be passed to the inmanta export command in order to export a partial model to the server:

• --partial To specify that the model being compiled only contains the resources that need to be updated in
relation to the previous version of the model.

• --delete-resource-set <resource-set-name> This option, which may be used more than once, in-
structs the model to remove the resource set with the specified name. Only in conjunction with the preceding
choice may this option be utilized. Note that utilizing a std::ResourceSet that includes no resources al-
lows resource sets to be implicitly deleted during a partial compilation.

Limitations

• The compiler cannot verify all constraints that would be verified when a full build is run. Some index
constraints, for instance, cannot be verified. The model creator is in charge of making sure that these
constraints are met.

See Modeling guidelines on how to design your model.

• If just a partial compile is performed, it is possible for a shared resource to become obsolete. The shared
resource will become obsolete when a partial compile deletes the last resource that depended on it, but it
is preserved as a server-managed resource because partial compiles cannot delete shared resources. A full
compile is required to remove shared resources. Scheduled full compilations that garbage-collect these
shared resources are one way to fix this. The auto_full_compile environment setting is used to schedule
full compilations. As an example, to plan a daily full compile for 01:00 UTC, use the auto_full_compile
environment setting: 0 1 * * *.

5.14.3 Modeling guidelines

This section will introduce some guidelines for developing models for use with the partial compilation feature.
Take extreme care when not following these guidelines and keep in mind the Constraints and rules. The purpose
of these guidelines is to present a modelling approach to safely make use of partial compiles. In essence, this boils
down to developing the model so that a partial compile only succeeds if a full one would as well.

In this guide, we only cover models where each set of independent resources is defined by a single top-level entity,
which we will refer to as the “service” or “service entity” (as in LSM). We will use the term “identity” to refer to
any set of attributes that uniquely identify an instance. In the model this usually corresponds to an index.

All potential instances of a service entity must be refined to compatible (low level) configuration when creating an
Inmanta model. In the model this config is represented by the resources. Therefore these guidelines will focus on
creating valid and compatible resources. With well-designed resources, valid and compatible config will follow.

To safely make use of partial compiles, each service must be the sole owner of its resources and any shared resources
must be identical across service instances. The graph below pictures a valid service for partial compiles. Each
arrow represents a refinement: one entity creating another in one of its implementations. The valid service results
in fully separate resource sets for each instance. Additionally, the one shared resource is created consistently
between service instances. For each entity type, the id attribute is assumed to be an identifying attribute for the
instance (i.e. there is an index on the attribute).

In contrast, the graph below shows an invalid service definition. Its resources overlap between instances. The
invalid service can thus not be allowed for partial compiles because no resource can be considered completely
owned by a single service instance.

Finally, the graph below shows another invalid model. Here, the resources are clearly divided into sets, but the
shared resource is created inconsistently: one instance sets its value to 0 while the other sets it to 1.

In conclusion, each service’s refinements (through implementations) form a tree that may only intersect between
service instances on shared nodes. The whole subtree below such a shared node should be considered shared and
any resources in it must not be part of a resource set. All shared resources should be consistent between any two
service instances that might create the object (see Constraints and rules). All other nodes should generally be
considered owned by the service and all their resources be part of the service’s resource set. For more details on

5.14. Partial compiles 75

Inmanta Documentation, Release 2023.1.1

Owned by GoodService(id=0)

Resource set for GoodService(id=0)

Owned by GoodService(id=1)

Resource set for GoodService(id=1)

Shared and consistent among all service instances

GoodService(id=0)

Resource(id=0)Resource(id=1)

SharedResource(id=0, value=0)

GoodService(id=1)

Resource(id=2)Resource(id=3)

Fig. 1: A good service for partial compiles.

Services' "owned" resources overlap

Not a valid resource set Shared and consistent among all service instances

BadService(id=0)

Resource(id=0)Resource(id=1) SharedResource(id=0, value=0)

BadService(id=1)

Fig. 2: A bad service for partial compiles: no owned resources

Owned by BadService(id=0)

Resource set for BadService(id=0)

Owned by BadService(id=1)

Resource set for BadService(id=1)

Shared resources' values are not consistent

BadService(id=0)

Resource(id=0)Resource(id=1)

SharedResource(id=0, value=0)

BadService(id=1)

Resource(id=2)Resource(id=3)

SharedResource(id=0, value=1)

Fig. 3: A bad service for partial compiles: conflicting shared resources

76 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

what it means to own a resource (or any child node in the tree) and how to ensure two service instance’s trees can
not intersect on owned nodes, see the Ownership subsection.

Service instance uniqueness

With full compiles, indexes serve as the identity of a service instance in the model. The compiler then validates
that no conflicting service instances exist. With partial compiles this validation is lost because only one service
instance will be present in the model. However, it is still crucial that such conflicts do not exist. Put simply, we
need to make sure that a partial compile succeeds only when a full compile would succeed as well. This subsection
deals solely with the uniqueness of service instances. The Ownership subsection then deals with safe refinements
into resources.

To ensure service instance definitions are distinct, the model must make sure to do appropriate validation on the
full set of definitions. When doing a partial compile, the model must verify that the service instance it is compiling
for has a different identity from any of the previously defined service instances. This can be achieved by externally
checking against some sort of inventory that there are no matches for any set of input attributes that identify the
instance.

The current implementation of partial compiles does not provide any helpers for this verification. It is the respon-
sibility of the model developer or the tool/extension that does the export to ensure that no two service instances
can be created that are considered to have the same identity by the model.

For example, suppose we modify the example model to take input from a simple yaml file:

for network_def in mymodule::read_from_yaml():
network = Network(id=network_def["id"])
for host in network["hosts"]:

network.hosts += Host(id=host["id"])
end

end

networks:
- id: 0
hosts:
- id: 0

- id: 1
hosts:

- id: 0
- id: 1
- id: 2
- id: 3
- id: 4

- id: 0
hosts:
- id: 0
- id: 1

The read_from_yaml() plugin would have to verify that no two networks with the same id are defined. After
this validation, if doing a partial, it may return a list with only the relevant network in it. For the yaml given above
validation would fail because two networks with the same id are defined.

5.14. Partial compiles 77

Inmanta Documentation, Release 2023.1.1

Ownership

A resource can safely be considered owned by a service instance if it could never be created by another service
instance. There are two main mechanisms that can be used to provide this guarantee, both of which will be described
in their own subsection below. One is the use of indexes on appropriate locations, the other is the use of some
external allocator of unique values (e.g. a plugin to generate a UUID or to allocate values in an inventory).

In either case, the goal is to make sure that any object that is marked as owned by a service instance, is unique to
that instance. In the index case we do so by making sure the object’s identity is in fact completely and uniquely
derived from the identity of the service instance. In the case where unique values are externally produced/allocated,
responsibility for uniqueness falls to the plugin that produces the values.

Ownership through indexes

As stated above, during partial compiles indexes alone can not serve as a uniqueness guarantee because each
compile only contains a single service instance. And yet, indexes can still be used as a mechanism to guarantee
ownership: e.g. if a value for a resource’s index is uniquely derived from the identity of its service instance, this
in itself is a guarantee that no other service instance could result in this same resource. In other words, rather than
count on the stand-alone identity aspect of the index, we will make sure the identity is fully defined by the service
instance’s identity (or an external inventory). This, coupled with the Service instance uniqueness guarantee ensures
that the refinement trees will not intersect. This in turn allows us to conclude that the partial compile behavior will
be the same as the full compile behavior.

Generally, for every index on a set of attributes of an owned resource, at least one of the fields must be either
derived from the identity of the service instance, or allocated in a safe manner by a plugin as described above. The
same goes for every pair of resource id and agent. If the first constraint is not met, a full compile might fail, while
if the second is not met, the export will be rejected because two services are trying to configure the same resources.

For example, consider the example model from before. If two networks with two hosts each would be created, they
would result in two disjunct resource sets, as pictured below.

Shared resources

service 0

Resource set for Network 0

service 1

Resource set for Network 1

AgentConfig

Network(id=0)

Host(nid=0, id=0)Host(nid=0, id=1)

Network(id=1)

Host(nid=1, id=0)Host(nid=1, id=1)

Fig. 4: Two valid service instances with their resource sets

Now suppose the index on Host did not include the network instance. In that case the identity of a Host instance
would no longer be derived from the identity of its Network instance. It would then be possible to end up with two
networks that refine to the same host objects as shown below. The resource sets are clearly no longer disjunct.

78 Chapter 5. Model developer documentation

Inmanta Documentation, Release 2023.1.1

Shared resources

intersecting services

Resource set 0/1?

AgentConfig

Network(id=0)

Host(id=0)Host(id=1)

Network(id=1)

Fig. 5: Two invalid service instances with a resource set conflict

5.14. Partial compiles 79

Inmanta Documentation, Release 2023.1.1

Ownership through allocation

Instead of the index Host(network, id) we could also use an allocation plugin to determine the id of a host.
Suppose we add such a plugin that allocates a unique value in some external inventory, then the index is no longer
required for correct behavior because the allocator guarantees uniqueness for the host id:

Shared resources

service 0

Resource set 0

service 1

Resource set 1

AgentConfig

Network(id=0)

Host(id=269)Host(id=694)

Network(id=1)

Host(id=31)Host(id=712)

Fig. 6: Two valid services with their resource sets, using allocation

Testing

While the guidelines outlined above suffice for safe use of partial compiles, a modeling error is easily made. In
addition to the usual testing of behavior of both full and partial compiles, you should include tests that guard against
incompatible resource sets and/or shared resources. These tests would generally be full compile tests with multiple
service instances. As long as a full compile succeeds for any valid set of inputs, you can be confident the partial
compile will behave the same. If on the other hand a set of valid service instances exist for which the full compile
fails, you most likely have a modeling error that would allow sequential partial compiles for those same instances.

80 Chapter 5. Model developer documentation

CHAPTER

SIX

PLATFORM DEVELOPER DOCUMENTATION

6.1 Creating a new server extension

Inmanta server extensions are separate Python packages with their own release cycle that can add additional server
slices and Inmanta environment settings to the orchestrator. Server slices are components in the service orchestrator.
A slice can be responsible for API endpoints or provide internal services to other slices. The core server extension
provides all slices of the core service orchestrator.

6.1.1 The package layout of a server extension

Each Inmanta server extension is defined as a subpackage of the inmanta_ext package. inmanta_ext is a names-
pace package used by the service orchestrator to discover new extensions. The following directory structure is
required for a new extension called new_extension.

inmanta_ext
|
|__ new_extension
| |__ __init__.py
| |__ extension.py

• The __init__.py file can be left empty. This file is only required to indicate that new_extension is a
python package.

• The extension.py file must contain a setup function that registers the necessary server slices
to the application context. An example extension.py file is shown below. The parameter
<server-slice-instance> should be replaced with an instance of the server slice that belongs to the
extension. Multiple server slices can be registered.

• The extension.py file can contain an optional register_environment_settings function that allows
an extension to register extension-specific settings that can be used to customize an Inmanta environment.

File: extension.py
from inmanta.server.extensions import ApplicationContext
from inmanta import data

def setup(application: ApplicationContext) -> None:
application.register_slice(<server-slice-instance>)

def register_environment_settings(application: ApplicationContext) -> None:
application.register_environment_setting(

data.Setting(
name="my_environment_setting",
default=False,
typ="bool",
validator=data.convert_boolean,

(continues on next page)

81

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

doc="Explain what the setting does.",
)

)

Tip: Indicate which version of the Inmanta core is compatible with the developed extension by constraining the
version of the Inmanta core package to a valid range in the setup.py file of the extension.

6.1.2 Adding server slices to the extension

A server slice is defined by creating a class that extends from inmanta.server.protocol.ServerSlice.

class inmanta.server.protocol.ServerSlice(name: str)
Base class for server extensions offering zero or more api endpoints

Extensions developers should override the lifecycle methods:

• ServerSlice.prestart()

• ServerSlice.start()

• ServerSlice.prestop()

• ServerSlice.stop()

• ServerSlice.get_dependencies()

To register endpoints that server static content, either use :func:’add_static_handler’ or
:func:’add_static_content’ To create endpoints, use the annotation based mechanism

To schedule recurring tasks, use schedule() or self._sched To schedule background tasks, use
add_background_task()

get_depended_by()→ List[str]
List of names of slices that must be started after this one.

get_dependencies()→ List[str]
List of names of slices that must be started before this one.

async prestart(server: Server)→ None
Called by the RestServer host prior to start, can be used to collect references to other server slices
Dependencies are not up yet.

async prestop()→ None
Always called before stop

Stop producing new work: - stop timers - stop listeners - notify shutdown to systems depending on us
(like agents)

sets is_stopping to true

But remain functional

All dependencies are up (if present)

async start()→ None
Start the server slice.

This method blocks until the slice is ready to receive calls

Dependencies are up (if present) prior to invocation of this call

82 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 2023.1.1

async stop()→ None
Go down

All dependencies are up (if present)

This method blocks until the slice is down

• The constructor of the ServerSlice class expects the name of the slice as an argument. This name should
have the format "<extension-name>.<server-slice-name>". <extension-name> is the name of the
package that contains the extension.py file. <server-slice-name> can be chosen by the developer.

• The prestart(), start(), prestop(), stop(), get_dependencies() and get_depended_by()
methods can be overridden when required.

6.1.3 Enable the extension

By default, no extensions are enabled on the Inmanta server. Extensions can be enabled by specifying them in the
server.enabled-extensions option of the Inmanta configuration file. This option accepts a comma-separated
list of extensions that should be enabled.

File: /etc/inmanta/inmanta.d/0-extensions.cfg
[server]
enabled_extensions=new_extension

6.1.4 The Inmanta extension template

A new Inmanta extension can be created via the Inmanta extension template. This is a cookiecutter template to
generate the initial Python project for a new Inmanta extension. The documentation regarding this template is
available on https://github.com/inmanta/inmanta-extension-template.

6.2 Database Schema Management

In some situation, a change to the database schema is required. To perform these database schema migrations, we
implemented a migration tool and associated testing framework. This page describes how to create a new version
of the database schema and test the migration script.

6.2.1 New schema version definition

The version number of the database schema evolves independently from any other versioned Inmanta element
(product version, extension version, etc.). Each commit can introduce changes to the database schema. When that
happens the commit creates a new database schema version. This means that multiple schema version can exist
between two consecutive stable releases of the orchestrator.

A new version of the database schema is defined by adding a new Python module to the inmanta.db.versions
package. The name of this module should have the format v<timestamp><i>.py, where the timestamp is in the
form YYYYMMDD and i is an index to allow more than one schema update per day (e.g. v202102220.py).

Each of these Python modules should implement an asynchronous function update that accepts a database connec-
tion object as an argument. This function should execute all database queries required to update from the previous
version of the database schema to the new version of the database schema.

An example is given in the code snippet below:

File: src/inmanta/db/versions/v202102220.py
from asyncpg import Connection

(continues on next page)

6.2. Database Schema Management 83

https://github.com/inmanta/inmanta-extension-template

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

async def update(connection: Connection) -> None:
schema = """
ALTER TABLE public.test
ADD COLUMN new_column;
"""
await connection.execute(schema)

6.2.2 Executing schema updates

Schema updates are applied automatically when the Inmanta server starts. The following algorithm is used to apply
schema updates:

1. Retrieve the current version of the database schema from the public.schemamanager table of the database.

2. Check if the inmanta.db.versions package contains any schema updates.

3. When schema updates are available, each update function between the current version and the latest version
is executed in the right order.

When a schema update fails, the database schema is rolled-back to the state before the start of the Inmanta server.
In that case the Inmanta server will fail to start.

6.2.3 Testing database migrations

Each database migration script should be tested using an automated test case. The tests that verify the mi-
gration from schema version <old_version> to <new_version> are stored in a file named tests/db/
test_v<old_version>_to_v<new_version>.py.

In general, a database schema migration test has the following flow:

1. Load a database dump that uses the database schema version directly preceding the version being tested.

2. Perform assertions that verify the database schema before the migration.

3. Start the inmanta server to trigger the database migration scripts.

4. Perform assertions to verify that the migration was done correctly.

The example below shows a test for the above-mentioned database migration script.

1 # File: tests/db/test_v202101010_to_v202102220.py
2 @pytest.mark.db_restore_dump(os.path.join(os.path.dirname(__file__), "dumps",

↪→"v202101010.sql"))
3 async def test_add_new_column_to_test_table(
4 migrate_db_from: abc.Callable[[], abc.Awaitable[None]],
5 get_columns_in_db_table: abc.Callable[[str], list[str]],
6) -> None:
7 """
8 Verify that the database migration script v202102220.py correctly adds the column␣

↪→new_column to the table test.
9 """

10 # Assert state before migration
11 assert "new_column" not in await get_columns_in_db_table(table_name="test")
12 # Migrate DB schema
13 await migrate_db_from()
14 # Assert state after migration
15 assert "new_column" in await get_columns_in_db_table(table_name="test")

The most important elements of the test case are the following:

84 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 2023.1.1

• Line 2: The db_restore_dump annotation makes the migrate_db_from fixture load the database dump
tests/db/dumps/v202101010.sql in the database used by the test case. This happens in the setup stage
of the fixture. As such, the database contains the old version of the database schema at the beginning of the
test case.

• Line 11: Verifies that the column new_column doesn’t exist in the table test. The test case uses the fixture
get_columns_in_db_table to obtain that information, but the postgresql_client fixture can be used
as well to run arbitrary queries against the database.

• Line 13: Invokes the callable returned by the migrate_db_from fixture. This function call starts an Inmanta
server against the database used by the test case, which runs the migration script being tested.

• Line 15: Verifies whether the migration script correctly added the column new_column to the table test.

Each commit that creates a new database version should also add a database dump for that new version to the
tests/db/dumps/ directory. Generating this dump can be done using the tests/db/dump_tool.py script.
This script does the following:

1. Start an Inmanta server using the latest database schema available in inmanta.db.versions package.

2. Execute some API calls against the server to populate the database tables with some dummy data.

3. Dump the content of the database to tests/db/dumps/v<latest_version>.sql.

The actions to be taken after generating a new dump file are described in the docstring of the dump_tool.py file.
If a new table or column is added using a database migration script, the developer should make sure to adjust the
dump_tool.py script with the necessary API calls to populate the table or column if required.

6.3 Define API endpoints

This page describes how to add an API endpoint to the Inmanta server. Adding a new API endpoint requires two
methods: an API method and an API handle. The API method provides the specification of the endpoint. This
includes the HTTP request method, the path to the endpoint, etc. The API handle on the other hand provides the
actual implementation of the endpoint.

6.3.1 API Method

The Python function that acts as an API method should be annotated using the method decorator. The implemen-
tation of the method should be left empty.

An example is shown in the code snippet below.

import uuid
from inmanta.const import ClientType
from inmanta.protocol.decorators import method

@method(path="/project/<id>", operation="GET", client_types=[ClientType.api])
def get_project(id: uuid.UUID):

"""
Get a project and a list of the ids of all environments.

:param id: The id of the project to retrieve.
:return: The project and a list of environment ids.
:raises NotFound: The project with the given id doesn't exist.

"""

This API method defines an HTTP GET operation at the path /project/<id> which can be used by a client of
type api (cli, web-console and 3rd party service). The id parameter in the path will be passed to the associate API
handle. A docstring can be associated with the API method. This information will be included in the OpenAPI
documentation, available via the /docs endpoint of the Inmanta server.

6.3. Define API endpoints 85

Inmanta Documentation, Release 2023.1.1

A complete list of all the arguments accepted by the method decorator is given below.

decorators.method(operation: str = 'POST', reply: bool = True, arg_options: ~typing.Dict[str,
~inmanta.protocol.common.ArgOption] = {}, timeout: ~typing.Optional[int] = None,
server_agent: bool = False, api: ~typing.Optional[bool] = None, agent_server: bool =
False, validate_sid: ~typing.Optional[bool] = None, client_types:
~typing.List[~inmanta.const.ClientType] = [<ClientType.api: 'api'>], api_version: int =
1, api_prefix: str = 'api', envelope: bool = False, envelope_key: str = 'data')→
Callable[[...], Callable]

Decorator to identify a method as a RPC call. The arguments of the decorator are used by each transport to
build and model the protocol.

Parameters

• path – The url path to use for this call. This path can contain parameter names of the
function. These names should be enclosed in < > brackets.

• operation – The type of HTTP operation (verb).

• timeout – nr of seconds before request it terminated.

• api – This is a call from the client to the Server (True if not server_agent and not
agent_server).

• server_agent – This is a call from the Server to the Agent (reverse http channel through
long poll).

• agent_server – This is a call from the Agent to the Server.

• validate_sid – This call requires a valid session, true by default if agent_server and
not api

• client_types – The allowed client types for this call. The valid values are defined by
the inmanta.const.ClientType enum.

• arg_options – Options related to arguments passed to the method. The key of this
dict is the name of the arg to which the options apply. The value is another dict that can
contain the following options:

header: Map this argument to a header with the following name. reply_header: If
the argument is mapped to a header, this header will also be included in the reply
getter: Call this method after validation and pass its return value to the method call.
This may change the type of the argument. This method can raise an HTTPExcep-
tion to return a 404 for example.

• api_version – The version of the api this method belongs to.

• api_prefix – The prefix of the method: /<prefix>/v<version>/<method_name>.

• envelope – Put the response of the call under an envelope with key envelope_key.

• envelope_key – The envelope key to use.

6.3.2 API Handle

An API handle function should be annotated with the handle decorator and should contain all the arguments of
the associated API method and the parameters defined in the path of the endpoint. The names these arguments can
be mapped onto a different name by passing arguments to the handle decorator.

An example is shown in the code snippet below.

import uuid
from inmanta.server import protocol
from inmanta.types import Apireturn
from inmanta import data

(continues on next page)

86 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

from inmanta.protocol import methods

@protocol.handle(methods.get_project, project_id="id")
async def get_project(self, project_id: uuid.UUID) -> Apireturn:

try:
project = await data.Project.get_by_id(project_id)
environments = await data.Environment.get_list(project=project_id)

if project is None:
return 404, {"message": "The project with given id does not exist."}

project_dict = project.to_dict()
project_dict["environments"] = [e.id for e in environments]

return 200, {"project": project_dict}
except ValueError:

return 404, {"message": "The project with given id does not exist."}

return 500

The first argument of the handle decorator defines that this is the handle function for the get_project API
method. The second argument remaps the id argument of the API method to the project_id argument in the
handle function.

The arguments and the return type of the handle method can be any built-in Python type or a user-defined object.
The input format of an API call be verified automatically using Pydantic.

An overview of all the arguments of the handle decorator are shown below.

class inmanta.protocol.decorators.handle(method: Callable[[...], Optional[Union[int, Tuple[int,
Optional[Dict[str, Any]]], ReturnValue[ReturnTypes],
ReturnValue[None], BaseModel, UUID, StrictNonIntBool,
float, datetime, str, Sequence[Union[BaseModel, UUID,
StrictNonIntBool, int, float, datetime, str]], Mapping[str,
Union[BaseModel, UUID, StrictNonIntBool, int, float,
datetime, str]]]]], api_version: Optional[int] = None,
**kwargs: str)

Decorator for subclasses of an endpoint to handle protocol methods

Parameters

• method – A subclass of method that defines the method

• api_version – When specific this handler is only associated with a method of the
specific api verision. If the version is not defined, the handler is not associated with a
rest endpoint.

• kwargs – Map arguments in the message from one name to an other

6.3. Define API endpoints 87

Inmanta Documentation, Release 2023.1.1

6.4 Documentation writing

Inmanta uses Sphinx to generate documentation.

6.4.1 Inmanta code documentation

Modules

Python core

6.4.2 Sphinx tooling

The inmanta-sphinx package provides additional sphinx directives. The directives can render inmanta module
documentation and configuration documentation.

Install inmanta sphinx extension

Install the inmanta sphinx extension by installing the inmanta-sphinx package from pypi. Adding the extensions
to the extension list in conf.py enables the extensions. The names are `sphinxcontrib.inmanta.config` and
`sphinxcontrib.inmanta.dsl`.

This module also install the sphinx-inmanta-api script. This script can be used to generate an RST file with the
full API documentation from a module. This script is used to generate for example the API docs included in the
documentation on https://docs.inmanta.com

sphinxcontrib.inmanta.config

This extension loads all the defined configuration options in the Inmanta core and uses the embedded documentation
to generate a config reference.

It adds the show-options directive and a number of config objects to sphinx. Use it like this to generate documen-
tation:

.. show-options::

inmanta.server.config
inmanta.agent.config

sphinxcontrib.inmanta.dsl

This exention adds objects and directives to add documentation for Inmanta dsl objects such as entities, relations,
. . .

RST files can reference to inmanta configuration code with `:inmanta:entity:`std::File``. This renders to
std::File

88 Chapter 6. Platform developer documentation

https://docs.inmanta.com

Inmanta Documentation, Release 2023.1.1

sphinx-inmanta-api

This scripts generates an RST file that provides the API documentation of a module. The documentation is gener-
ated by compiling an empty project with this module included. The generator then uses the compiler representation
to emit RST code, using the directives from the inmanta.dsl domain extension. This script has the following op-
tions:

• `--module_repo`A local directory that function as the repo where all modules are stored that are required
to generate the API documentation.

• `--module` The name of the module to generate api docs for.

• `-m` or `--extra-modules` An optional argument that can be provided multiple times. This is a list of
modules that should be loaded as well when the API docs are generated. This might be required when other
modules also provided implementations that have to be listed.

• `--source-repo` The repo where the upstream source is located. This is used to include a url in the
documentation.

• `-f` or `--file` The file to save the generated documentation in.

6.5 Exceptions

For more details about Compiler Exceptions, see Compiler exceptions

6.5.1 HTTP Exceptions

HTTP Exceptions are raised when a server request can’t be completed successfully. Each exception specifies what
the HTTP status code of the response should be. By using the correct exception type (and a descriptive error
message) the clients can get more information about what went wrong.

class inmanta.protocol.exceptions.BaseHttpException(status_code: int = 500, message:
Optional[str] = None, details:
Optional[Dict[str, Any]] = None)

Bases: HTTPError

A base exception for errors in the server.

Classes which extend from the BaseHttpException class cannot have mandatory arguments in their con-
structor. This is required to determine the status_code of the exception in inmanta.protocol.common.
MethodProperties._get_http_status_code_for_exception()

class inmanta.protocol.exceptions.Forbidden(message: Optional[str] = None, details:
Optional[Dict[str, Any]] = None)

Bases: BaseHttpException

An exception raised when access is denied (403)

class inmanta.protocol.exceptions.UnauthorizedException(message: Optional[str] = None,
details: Optional[Dict[str, Any]] =
None)

Bases: BaseHttpException

An exception raised when access to this resource is unauthorized

class inmanta.protocol.exceptions.BadRequest(message: Optional[str] = None, details:
Optional[Dict[str, Any]] = None)

Bases: BaseHttpException

This exception is raised for a malformed request

6.5. Exceptions 89

Inmanta Documentation, Release 2023.1.1

class inmanta.protocol.exceptions.NotFound(message: Optional[str] = None, details:
Optional[Dict[str, Any]] = None)

Bases: BaseHttpException

This exception is used to indicate that a request or reference resource was not found.

class inmanta.protocol.exceptions.Conflict(message: Optional[str] = None, details:
Optional[Dict[str, Any]] = None)

Bases: BaseHttpException

This exception is used to indicate that a request conflicts with the current state of the resource.

class inmanta.protocol.exceptions.ServerError(message: Optional[str] = None, details:
Optional[Dict[str, Any]] = None)

Bases: BaseHttpException

An unexpected error occurred in the server

class inmanta.protocol.exceptions.ShutdownInProgress(message: Optional[str] = None, details:
Optional[Dict[str, Any]] = None)

Bases: BaseHttpException

This request can not be fulfilled because the server is going down

6.5.2 Database Schema Related Exceptions

For more details, see Database Schema Management

class inmanta.data.schema.TableNotFound

Bases: Exception

Raised when a table is not found in the database

class inmanta.data.schema.ColumnNotFound

Bases: Exception

Raised when a column is not found in the database

6.6 Features

A default Inmanta install comes with all features enabled by default. config.feature-file points to a yaml file
that enables or disables features. The format of this file is:

slices:
slice_name:

feature_name: bool

6.7 Model Export Format

1. top level is a dict with one entry for each instance in the model

2. the key in this dict is the object reference handle

3. the value is the serialized instance

4. the serialized instance is a dict with three fields: type, attributes and relation.

5. type is the fully qualified name of the type

6. attributes is a dict, with as keys the names of the attributes and as values a dict with one entry.

90 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 2023.1.1

7. An attribute can have one or more of tree keys: unknows, nones and values. The “values” entry has
as value a list with the attribute values.

If any of the values is Unknown or None, it is removed from the values array and the index at which it
was removed is recorded in respective the unknowns or nones value

8. relations is like attributes, but the list of values contains the reference handles to which this relations points

Basic structure as pseudo jinja template

{
{% for instance in instances %}
'{{instance.handle}}':{

"type":"{{instance.type.fqn}}",
"attributes":[

{% for attribute in instance.attributes %}
"{{attribute.name}}": [{{ attribute.values | join(",") }}]
{% endfor %}

]
"relations" : [

{% for relation in instance.relations %}
"{{relation.name}}": [

{% for value in relation.values %}
{{value.handle}}

{% endfor %}
]
{% endfor %}

]

{% endif %}
}

6.8 Type Export Format

class inmanta.model.Attribute(mytype: str, nullable: bool, multi: bool, comment: str, location:
Location)

Attribute defined on an entity

Parameters

• mytype (str) – fully qualified name of the type of this attribute

• nullable (bool) – can this attribute be null

• multi (bool) – is this attribute a list

• comment (str) – docstring for this attribute

• location (inmanta.model.Location) – source location where this attribute is de-
fined

to_dict()→ Dict[str, Any]
Convert to serialized form:

{
"type": self.type,
"multi": self.multi,
"nullable": self.nullable,
"comment": self.comment,
"location": self.location.to_dict()

}

6.8. Type Export Format 91

Inmanta Documentation, Release 2023.1.1

class inmanta.model.DirectValue(value: Value)
A primitive value, directly represented in the serialized form.

Parameters
value – the value itself, as string or number

to_dict()→ Dict[str, Any]
Convert to serialized form:

{"value": self.value}

class inmanta.model.Entity(parents: List[str], attributes: Dict[str, Attribute], relations: Dict[str,
Relation], location: Location)

An entity type

Parameters

• parents (List[str]) – parent types

• Attribute] (Dict[str,) – all attributes declared on this entity directly, by name

• Relation] (Dict[str,) – all relations declared on this entity directly, by name

• location (inmanta.model.Location) – source location this entity was defined at

to_dict()→ Dict[str, Any]
Convert to serialized form:

{
"parents": self.parents,
"attributes": {n: a.to_dict() for n, a in self.attributes.items()},
"relations": {n: r.to_dict() for n, r in self.relations.items()},
"location": self.location.to_dict(),
}

class inmanta.model.Location(file: str, lnr: int)
Position in the source

Parameters

• file (str) – source file name

• lnr (int) – line in the source file

to_dict()→ Dict[str, Any]
Convert to serialized form:

{
"file": self.file,
"lnr": self.lnr

}

class inmanta.model.ReferenceValue(reference)
A reference to an instance of an entity.

Parameters
reference (str) – the handle for the entity this value refers to

to_dict()→ Dict[str, Any]
Convert to serialized form:

{"reference": self.reference}

92 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 2023.1.1

class inmanta.model.Relation(mytype: str, multi: Tuple[int, Optional[int]], reverse: str, comment: str,
location: Location, source_annotations: List[Value], target_annotations:
List[Value])

A relation between two entities.

Parameters

• mytype (str) – the type this relation refers to

• multi (Tuple[int, int]) – the multiplicity of this relation in the form (lower,upper),
-1 for unbounded

• reverse (str) – the fully qualified name of the inverse relation

• location (inmanta.model.Location) – source location this relation was defined at

• source_annotations (List[Value]) – annotations on this relation on the source side

• target_annotations (List[Value]) – annotations on this relation on the target side

to_dict()→ Dict[str, Any]
Convert to serialized form:

{
"type": self.type,
"multi": [self.multi[0], self.multi[1]],
"reverse": self.reverse,
"comment": self.comment,
"location": self.location.to_dict(),
"source_annotations": [x.to_dict() for x in self.source_annotations],
"target_annotations": [x.to_dict() for x in self.target_annotations]
}

class inmanta.model.Value

A value reference from a type either DirectValue or ReferenceValue

6.9 Platform Developers Guide

6.9.1 Dependencies

All dependencies in this project need to be pinned to specific version. These versions are pinned in requirements.txt.
This file can be used to install all dependencies at once or use it as a constraint file for tox or pip install. require-
ments.txt contains all dependencies for the core platform, for running tests and for generating documentation.

Install inmanta from current checkout
pip install -c requirements.txt .

https://dependabot.com monitors each dependency for updates and security issues. The inmanta development
policy is to track the latest version of all dependencies.

6.9. Platform Developers Guide 93

https://dependabot.com

Inmanta Documentation, Release 2023.1.1

6.9.2 Versioning

A release gets its version based on the current year and an index for the release. The release schedule targets a release
every two months but this tends to slip. The latest stable release (e.g. 2017.1) gets backported bugfixes, these release
get a micro version number (e.g. 2017.1.4). All versions get a tag in the git repo prefixed with v (e.g. v2017.1.
Supported versions are available in a branch under stable/ for backports and bugfixes (e.g. stable/v2017.1).

Development is done in the master branch. The version of the master branch is set to the next release version,
but tagged with dev. This is configured in setup.cfg with the tag_build setting. The CI/build server can generate
snapshots. Snapshots also need to have the dev tag (for correct version comparison) appended with the current
date in +%Y%m%d%H%M format.

Tag the code and build a source dist
python setup.py egg_info -b "dev$(date +%Y%m%d%H%M)" sdist

6.9.3 Running tests

Inmanta unit tests are executed with pytest. In tests/conftest.py provides numerous fixtures for tests. Use python
functions for new tests. If setup and teardown is required, use fixtures instead of class based tests. Currently a
number of tests are still class based and are in progress of being ported to function based tests.

To make sure the tests run with correct dependencies installed, use tox as a testrunner. This is as simple as installing
tox and executing tox in the inmanta repo. This will first run unit tests and validate code guideliness as well.

94 Chapter 6. Platform developer documentation

CHAPTER

SEVEN

ADMINISTRATOR DOCUMENTATION

7.1 Operational Procedures

This document describes the best practices for various operational procedures.

Note: issue templates for all procedures are available at the bottom of this page

7.1.1 Project Release for Production

This process describes the steps to prepare an inmanta project for production release.

Context

• The project development and testing is complete

• All modules have been properly released.

• The project is in a git repo, with a specific branch dedicated to production releases

• The project is checked out on disk.

• All modules are checked out on the correct, tagged commit.

Procedure

1. Verify in project.yml that install_mode is set to release.

2. Freeze all modules with

inmanta -vv -X project freeze --recursive --operator "=="

This will cause the `project.yml` file to be updated with constraints that only allow␣
↪→this project to work with this exact set of module versions.
This ensures that no unwanted updates can 'leak' into the production environment.

4. Verify that all modules are frozen to the correct version.

• Open project.yml and verify that all module versions are frozen to the expected versions

5. Commit this change (git commit -a)

6. Push to the release branch (git push)

95

Inmanta Documentation, Release 2023.1.1

7.1.2 Upgrade of service model on the orchestrator

This process describes how to safely take an existing project from one version to the next.

Context

• The orchestrator has the project already deployed and running

• The project is released (as described above)

Pre-Upgrade steps

1. Verify that environment safety setting are on (this should always be the case)

• purge_on_delete = False

• protected_environment = True

2. Temporarily disable auto_deploy

• auto_deploy = False

3. Click ‘recompile’ to verify that no new deploy would start.

• A new version will appear but it will not start to deploy

4. Inspect the current state of the latest deployed version, verify no failures are happening and the deploy looks
healthy

5. (Optional) Perform a dryrun. Wait for the dryrun to complete and take note of all changes detected by the
dryrun. Ideally there should be none.

Upgrade procedure

1. Click Update project & recompile

• A new version will appear but it will not start to deploy

2. Click Perform dry run on the new version

• The dryrun report will open

• Wait for the dryrun to finish

• Inspect any changes found by the dryrun, determine if they are expected. If unexpected things are
present, go to the abort procedure.

3. If all is OK, click deploy to make the changes effective

Post Upgrade procedure

1. Re-enable auto_deploy

• auto_deploy = True

96 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

Upgrade abort/revert

1. Delete the bad (latest) version

2. Push a revert commit onto the release branch (git revert HEAD; git push)

3. Go through the Upgrade procedure again to make this revert effective

7.1.3 Deployment of a new service model to the orchestrator

This process describes how to safely deploy a new model to the orchestrator.

Context

• The orchestrator has an environment set up for the project, but it has not been deployed yet.

• The project is released (as described above)

Procedure

1. Cross check all settings in the environment settings tab with the development team.

2. Verify that environment safety settings are on (should always be the case)

• purge_on_delete = False

• protected_environment = True

3. Temporarily disable auto_deploy

• auto_deploy = False

4. Click ‘recompile’ to install the project.

• A new version will appear but it will not start to deploy

• This may take a while as the project has to be installed.

• In case of problems, consult the Compile Reports

5. Verify that the resources in this first version are as expected.

6. Click deploy to make the changes effective

• Keep a close eye on progress and problems that may arise.

• In case of trouble, hit the emergency stop. Resuming after a stop is very easy and stopping gives you the
time to investigate.

7. Verify that automation setting are on

• agent_trigger_method_on_auto_deploy = push_incremental_deploy

• auto_deploy = true

• push_on_auto_deploy = true

• server_compile = true

8. If this model uses LSM, perform initial tests of all services via the API.

7.1. Operational Procedures 97

Inmanta Documentation, Release 2023.1.1

Extra careful deploy procedure

For models that are considered risky, it is possible to enable the model in a more gradual way. The general idea
is to disengage all features on the orchestrator that make the agents perform unsupervised deployments. Then the
agents can be activated by hand, one-by-one.

This procedure only works when all agents are autostarted by the server.

1. Take note of the following settings

• autostart_agent_deploy_interval

• autostart_agent_repair_interval

2. Disable spontaneous deployment

• autostart_agent_deploy_interval = 0

• autostart_agent_repair_interval = 0

• auto_deploy = True

• push_on_auto_deploy = False

3. Click ‘recompile’ to install the project.

• A new version will appear

• It will go to the deploying state

• But no resources will be deployed

4. In the agent tab, click deploy on agent on the ‘internal’ agent. Press force repair in the dropdown menu.

• All agents will come online

5. Perform a dryrun, to verify there are no undesirable effects.

6. Click deploy on agent/force repair on each agent. Verify results.

7. Ensure all environment setting are set correctly

• agent_trigger_method_on_auto_deploy = push_incremental_deploy

• auto_deploy = true

• push_on_auto_deploy = true

• server_compile = true

• autostart_agent_deploy_interval

• autostart_agent_repair_interval

7.1.4 Issue templates

For convenient inclusion in issue tickets, this section provides ready made markdown templates.

98 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

Project Release for Production

* [] Verify in `project.yml` that `install_mode` is set to `release`.
* [] Freeze all modules with `inmanta -vv -X project freeze --recursive --operator
↪→"=="`
* [] Verify that all modules are frozen to the correct version
* [] Commit this change (`git commit -a`)
* [] Push to the release branch (`git push`)

Upgrade of service model on the orchestrator

* Pre-Upgrade steps:

1. Verify that environment safety setting are on (this should always be the case)

* [] `purge_on_delete = False`
* [] `protected_environment = True`

2. Temporarily disable auto_deploy

* [] `auto_deploy = False`

3. [] Click ‘recompile’ to verify that no new deploy would start.

* A new version will appear but it will not start to deploy

4. [] Inspect the current state of the latest active version, verify no failures are␣
↪→happening and the deploy looks healthy
5. [] (Optional) Perform a dryrun. Wait for the dryrun to complete and take note of␣
↪→all changes detected by the dryrun. Ideally there should be none.

* Upgrade procedure

1. [] Click `Update and recompile`

* A new version will appear but it will not start to deploy

2. [] Click dryrun on the new version

* The dryrun report will open
* Wait for the dryrun to finish
* [] Inspect any changes found by the dryrun, determine if they are expected. If␣

↪→unexpected things are present, go to the abort procedure.
3. [] If all is OK, click deploy to make the changes effective

* Post Upgrade procedure

1. Re-enable auto_deploy

* [] `auto_deploy = True`

* Upgrade abort/revert

1. [] Delete the bad (latest) version
2. [] Push a revert commit onto the release branch (`git commit revert HEAD; git␣
↪→push`)

(continues on next page)

7.1. Operational Procedures 99

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

3. [] Click `Update and recompile`

* A new version will appear but it will not start to deploy

4. [] Click dryrun on the new version

* The dryrun report will open
* Wait for the dryrun to finish
* [] Inspect any changes found by the dryrun, this should be identical to the␣

↪→dryrun before the upgrade. If this is not the case, hit the emergency stop button␣
↪→and and contact support.

7.2 Diagnosing problems

When an unexpected problem arises with an inmanta environment, you might want to work directly on the environ-
ment on the orchestrator host to diagnose it. The inmanta-workon command, installed by the RPM, provides that
functionality. inmanta-workon myenvironment puts you in the environment’s project directory and activates
its Python venv. If you don’t know the name of the environment by heart, inmanta-workon --list gives an
overview of all environments on the server.

For more details, see inmanta-workon --help.

Note: If you didn’t install inmanta from RPM, you can manually source the inmanta-workon-register.
sh script to get access to the inmanta-workon command. You can find the script in the misc directory in the
inmanta-core git repository.

7.3 Configuration

7.3.1 Inmanta server and Inmanta agent

The Inmanta server and the Inmanta agent, started via systemd, will read their configuration from the following
locations:

1. /etc/inmanta/inmanta.cfg

2. /etc/inmanta/inmanta.d/*.cfg

3. environment variables

The configuration options specified in the /etc/inmanta/inmanta.d/ directory override the configuration op-
tions specified in /etc/inmanta/inmanta.cfg. If the directory /etc/inmanta/inmanta.d/ contains two files
with the same configuration option, the conflict is resolved using the alfabetical order of the filesnames. Filenames
which appear later in the alfabetical order override the configuration options from their predecessors in that order.

After having read the configuration files, inmanta will read environment variables. The environment variables
overwrite any other types of configuration, if set. All settings can be set using environment variables with the
following convention:

INMANTA_{section.name}_{setting.name}

Keep in mind that everything should be in ALL CAPS and that any dashes in the setting names must be replaced
by underscores.

100 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

7.3.2 Inmanta CLI tool

The inmanta CLI tool reads its configuration at the following locations:

1. /etc/inmanta/inmanta.cfg

2. /etc/inmanta/inmanta.d/*.cfg (override using the --config-dir option)

3. ~/.inmanta.cfg

4. .inmanta

5. .inmanta.cfg

6. The config file specified on the CLI using the -c options

7. Environment variables

The inmanta CLI tool searches for the .inmanta and .inmanta.cfg files in the directory where the CLI com-
mand is executed.

Configuration files which are ranked lower in the above-mentioned list override the configuration options specified
by their predecessors. If the directory /etc/inmanta/inmanta.d/ contains two files with the same configuration
option, the conflict is resolved using the alfabetical order of the filenames. Filenames which appear later in the
alfabetical order override the configuration options from their predecessors in that order.

The number 2 (/etc/inmanta/inmanta.d/*.cfg) in the above-mentioned list can be overridden using the
--config-dir option of the inmanta command. More information about these options can be found in the
inmanta command reference

7.4 HA setup

This page describes how to deploy an Inmanta server in a HA setup and how to perform a failover when required.

Note: This guide assumes the default PosgreSQL included with RHEL is installed. It probably also works with
the version from the postgres project, however the paths to the data directory and the name of the service will
contain the installed version.

7.4.1 Setup a HA PostgreSQL cluster

The Inmanta server stores its state in a PostgreSQL database. As such, the PostgreSQL database should be deployed
in a high available setup, to ensure the availability of the Inmanta server. This page describes how to setup a two
node PosgreSQL cluster, consisting of a master node and a warm standby. The master node performs synchronous
replication to the standby node. When the master node fails, the standby can be promoted to the new master node
by performing a manual action.

Prerequisites

• Master node: The master node has been setup according to step 2 and step 3 of the Inmanta installation
documentation.

• Standby node: The standby node should only have a PostgreSQL installation, so only step 2 of the Inmanta
installation documentation should be executed.

7.4. HA setup 101

Inmanta Documentation, Release 2023.1.1

Configure the master node

Login on the master node and perform the following changes in the /var/lib/pgsql/data/postgresql.conf
file:

Adjust the listen address as such that the standby node
can connect to the master node.
listen_addresses = '*'

Increase the wal_level to the required level for data replication
wal_level = replica

Only report success to the client when the transaction has been
flushed to permanent storage
synchronous_commit = on

Force synchronous replication to the standby node. The application_name
uniquely identifies the standby instance and can be freely chosen as long
as it only consists of printable ASCII characters.
synchronous_standby_names = 'inmanta'

Make sure that no queries can be executed on the standby
node while it is in recovery mode.
hot_standby = off

Execute the commands mentioned below on the master node. These commands do two thing:

• They create a replication user with replication and login privileges. The standby node will use this user to
connect to the master node.

• They create a new replication slot, named replication. This replication slot will make sure that sufficient
data is retained on the master node to synchronize the standby node with the master node.

$ sudo su - postgres -c 'psql'
$ CREATE USER replication WITH REPLICATION LOGIN PASSWORD '<password-replication-user>
↪→';
$ SELECT * FROM pg_create_physical_replication_slot('replication');
$ \q

Add the lines mentioned below to the /var/lib/pgsql/data/pg_hba.conf file. This will make sure that the
replication user can be used to setup a replication connection from the standby node to the master. Since, the
standby node can become the master node, both hosts should be add to the file.

host replication replication <ip-master-node>/32 md5
host replication replication <ip-standby-node>/32 md5

Restart the postgresql service to activate the configuration changes.

$ sudo systemctl restart postgresql

102 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

Configure the standby node

The standby gets configured by creating a backup of the master node and restoring it on the standby node. The
commands mentioned below create a backup in the /tmp/backup directory. This command will prompt for the
password of the replication user. By setting the -R option, a standby.signal and a postgresql.auto.conf
file will be added to the backup. The presence of the former will make the PostgreSQL server start as a standby. The
latter contains replication-specific configuration settings. Those will be processed after the postgresql.conf file
is processed.

$ sudo su - postgres -c 'pg_basebackup -h <ip-master-node> -U replication -X stream -
↪→R -D /tmp/backup -S replication -W'

On the standby node, clear the content of the /var/lib/pgsql/data directory and replace it with the content of
the backup created on the master node. The postgresql.auto.conf file needs to be adjusted as such that it has
the application_name parameter in the primary_conninfo setting. This application_name should match
the name configured in the synchronous_standby_names setting of the postgresql.conf file of the master
node.

primary_conninfo = 'user=replication password=<password> channel_binding=prefer host=
↪→<password> port=5432 sslmode=prefer sslcompression=0 ssl_min_protocol_version=TLSv1.
↪→2 gssencmode=prefer krbsrvname=postgres target_session_attrs=any application_
↪→name=inmanta'
primary_slot_name = 'replication'

Comment out, the synchronous_standby_names setting in the postgresql.conf file of the standby node. This
will ensure that the standby node acts fully independently when it is promoted to a master node. Finally, start and
enable the PostgreSQL service on the standby node.

$ sudo systemctl start postgresql
$ sudo systemctl enable postgresql

7.4.2 Failover PostgreSQL

This section describes the action required to recover from a failed PostgreSQL master node.

Promote a standby node to the new master node

When the master node fails, the standby node can be promoted to become the new master node. After this failover,
the new master will acts as a fully independent instance, i.e. no replication will happen to a standby instance.

Execute the following command on the standby instance to promote it to a new master node:

$ sudo su - postgres -c 'pg_ctl promote -D /var/lib/pgsql/data/'

This command will remove the standby.signal file. It’s also recommended to cleanup the postgresql.auto.
conf file by executing the following commands:

$ sudo rm -f /var/lib/pgsql/data/postgresql.auto.conf
$ sudo systemctl reload postgresql

The old master node can be reconfigured to become the new standby node, by executing the step described in the
next section.

7.4. HA setup 103

Inmanta Documentation, Release 2023.1.1

Add a standby node to a newly promoted master node

This section explains how a standby can be add to a master node, which was created from a promoted standby node.

First, add a replication slot on the new master node by executing following commands:

$ sudo su - postgres -c 'psql'
$ SELECT * FROM pg_create_physical_replication_slot('replication');
$ \q

Then, configure the new standby instance by following the step mentioned in Configure the standby node. When
the standby is up, the master node perform asynchronous replication to the standby node. The master node needs
to be reconfigured to perform synchronous replication. This is done by adding the line mentioned below the
postgresql.conf file of the master node. The application_name has to match the application_name set in
the postgresql.auto.conf file of the standby node.

synchronous_standby_names = 'inmanta'

Finally, reload the configuration of the master node using the following command:

$ sudo systemctl reload postgresql

7.4.3 Failover an Inmanta server

This section describes different ways to failover an Inmanta server.

Failover an Inmanta server to the warm standby PostgreSQL instance

This section describes how to failover an Inmanta server to a new PostgreSQL master node when the previous
master node has failed.

First, stop the orchestrator by stopping the inmanta-server service.

$ sudo systemctl stop inmanta-server

Promote the standby node to a master node by following the procedure mentioned in Section Promote a standby
node to the new master node. When the promotion is finished, the Inmanta server can be reconfigured to start using
the new master node. Do this by adjusting database.host setting the /etc/inmanta/inmanta.d/database.
cfg file:

[database]
host=<ip-address-new-master-node>
name=inmanta
username=inmanta
password=<password>

Now, start the Inmanta orchestrator again:

$ sudo systemctl start inmanta-server

104 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

Start a new orchestrator on warm standby PostgreSQL instance

This section describes what should be done to recover when the Inmanta server and the PostgreSQL master node
fail simultaneously. It is also possible to failover the Inmanta server when the PostgreSQL master node has not
failed.

Before starting the failover process, it’s important to ensure that the original Inmanta server is fully disabled. This
is required to prevent the situation where two orchestrators are performing configuration changes on the same
infrastructure simultaneously. Disabling the Inmanta orchestrator can be done by stopping the machine running
the Inmanta server or disabling the inmanta-server service using the following commands:

$ sudo systemctl stop inmanta-server
$ sudo systemctl disable inmanta-server

The following step should only be executed when the PostgreSQL master node has failed.

Next, promote the standby PostgreSQL node to the new master node using the procedure in Section Promote a
standby node to the new master node. When the (new) master node is up, a new Inmanta server can be installed
according the procedure mention in the Install Inmanta section. In the /etc/inmanta/inmanta.d/database.
cfg configuration file, the database.host setting should contain the IP address of the new PostgreSQL master
node.

When the Inmanta server is up and running, a recompile should be done for each existing configuration model.

7.5 Setting up authentication

This guide explains how to enable ssl and setup authentication.

SSL is not strictly required for authentication but higly recommended. Inmanta uses bearer tokens for authorizing
users and services. These tokens should be kept private and are visible in plain-text in the request headers without
SSL.

7.5.1 SSL: server side

Setting a private key and a public key in the server configuration enables SSL on the server. The two options to set
are server.ssl-cert-file and server.ssl-key-file.

For the autostarted agents and compiler to work, either add the CA cert to the trusted certificates of the system or
set server.ssl-ca-cert-file to the truststore.

[server]
The ssl certificate used by the server
ssl_cert_file=/etc/inmanta/server.crt
The private key used by the server, associated with the certificate
ssl_key_file=/etc/inmanta/server.key.open

The certificate chain that the compiler and agents should use to validate the␣
↪→server certificate
ssl_ca_cert_file=/etc/inmanta/server.chain
The address at which the compiler and agent should connect
Must correspond to hostname the ssl certificate is bound to
server_address=localhost

7.5. Setting up authentication 105

Inmanta Documentation, Release 2023.1.1

7.5.2 SSL: agents and compiler

When using SSL, all remote components connecting to the server need to have SSL enabled as well.

For each of the transport configurations (compiler, agent, rpc client, . . .) ssl has to be enabled:
agent_rest_transport, cmdline_rest_transport and compiler_rest_transport.

The client needs to trust the SSL certificate of the server. When a self-signed SSL cert is used on the server, either
add the CA cert to the trusted certificates of the system running the agent or configure the ssl-ca-cert-file
option in the transport configuration.

For example for an agent this is agent_rest_transport.ssl and agent_rest_transport.
ssl-ca-cert-file

Autostarted agents and compiles on the server also use SSL to communicate with the server. This requires either
for the server SSL certificate to be trusted by the OS or by setting server.ssl-ca-cert-file. The server will
use this value to set compiler_rest_transport.ssl-ca-cert-file and server.ssl-ca-cert-file for
the compiler and the agents.

7.5.3 Authentication

Inmanta authentication uses JSON Web Tokens for authentication (bearer token). Inmanta issues tokens for service
to service interaction (agent to server, compiler to server, cli to server and 3rd party API interactions). For user
interaction through the web-console Inmanta uses 3rd party auth brokers. Currently the web-console only supports
redirecting users to keycloak for authentication.

Inmanta expects a token of which it can validate the signature. Inmanta can verify both symmetric signatures with
HS256 and asymmetric signatures with RSA (RS256). Tokens it signs itself for other processes are always signed
using HS256. There are no key distribution issues because the server is both the signing and the validating party.

The server also provides limited authorization by checking for inmanta specific claims inside the token. All inmanta
claims are prefixed with urn:inmanta:. These claims are:

• urn:inmanta:ct A required comma delimited list of client types for which this client is authenticated.
Each API call has a one or more allowed client types. The list of valid client types (ct) are:

– agent

– compiler

– api (cli, web-console, 3rd party service)

• urn:inmanta:env An optional claim. When this claim is present the token is scoped to this inmanta
environment. All tokens that the server generates for agents and compilers have this claim present to limit
their access to the environment they belong to.

Setup server auth

The server requests authentication for all API calls when server.auth is set to true. When authentication is
enabled all other components require a valid token.

Warning: When multiple servers are used in a HA setup, each server requires the same configuration (SSL
enabled and private keys).

In the server configuration multiple token providers (issuers) can be configured (See JWT auth configuration).
Inmanta requires at least one issuer with the HS256 algorithm. The server uses this to sign tokens it issues itself.
This provider is indicated with sign set to true. Inmanta issues tokens for compilers the servers runs itself and for
autostarted agents.

106 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

Compilers, cli and agents that are not started by the server itself, require a token in their transport
configuration. This token is configured with the token option in the groups agent_rest_transport,
cmdline_rest_transport and compiler_rest_transport.

A token can be retrieved either with inmanta-cli token create or via the web-console using the tokens tab
on the settings page.

Fig. 1: Generating a new token in the web-console.

Configure an external issuer (See External authentication providers) for web-console access to bootstrap access
to the create token api call. When no external issuer is available and web-console access is not required, the
inmanta-cli token bootstrap command can be used to create a token that has access to everything. However,
it expires after 3600s for security reasons.

For this command to function, it requires the issuers configuration with sign=true to be available for the cli com-
mand.

7.5. Setting up authentication 107

Inmanta Documentation, Release 2023.1.1

JWT auth configuration

The server searches for configuration sections that start with auth_jwt_, after the last _ an id has to be present.
This section expects the following keys:

• algorithm: The algorithm used for this key. Only HS256 and RS256 are supported.

• sign: Whether the server can use this key to sign JWT it issues. Only one section may have this set to true.

• client_types: The client types from the urn:inmanta:ct claim that can be validated and/or signed with this
key.

• key: The secret key used by symmetric algorithms such as HS256. Generate the key with a secure prng with
minimal length equal to the length of the HMAC (For HS256 == 256). The key should be a urlsafe base64
encoded bytestring without padding. (see below of a command to generate such a key)

• expire: The default expire for tokens issued with this key (when sign = true). Use 0 for tokens that do not
expire.

• issuer: The url of the issuer that should match for tokens to be valid (also used to sign this). The default value
is https://localhost:8888/ This value is used to match auth_jwt_* sections configuration with JWT tokens.
Make sure this is unique.

• audience: The audience for tokens, as per RFC this should match or the token is rejected.

• jwks_uri: The uri to the public key information. This is required for algorithm RS256. The keys are loaded
the first time a token needs to be verified after a server restart. There is not key refresh mechanism.

• jwks_request_timeout: The timeout for the request to the ‘jwks_uri’, in seconds. If not provided, the default
value of 30 seconds will be used.

An example configuration is:

[auth_jwt_default]
algorithm=HS256
sign=true
client_types=agent,compiler
key=rID3kG4OwGpajIsxnGDhat4UFcMkyFZQc1y3oKQTPRs
expire=0
issuer=https://localhost:8888/
audience=https://localhost:8888/

To generate a secure key symmetric key and encode it correctly use the following command:

openssl rand 32 | python3 -c "import sys; import base64; print(base64.urlsafe_
↪→b64encode(sys.stdin.buffer.read()).decode().rstrip('='));"

7.5.4 External authentication providers

Inmanta supports all external authentication providers that support JWT tokens with RS256 or HS256. These
providers need to add a claims that indicate the allowed client type (urn:inmanta:ct). Currently, the web-console
only has support for keycloak. However, each provider that can insert custom (private) claims should work. The
web-console now relies on the keycloak js library to implement the OAuth2 implicit flow, required to obtain a JWT.

Tip: All patches to support additional providers such as Auth0 are welcome. Alternatively contact Inmanta NV
for custom integration services.

108 Chapter 7. Administrator documentation

https://localhost:8888/

Inmanta Documentation, Release 2023.1.1

Keycloak configuration

The web-console has out of the box support for authentication with Keycloak. Install keycloak and create an initial
login as described in the Keycloak documentation and login with admin credentials.

This guide was made based on Keycloak 3.3

If inmanta is configured to use SSL, the authentication provider should also use SSL. Otherwise, the web-console
will not be able to fetch user information from the authentication provider.

Step 1: Optionally create a new realm

Create a new realm if you want to use keycloak for other purposes (it is an SSO solution) than Inmanta authen-
tication. Another reason to create a new realm (or not) is that the master realm also provides the credentials to
configure keycloak itself.

For example call the realm inmanta

Fig. 2: Create a new realm

Step 2: Add a new client to keycloak

Make sure the correct realm is active (the name is shown in the title of the left sidebar) to which you want to add a
new client.

Go to client and click create on the right hand side of the screen.

Provide an id for the client and make sure that the client protocol is openid-connect and click save.

After clicking save, keycloak opens the configuration of the client. Modify the client to allow implicit flows and
add vallid callback URLs. As a best practice, also add the allowed origins. See the screenshot below as an example.

Add a mapper to add custom claims to the issued tokens for the API client type. Open de mappers tab of your new
client and click add.

7.5. Setting up authentication 109

http://www.keycloak.org

Inmanta Documentation, Release 2023.1.1

Fig. 3: Specify a name for the realm

Fig. 4: The start page of a realm. Here you can edit names, policies, . . . of the realm. The defaults are sufficient
for inmanta authentication. This shows the inmanta realm.

110 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

Fig. 5: Clients in the master realm. Click the create button to create an inmanta client.

Fig. 6: Create client screen

7.5. Setting up authentication 111

Inmanta Documentation, Release 2023.1.1

Fig. 7: Allow implicit flows (others may be disabled) and configure allowed callback urls of the web-console.

Fig. 8: Add a custom mapper to the client to include :urn:inmanta:ct

112 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

Select hardcoded claim, enter :urn:inmanta:ct as claim name and api as claim value and string as type. It
should only be added to the access token.

Fig. 9: Add the ct claim to all access tokens for this client.

Add a second mapper to add inmanta to the audience (only required for Keycloak 4.6 and higher). Click add again
as in the previous step. Fill in the following values:

• Name: inmanta-audience

• Mapper type: Audience

• Included Client Audience: inmanta

• Add to access token: on

Click save.

Step 3: Configure inmanta server

Go to the installation tab and select JSON format in the select box. This JSON string provides you with the details
to configure the server correctly to redirect web-console users to this keycloak instance and to validate the tokens
issued by keycloak.

Add the keycloak configuration parameters to the web-ui section of the server configuration file. Add a configura-
tion file called /etc/inmanta/inmanta.d/keycloak.cfg. Add the oidc_realm, oidc_auth_url and oidc_client_id to the
web-ui section. Use the parameters from the installation json file created by keycloak.

[web-ui]
generic OpenID connect configuration
oidc_realm=master
oidc_auth_url=http://localhost:8080/auth
oidc_client_id=inmanta

7.5. Setting up authentication 113

Inmanta Documentation, Release 2023.1.1

Fig. 10: Show the correct configuration parameters in JSON format.

Warning: In a real setup, the url should contain public names instead of localhost, otherwise logins will only
work on the machine that hosts inmanta server.

Configure a auth_jwt_ block (for example auth_jwt_keycloak) and configure it to validate the tokens keycloak
issues.

[auth_jwt_keycloak]
algorithm=RS256
sign=false
client_types=api
issuer=http://localhost:8080/auth/realms/master
audience=inmanta
jwks_uri=http://localhost:8080/auth/realms/master/protocol/openid-connect/certs

Set the algorithm to RS256, sign should be false and client_types should be limited to api only. Next set the issuer
to the correct value (watch out for the realm). Set the audience to the value of the resource key in the json file.
Finally, set the jwks_uri so the server knows how to fetch the public keys to verify the signature on the tokens.
(inmanta server needs to be able to access this url).

Both the correct url for the issuer and the jwks_uri is also defined in the openid-configuration endpoint of keycloack.
For the examples above this url is http://localhost:8080/auth/realms/master/.well-known/openid-configuration
(https://www.keycloak.org/docs/latest/securing_apps/index.html#endpoints)

Warning: When the certificate of keycloak is not trusted by the system on which inmanta is installed, set
validate_cert to false in the auth_jwt_keycloak block for keycloak.

114 Chapter 7. Administrator documentation

http://localhost:8080/auth/realms/master/.well-known/openid-configuration
https://www.keycloak.org/docs/latest/securing_apps/index.html#endpoints

Inmanta Documentation, Release 2023.1.1

7.6 Environment variables

Environment variables can be supplied to the Inmanta server and it’s agents.

7.6.1 Supplying environment variables to the Inmanta server

The Inmanta server loads the environment variables specified in /etc/sysconfig/inmanta-server at startup.
The example below defines three environment variables:

OS_AUTH_URL=http://openstack.domain
OS_USERNAME=admin
OS_PASSWORD=sYOUZdhcgwctSmA

These environment variables are accessible in a configurationmodel via the std::get_env(name: "string",
default_value: "string"=None) plugin as shown in the following snippet:

1 import std
2 import openstack
3

4 provider = openstack::Provider(name="openstack",
5 connection_url=std::get_env("OS_AUTH_URL"),
6 username=std::get_env("OS_USERNAME"),
7 password=std::get_env("OS_PASSWORD"),
8 tenant="dev")

7.6.2 Supplying environment variables to an agent

A manually started agent loads the environment variables specified in /etc/sysconfig/inmanta-agent at
startup. This can be useful when a handler relies on the value of a certain environment variable.

7.7 Logging

This page describes the different logs files produced by the Inmanta server and its agents and explains what can be
configured regarding to logging.

7.7.1 Overview different log files

By default log files are collected in the directory /var/log/inmanta/. Three different types of log files exist:
the server log, the resources action logs and the agent logs. The server log and the resource action log files are
produced by the Inmanta server. The agent log files are produces by the Inmanta agents.

Server log

The server.log file contains general debugging information regarding the Inmanta server. It shows information
about actions performed by the Inmanta server (renewing parameters, purging resource action logs, etc.), API
requests received by the Inmanta server, etc.

7.6. Environment variables 115

Inmanta Documentation, Release 2023.1.1

Resource action logs

The resource action log files contain information about actions performed on a specific resource. Each en-
vironment has one resource action log file. The filename of this log file looks as follows: <server.
resource-action-log-prefix>-<environment-id>.log. The prefix can be configured with the configu-
ration option server.resource-action-log-prefix.

The resource action log file contains information about the following resource action:

• Store: A new version of a configuration model and its resources has been pushed to the Inmanta server.

• Pull: An agent pulled its resources from the Inmanta server.

• Deploy: When an agent starts and ends the deployment of a certain resource.

• Dryrun: Execute a dryrun for a certain resource.

Agent logs

One agent produces the following three log files:

• agent-<environment-id>.log: This is the main log file of an agent. It contains information about when
the agent started a deployment, which trigger caused that deployment, whether heartbeat messages are re-
ceived from the server, whether the agent is a primary agent, etc.

• agent-<environment-id>.out: This log file contains all the messages written to the standard output
stream of the resource handlers used by the agent.

• agent-<environment-id>.err: This log file contains all the messages written to the standard error stream
of the resource handlers used by the agent.

7.7.2 Configure logging

Configuration options in Inmanta config file

The following log-related options can be set in an Inmanta config file:

• log-dir

• purge-resource-action-logs-interval

• resource-action-log-prefix

Documentation on these options can be found in the Inmanta configuration reference.

Change log levels server log

Edit the --log-file-level option in the ExecStart command of the inmanta-server service file. The inmanta-
server service file can be found at /usr/lib/systemd/system/inmanta-server.service.

[Unit]
Description=The server of the Inmanta platform
After=network.target

[Service]
Type=simple
User=inmanta
Group=inmanta
ExecStart=/usr/bin/inmanta --log-file /var/log/inmanta/server.log --log-file-level 2 -
↪→-timed-logs server
Restart=on-failure

(continues on next page)

116 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

[Install]
WantedBy=multi-user.target

The --log-file-level takes the log-level as an integer, where 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG.

Apply the changes by reloading the service file and restarting the Inmanta server:

sudo systemctl daemon-reload inmanta-server
sudo systemctl restart inmanta-server

Log level manually started agent

The log level of a manually started agent can be changed in the same way as changing the log level of the Inmanta
server. The service file for a Inmanta agent can be found at /usr/lib/systemd/system/inmanta-agent.
service.

Log level auto-started agents

The default log level of an auto-started agent is INFO. Currently it’s not possible to change this log level.

Resource action logs

The log level of the resource action log file is DEBUG. Currently it’s not possible to change this log level.

Log level server-side compiles

The logs of a server side compile can be seen via the “Compile Reports” button in the web-console. The log level
of these logs is DEBUG. Currently, it’s not possible to change this log level.

Log level on CLI

By default logs are written to standard output when the inmanta or the inmanta-cli command is executed. The
default log level is INFO. The log level of these commands can be changed by passing the correct number of v’s
with the option -v.

• -v = warning

• -vv = info

• -vvv = debug

• -vvvv = traces

By specifying the -X option, stacktraces are also shown written to standard output when an error occurs. When
the --log-file option is specified on the commandline, logs are written to file instead of the standard output.

7.7. Logging 117

Inmanta Documentation, Release 2023.1.1

7.8 Performance Metering

This guide explains how to send performance metrics about the inmanta server to influxdb.

The inmanta server has a built-in pyformance instrumentation for all API endpoints and supports sending the results
to influxdb.

7.8.1 Configuration summary

To enable performance reporting, set the options as found under influxdb in the server configuration file.

For example:

[influxdb]
The hostname of the influxdb server
host = localhost
The port of the influxdb server
port = 8086
The name of the database on the influxdb server
name = inmanta
tags= environment=prod,az=a

7.8.2 Setup guide

1. To install influxdb, follow the instructions found at docs.influxdata.com.

2. Create a database to send the data to:

influx
CREATE DATABASE inmanta

3. Update the inmanta config file, add the following block

[influxdb]
The hostname of the influxdb server
host = localhost
The port of the influxdb server
port = 8086
The name of the database on the influxdb server
name = inmanta

4. Restart the inmanta server.

5. [optional] install grafana, follow the instructions found at https://grafana.com/grafana/download

6. [optional] load the inmanta dashboard found at https://grafana.com/grafana/dashboards/
10089-inmanta-api-performance/

118 Chapter 7. Administrator documentation

https://github.com/omergertel/pyformance
https://docs.influxdata.com/influxdb/v1.7/introduction/installation#installing-influxdb-oss
https://grafana.com/grafana/download
https://grafana.com/grafana/dashboards/10089-inmanta-api-performance/
https://grafana.com/grafana/dashboards/10089-inmanta-api-performance/

Inmanta Documentation, Release 2023.1.1

7.8.3 Reported Metrics

This section assumes familiarity with influxdb. See here.

All metrics are reported under the measurement metrics. Different measurements are distinguished by a tag called
key.

Two main types of metrics are reported: 1. Metrics related to API performance 2. Others

API performance metrics

Each API method is reported with a key=rpc.{endpoint_name}. The endpoint_name is the server’s internal name
for the endpoint.

To know which url corresponds to which method, please consult either

• the operationId field of the OpenAPI spec or

• the method names in inmanta.protocol.methods and inmanta.protocol.methods_v2

The fields available for each API endpoint are (cfr metrics timer):

field type description
15m_rate float fifteen-minute exponentially-weighted moving average of the request rate
5m_rate float five-minute exponentially-weighted moving average of the request rate
1m_rate float one-minute exponentially-weighted moving average of the request rate
mean_rate float mean of the request rate
min float minimal observed request latency
50_percentile float median (50 percentile) observed request latency
75_percentile float 75 percentile observed request latency
95_percentile float 95 percentile observed request latency
99_percentile float 99 percentile observed request latency
999_percentile float 999 percentile observed request latency
max float maximal observed request latency
avg float average observed latency
std_dev float standard deviation of the observed latency
count float number of calls seen since server start
sum float total wall-time spent executing this call since server start

Other Metrics

Key Type Unit Description
self.spec.cpuint ns The result of a small CPU benchmark, executed every second. Provides a baseline

for machine performance.

7.9 Reverse proxy and Web Application Firewall

Communication between inmanta components and to the northbound API uses REST over HTTP(S). This section
describes how to move the API behind a reverse proxy and optionally enable a web Application firewall. This is
meant for all external traffic towards the orchestrator. It is not supported to proxy traffic from the compiler and
agents to the server.

This guide focuses on access to the web-console, and to the northbound API. This guide works for both the OSS
and the full version of the product.

7.9. Reverse proxy and Web Application Firewall 119

https://docs.influxdata.com/influxdb/v1.7/concepts/key_concepts/#field-key
../_specs/openapi.json
https://metrics.dropwizard.io

Inmanta Documentation, Release 2023.1.1

7.9.1 Setup a reverse proxy

A reverse proxy receives the calls and proxies them to the inmanta service orchestrator API. This guide gives
examples to set this up with Apache HTTPD, but similar rules could also be applied to NGINX or other reverse
proxies. This guide assumes that the reverse proxy is installed on the same machine as the orchestrator.

1. Make sure you do not bind the orchestrator to the IP used by the proxy server so it cannot be
bypassed. If only auto started agents are used, it is recommended to set the bind-address to
localhost. See server.bind-address and server.bind-port. If you have remote agents,
make sure that either by having multiple IPs or using firewall rules that the agents can connect
directly to the orchestrator.

2. Install Apache HTTPD and make sure it is configured correctly (listen to the correct interfaces,
ports, SSL, access control, . . .)

3a. The easiest setup is to proxy all traffic directly to the orchestrator:

Proxy all requests to the orchestrator
<Location /console>

ProxyPass http://localhost:8888/

Allow from all
Or limit access to certain users or prefixes
Allow from 10.x.x.x/24

</Location>

3b. Only proxy the calls that the orchestrator has endpoints for. Everything else will be handled by
the reverse proxy:

Web Console is a static single page application (SPA)
<Location /console>

ProxyPass http://localhost:8888/console

Limit the possible methods to only get the content
AllowMethods GET HEAD OPTIONS

Allow from all
Or limit access
Allow from 10.x.x.x/24

</Location>

Generic API: used by agents, web-console, integrations, ...
Unless detailed error reports are requested, this API should not␣
↪→be made available to
any portals or tools
<Location /api>

ProxyPass http://localhost:8888/api

Allow from all
Or limit access
Allow from 10.x.x.x/24

</Location>

LSM API: the northbound API called by tools such as customer␣
↪→portals
<Location /lsm>

ProxyPass http://localhost:8888/lsm

Allow from all
(continues on next page)

120 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

Or limit access
Allow from 10.x.x.x/24

</Location>

When only exposing the LSM API even more specific proxy rules can be used. In the next section we provide
example rules to restrict this with mod_security.

7.9.2 Web Application Firewall

This section provides configuration guidelines to enable additional filtering using mod security. These rules can
of course be ported to other types of web application firewalls.

1. Install mod_security and enable it in Apache HTTPD according to their setup instructions.

2. Optional: Enable JSON body decoding to make sure only valid JSON reaches the orchestrator.
This is available since version 2.8, however it is not enabled in the RPMS included with RHEL
and Centos. Third party repos provide versions with JSON decoding enabled or distribution such
as NGINX WAF.

JSON decoding is enabled when a similar config stanza is in the configuration:

Make sure mod security is on and it inspects the body
SecRuleEngine On
SecRequestBodyAccess On

Enable json body decoding when the content type is set to `application/
↪→json`
SecRule REQUEST_HEADERS:Content-Type "application/json" \

"id:'200001',phase:1,t:none,t:lowercase,pass,nolog,
↪→ctl:requestBodyProcessor=JSON"

3. Add the generic inmanta rules. These will make sure that if the requests goes to an API it will
only accept valid JSON. If the JSON processor is not enabled, these rules will still work, but
the protection is reduced because invalid JSON can still reach the inmanta service orchestrator
API. The rules are defined so that they will only trigger on calls to inmanta service orchestrator
endpoints.

Classify the call based on the request uri.
SecRule REQUEST_URI "@beginsWith /api/" \

"id:'200501',phase:1,setvar:'tx.inmanta_context=api'"
SecRule REQUEST_URI "@beginsWith /api/v2/docs" \

"id:'200502',phase:1,setvar:'tx.inmanta_context=docs'"
SecRule REQUEST_URI "@beginsWith /console" \

"id:'200504',phase:1,setvar:'tx.inmanta_context=static'"
SecRule REQUEST_URI "@beginsWith /lsm/" \

"id:'200510',phase:1,setvar:'tx.inmanta_context=lsm'"
SecRule REQUEST_URI "@beginsWith /lsm/v1/service_catalog_docs" \

"id:'200511',phase:1,setvar:'tx.inmanta_context=docs'"

All api and lsm calls should be json content so that the body will be␣
↪→parsed by modsec
If JSON decoding is not enabled, it will force the content type however␣
↪→mod_security does not validate
if the body is JSON
SecRule TX:INMANTA_CONTEXT "@rx api|lsm" \

"id:'200600',phase:1,deny,status:400,msg:'API and LSM only accept json␣
↪→content',chain"

(continues on next page)

7.9. Reverse proxy and Web Application Firewall 121

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

SecRule REQUEST_HEADERS:Content-Type "!@rx application/json" \
"t:lowercase"

Inmanta supports unicode, however this is often used in templates that␣
↪→generate
input for other systems. This rule will validate all utf8 encodings. It␣
↪→is only enabled
when sending data to inmanta backends
SecRule TX:INMANTA_CONTEXT "!@streq ''" \

"id:'200601',phase:1,deny,status:400,msg:'Invalid UTF provided',chain"
SecRule ARGS "@validateUtf8Encoding" \

"t:none"

This ruleset has been tested to be compatible with the OWASP core rule set. However, it does not do scoring. If an
anomaly is detected a 400 request is returned. It does not return the default 403 because this tricks our web-console
into warning the user to authenticate.

When the northbound API is only used for calls to LSM to manage service instances, mod_security can be used to
restrict access even more. The following rules ensure that only calls for service “network” are allowed and callback
management. The rules are set up in such a way that additional urls can be easily added to the ruleset:

Only allow certain paths required for the "customer portal" to function:
SecAction \
"id:300001,\

phase:1,\
nolog,\
pass,\
t:none,\
setvar:'tx.allowed_urls=|/lsm/v1/service_inventory/network| |/lsm/v1/

↪→callbacks'"

SecRule REQUEST_URI "!@withIN %{tx.allowed_urls}" \
"id:300002,phase:1,t:lowercase,deny,status:404"

When the OWASP core ruleset is enabled and particularly when JSON decoding is enabled, mod_security will
also scan for SQL and XSS attacks. Especially the latter can be useful if a customer portal uses the API directly
and the service model has free form attributes that can hold any content. In that case it may be useful to also use
mod_security to protect against for example stored XSS attacks.

7.10 Inmanta Web Console

The Inmanta Web Console is a web GUI for the Inmanta Service Orchestrator.

7.10.1 Browser support

For using the web console, the last 2 versions of the Chrome, Firefox, Edge and Safari browsers are supported. For
security reasons it’s always recommended to use the latest version of these browsers.

122 Chapter 7. Administrator documentation

Inmanta Documentation, Release 2023.1.1

7.10.2 Proxy

When configuring a proxy for the web-console, the url should always end in /console. The web-console uses the
/console part as an anchor. This anchor is something recognizable in the url that is always present. It is also
considered to be the root of the app. So a potential proxy would come before the anchor. And the app pages come
after the anchor. If no anchor is present in the url, we know the url is faulty. So from an app perspective, the url
has the following structure: (proxy) + (anchor) + (application defined urls)

Examples

Given the input url, the application will use the following proxy + anchor.

Scenario input url proxy + anchor
Empty proxy respected /console/resources?env=abcd /console
Proxy respected /someproxy/console /someproxy/console
Faulty url ignored /someproxy /console

7.10. Inmanta Web Console 123

Inmanta Documentation, Release 2023.1.1

124 Chapter 7. Administrator documentation

CHAPTER

EIGHT

FREQUENTLY ASKED QUESTIONS

8.1 How do I use Inmanta with a http/https proxy?

Use the http_proxy and https_proxy environment variables to specify the proxy server to use. For the server in-
stalled from our RPMs, add the environment variable to the systemd unit file. Copy inmanta-server.service from
/lib/systemd/systemd/system to /etc/systemd/system and add the following lines to the [Service] section with the
correct proxy server details:

Environment=http_proxy=1.2.3.4:5678
Environment=https_proxy=1.2.3.4:5678

Afterwards run systemctl daemon-reload and restart the inmanta server.

8.2 I get a click related error/exception when I run inmanta-cli.

The following error is shown:

Traceback (most recent call last):
File "/usr/bin/inmanta-cli", line 11, in <module>

sys.exit(main())
File "/opt/inmanta/lib64/python3.4/site-packages/inmanta/main.py", line 871, in␣

↪→main
cmd()

File "/opt/inmanta/lib64/python3.4/site-packages/click/core.py", line 722, in __
↪→call__

return self.main(*args, **kwargs)
File "/opt/inmanta/lib64/python3.4/site-packages/click/core.py", line 676, in main

_verify_python3_env()
File "/opt/inmanta/lib64/python3.4/site-packages/click/_unicodefun.py", line 118,␣

↪→in _verify_python3_env
'for mitigation steps.' + extra)

RuntimeError: Click will abort further execution because Python 3 was configured to␣
↪→use ASCII as encoding for the environment. Consult http://click.pocoo.org/python3/
↪→for mitigation steps.

This error occurs when the locale are not set correctly. Make sure that LANG and LC_ALL are set. For example:

export LC_ALL=en_US.utf8
export LANG=en_US.utf8

125

Inmanta Documentation, Release 2023.1.1

8.3 The model does not compile and exits with “could not complete
model”.

There is an upperbound on the number of iterations used in the model transformation algorithm. For large models
this might not be enough. This limit is controlled with the environment variable INMANTA_MAX_ITERATIONS
The default value is set to 10000 iterations.

126 Chapter 8. Frequently asked questions

CHAPTER

NINE

GLOSSARY

agent
The process that enforces the desired state described by resources by executing handlers. Each agent is
responsible for all resources that go to a single device or API endpoint.

configuration model
The desired state of the an environment is expressed in the configuration model. This model defines the
desired state of all resources that need to be managed by Inmanta.

desired state
The desired state expresses the state of all resources that Inmanta manages. Expressing a configuration in
function of desired state makes the orchestrator more robust to failures compared to imperative based or-
chestration. An agent uses a handler to read the current state of the a resource and derive from the difference
between current and desired state the actions required to change the state of the resource. Desired state has
the additional benefit that Inmanta can show a dry run or execution plan of what would change if a new
configuration is deployed.

Imperative solutions require scripts that execute low level commands and handle all possible failure condi-
tions. This is similar to how a 3D printer functions: a designer send the desired object (desired state) to the
3D printer software and this printer converts this to layers that need to be printed. An imperative 3D model,
would require the designer to define all layers and printer head movements.

DSL
Domain specific language. An Inmanta configuration model is written in a the Inmanta modelling DSL.

entity
Concepts in the infrastructure are modelled in the configuration with entities. An entity defines a new type
in the configuration model. See Entities.

environment
Each environment represents a target infrastructure that inmanta manages. At least environment is required,
but often multiple environments of the same infrastructure are available such as development, integration
and testing.

facts
A resource in an infrastructure may have multiple properties that are not managed by Inmanta but their value
is required as input in the configuration or for reporting purposes. handlers take care of extracting these facts
and reporting them back to the server.

handler
A handler provides the interface between a resource in the model and the resource in the infrastructure. The
agent loads the handler and uses it to read the current state, discover facts and make changes to the real
resource.

infrastructure
That what Inmanta manages. This could be virtual machines with resources in these virtual machines. Phys-
ical servers and their os. Containers or resources at a cloud provider without any servers (e.g. “serverless”)

infrastructure-as-code
Wikepedia defines “Infrastructure as code” as the process of managing and provisioning computer data

127

Inmanta Documentation, Release 2023.1.1

centers through machine-readable definition files, rather than physical hardware configuration or interac-
tive configuration tools. Inmanta achieves this by using a desired state configuration model that is entirely
expressed in code.

instance
An instance of an entity. See also Instantiation.

main.cf
The file that defines the starting point of a configuration model. This file often only instantiates some high
level entities and imports specific module.

module
A configuration model consists of multiple configuration modules. A module provides a partial and reusable
configuration model and its related resources such as files, templates, . . . The module developer guide pro-
vides more details.

orchestration
Orchestration is the process of provisioning resources in the correct order and when they are available con-
figuring them. Inmanta support both provisioning and configuring resources but can also delegate tasks to
other (existing) tools.

plugin
A plugin is a python function that can be used in the DSL. This function recieves arguments from the config-
uration model and navigate relations and read attributes in the runtime model. Each function can also return
a value to the model. Plugins are used for complex transformation based on data in the configuration model
or to query external systems such as CMDBs or IPAM tools.

project
The management server of the Inmanta orchestrator can manage distinctive infrastructures. Each distinct
infrastructure is defined in the server as a project. Each project consists of one or more environment such as
development, integration and production.

relation
An attribute of an entity that references an other entity. Plugins, such as templates, can navigate relations.
See also Relations.

resource
Inmanta orchestrates and manages resources, of any abstraction level, in an infrastructure. Examples of
resources are: files and packages on a server, a virtual machine on a hypervisor, a managed database as a
PaaS provider, a switch port on a switch, . . .

A resource has attributes that express the desired value of a property of the resource it represents in the
infrastructure. For example the mode attribute of the the std::File resource. This attribute indicates the
desired permissions of a UNIX file.

A resource needs to have a unique identifier in an environment. This identifier needs to be derived from
attributes of the resource. This ensures that the orchestrator can (co-)manage existing resources and allows
quick recovery of the orchestrator in failure conditions. This unique identifier is consists of multiple fields.
For example, std::File[vm1,path="/etc/motd"] This id contains the type of the resource, the name of
the agent and the unique id with its value for this resource. The resource designer determines how this id is
derived.

The fields in the id are:

• The first field is the type of the resource. For example: std::File

• The second field is the name of the agent that manages/groups the resource. For example: the name of
the machine on which the file is defined vm1

• The third field is the identifying attribute and the value of this attribute. For example: the path of the
file uniquely idenfies a file on a machine.

resource handler
See handler

128 Chapter 9. Glossary

Inmanta Documentation, Release 2023.1.1

unknown
A user always provides a complete configuration model to the orchestrator. Depending on what is already
deployed, Inmanta will determine the correct order of provisioning and configuration. Many configuration
parameters, such a the IP address of a virtual machine at a cloud provider will not be known upfront. Inmanta
marks this parameters as unknown. The state of any resource that uses such an unknown parameter becomes
undefined.

129

Inmanta Documentation, Release 2023.1.1

130 Chapter 9. Glossary

CHAPTER

TEN

INMANTA REFERENCE

Welcome to the Inmanta reference guide!

Here we explain all the features and options of Inmanta. If you’re just looking to get started with Inmanta, please
check out the Quickstart guide.

10.1 Command Reference

All inmanta commands and services are started by the inmanta command. This page provides an overview of all
subcommands available:

10.1.1 inmanta

usage: inmanta [-h] [-p] [-c CONFIG_FILE] [--config-dir CONFIG_DIR]
[--log-file LOG_FILE] [--log-file-level LOG_FILE_LEVEL]
[--timed-logs] [-v] [--warnings {warn,ignore,error}] [-X]
[--version]
{server,agent,compile,list-commands,help,modules,module,project,deploy,

↪→export}
...

Named Arguments

-p Profile this run of the program

Default: False

-c, --config Use this config file

--config-dir The directory containing the Inmanta configuration files

Default: “/etc/inmanta/inmanta.d”

--log-file Path to the logfile

--log-file-level Log level for messages going to the logfile: 0=ERROR, 1=WARNING,
2=INFO, 3=DEBUG

Default: 2

--timed-logs Add timestamps to logs

Default: False

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

Default: 0

131

Inmanta Documentation, Release 2023.1.1

--warnings Possible choices: warn, ignore, error

The warning behaviour. Must be one of ‘warn’, ‘ignore’, ‘error’

Default: “warn”

-X, --extended-errors Show stack traces for errors

Default: False

--version Show the version of the installed Inmanta product and the version of its sub-
components

Default: False

Sub-commands

server

Start the inmanta server

inmanta server [-h]

agent

Start the inmanta agent

inmanta agent [-h]

compile

Compile the project to a configuration model

inmanta compile [-h] [-e ENVIRONMENT] [-X] [--server_address SERVER]
[--server_port PORT] [--username USER] [--password PASSWORD]
[--ssl] [--ssl-ca-cert CA_CERT] [--export-compile-data]
[--export-compile-data-file EXPORT_COMPILE_DATA_FILE]
[--no-cache] [--experimental-data-trace]
[--experimental-dataflow-graphic] [-f MAIN_FILE]
[--no-strict-deps-check] [--strict-deps-check]

Named Arguments

-e The environment to compile this model for

-X, --extended-errors Show stack traces for compile errors

Default: False

--server_address The address of the server hosting the environment

--server_port The port of the server hosting the environment

--username The username of the server

--password The password of the server

--ssl Enable SSL

Default: False

132 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

--ssl-ca-cert Certificate authority for SSL

--export-compile-data Export structured json containing compile data such as occurred errors.

Default: False

--export-compile-data-file File to export compile data to. If omitted compile_data.json is used.

--no-cache Disable caching of compiled CF files

Default: True

--experimental-data-trace Experimental data trace tool useful for debugging

Default: False

--experimental-dataflow-graphic Experimental graphic data flow visualization

Default: False

-f Main file

Default: “main.cf”

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the –strict-deps-check option.

Default: False

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the –no-strict-
deps-check option.

Default: False

list-commands

Print out an overview of all commands

inmanta list-commands [-h]

help

show a help message and exit

inmanta help [-h] [subcommand]

Positional Arguments

subcommand Output help for a particular subcommand

10.1. Command Reference 133

Inmanta Documentation, Release 2023.1.1

modules (module)

Subcommand to manage modules

inmanta modules [-h] [-m [MODULE]]
{add,list,do,install,status,push,verify,commit,create,freeze,build,

↪→v1tov2,release}
...

Named Arguments

-m, --module Module to apply this command to

subcommand

cmd Possible choices: add, list, do, install, status, push, verify, commit, create,
freeze, build, v1tov2, release

Sub-commands

add

Add a module dependency to an Inmanta module or project. When executed on a project, the module is installed
as well. Either –v1 or –v2 has to be set.

inmanta modules add [-h] [--v1] [--v2] [--override] module_req

Positional Arguments

module_req The name of the module, optionally with a version constraint.

Named Arguments

--v1 Add the given module as a v1 module

Default: False

--v2 Add the given module as a V2 module

Default: False

--override Override the version constraint when the given module dependency already
exists.

Default: False

134 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

list

List all modules used in this project in a table

inmanta modules list [-h]

do

Execute a command on all loaded modules

inmanta modules do [-h] command

Positional Arguments

command the command to execute

install

Install a module in the active Python environment. Only works for v2 modules: v1 modules can only be installed
in the context of a project.

This command might reinstall Python packages in the development venv if the currently installed versions are not
compatible with the dependencies specified by the installed module.

Like pip install, this command does not reinstall a module for which the same version is already installed, except
in editable mode.

inmanta modules install [-h] [-e] [path]

Positional Arguments

path The path to the module.

Named Arguments

-e, --editable Install in editable mode.

Default: False

status

Run a git status on all modules and report

inmanta modules status [-h]

10.1. Command Reference 135

Inmanta Documentation, Release 2023.1.1

push

Run a git push on all modules and report

inmanta modules push [-h]

verify

Verify dependencies and frozen module versions

inmanta modules verify [-h]

commit

Commit all changes in the current module.

inmanta modules commit [-h] -m MESSAGE [-r] [--major] [--minor] [--patch]
[-v VERSION] [-a] [-t] [-n]

Named Arguments

-m, --message Commit message

-r, --release make a release

Default: True

--major make a major release

Default: False

--minor make a major release

Default: False

--patch make a major release

Default: False

-v, --version Version to use on tag

-a, --all Use commit -a

Default: False

-t, --tag Create a tag for the commit.Tags are not created for dev releases by default,
if you want to tag it, specify this flag explicitly

Default: False

-n, --no-tag Don’t create a tag for the commit

Default: False

136 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

create

Create a new module

inmanta modules create [-h] [--v1] name

Positional Arguments

name The name of the module

Named Arguments

--v1 Create a v1 module. By default a v2 module is created.

Default: False

freeze

Set all version numbers in module.yml

inmanta modules freeze [-h] [-o OUTFILE] [-r] [--operator {==,~=,>=}]

Named Arguments

-o, --outfile File in which to put the new module.yml, default is the existing module.yml.
Use - to write to stdout.

-r, --recursive Freeze dependencies recursively. If not set, freeze_recursive option in mod-
ule.yml is used, which defaults to False

--operator Possible choices: ==, ~=, >=

Comparison operator used to freeze versions, If not set, the freeze_operator
option in module.yml is used which defaults to ~=

build

Build a Python package from a V2 module.

inmanta modules build [-h] [-o OUTPUT_DIR] [--dev] [-b] [path]

Positional Arguments

path The path to the module that should be built. By default, the current working
directory is used.

10.1. Command Reference 137

Inmanta Documentation, Release 2023.1.1

Named Arguments

-o, --output-dir The directory where the Python package will be stored. Default: <mod-
ule_root>/dist

--dev Perform a development build of the module. This adds the build tag
.dev<timestamp> to the package name. The timestamp has the form
%Y%m%d%H%M%S.

Default: False

-b, --byte-code Produce a module wheel that contains only python bytecode for the plugins.

Default: False

v1tov2

Convert a V1 module to a V2 module in place

inmanta modules v1tov2 [-h]

release

When a stable release is done, this command: * Does a commit that changes the current version to a stable version.
* Adds Git release tag. * Does a commit that changes the current version to a development version that is one patch
increment ahead of the released

version.

When a development release is done using the –dev option, this command: * Does a commit that updates the
current version of the module to a development version that is a patch, minor or major version

ahead of the previous stable release. The size of the increment is determined by the –patch, –minor or
–major argument (–patch is the default). When a CHANGELOG.md file is present in the root of the
module directory then the version number in the changelog is also updated accordingly. The changelog
file is always populated with the associated stable version and not a development version.

inmanta modules release [-h] [--dev] [--major] [--minor] [--patch]
[-m MESSAGE] [-c CHANGELOG_MESSAGE]

Named Arguments

--dev Create a development version. The new version number will have the .dev0
build tag.

Default: False

--major Do a major version bump compared to the previous stable release. Ignored
when –dev is not set.

Default: False

--minor Do a minor version bump compared to the previous stable release. Ignored
when –dev is not set.

Default: False

--patch Do a patch version bump compared to the previous stable release. Ignored
when –dev is not set.

Default: False

138 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

-m, --message Commit message

-c, --changelog-message This changelog message will be written to the changelog file. If the -m
option is not provided, this message will also be used as the commit message.
This option is ignored when –dev is not provided.

project

Subcommand to manage the project

inmanta project [-h] {freeze,init,install,update} ...

subcommand

cmd Possible choices: freeze, init, install, update

Sub-commands

freeze

Set all version numbers in project.yml

inmanta project freeze [-h] [-o OUTFILE] [-r] [--operator {==,~=,>=}]

Named Arguments

-o, --outfile File in which to put the new project.yml, default is the existing project.yml.
Use - to write to stdout.

-r, --recursive Freeze dependencies recursively. If not set, freeze_recursive option in
project.yml is used,which defaults to False

--operator Possible choices: ==, ~=, >=

Comparison operator used to freeze versions, If not set, the freeze_operator
option in project.yml is used which defaults to ~=

init

Initialize directory structure for a project

inmanta project init [-h] --name NAME [--output-dir OUTPUT_DIR] [--default]

Named Arguments

--name, -n The name of the new project

--output-dir, -o Output directory path

Default: “./”

--default Use default parameters for the project generation

Default: False

10.1. Command Reference 139

Inmanta Documentation, Release 2023.1.1

install

Install all modules required for this project.

This command installs missing modules in the development venv, but doesn’t update already installed modules
if that’s not required to satisfy the module version constraints. Use inmanta project update instead if the already
installed modules need to be updated to the latest compatible version.

This command might reinstall Python packages in the development venv if the currently installed versions are not
compatible with the dependencies specified by the different Inmanta modules.

inmanta project install [-h] [--no-strict-deps-check] [--strict-deps-check]

Named Arguments

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the –strict-deps-check option.

Default: False

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the –no-strict-
deps-check option.

Default: False

update

Update all modules to the latest version compatible with the module version constraints and install missing modules.

This command might reinstall Python packages in the development venv if the currently installed versions are not
the latest compatible with the dependencies specified by the updated modules.

inmanta project update [-h] [--no-strict-deps-check] [--strict-deps-check]

Named Arguments

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the –strict-deps-check option.

Default: False

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the –no-strict-
deps-check option.

Default: False

140 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

deploy

Deploy with a inmanta all-in-one setup

inmanta deploy [-h] [--dry-run] [-f MAIN_FILE]

Named Arguments

--dry-run Only report changes

Default: False

-f Main file

Default: “main.cf”

export

Export the configuration

inmanta export [-h] [-g] [-j JSON] [-e ENVIRONMENT] [-d] [--full] [-m]
[--server_address SERVER] [--server_port PORT] [--token TOKEN]
[--ssl | --no-ssl] [--ssl-ca-cert CA_CERT] [-X] [-f MAIN_FILE]
[--metadata METADATA] [--model-export]
[--export-plugin EXPORT_PLUGIN] [--export-compile-data]
[--export-compile-data-file EXPORT_COMPILE_DATA_FILE]
[--no-cache] [--partial]
[--delete-resource-set DELETE_RESOURCE_SET]
[--no-strict-deps-check] [--strict-deps-check]

Named Arguments

-g Dump the dependency graph

Default: False

-j Do not submit to the server but only store the json that would have been sub-
mitted in the supplied file

-e The environment to compile this model for

-d Trigger a deploy for the exported version

Default: False

--full Make the agents execute a full deploy instead of an incremental deploy.
Should be used together with the -d option

Default: False

-m Also export the complete model

Default: False

--server_address The address of the server to submit the model to

--server_port The port of the server to submit the model to

--token The token to auth to the server

--ssl, --no-ssl Enable SSL

--ssl-ca-cert Certificate authority for SSL

10.1. Command Reference 141

Inmanta Documentation, Release 2023.1.1

-X, --extended-errors Show stack traces for compile errors

Default: False

-f Main file

Default: “main.cf”

--metadata JSON metadata why this compile happened. If a non-json string is passed it
is used as the ‘message’ attribute in the metadata.

--model-export Export the configuration model to the server as metadata.

Default: False

--export-plugin Only use this export plugin. This option also disables the execution of the
plugins listed in the configuration file in the export setting.

--export-compile-data Export structured json containing compile data such as occurred errors.

Default: False

--export-compile-data-file File to export compile data to. If omitted compile_data.json is used.

--no-cache Disable caching of compiled CF files

Default: True

--partial Execute a partial export. Does not upload new Python code to the server: it is
assumed to be unchanged since the last full export. Multiple partial exports
for disjunct resource sets may be performed concurrently but not concurrent
with a full export. When used in combination with the –json option, 0 is used
as a placeholder for the model version.

Default: False

--delete-resource-set Remove a resource set as part of a partial compile. This option can be pro-
vided multiple times and should always be used together with the –partial
option.

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the –strict-deps-check option.

Default: False

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the –no-strict-
deps-check option.

Default: False

10.1.2 inmanta-cli

The inmanta-cli command can be used to interact with the inmanta server and agents, including managing
projects, environments, parameters and more. The following reference explains the available subcommands.

142 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

inmanta-cli

Base command

inmanta-cli [OPTIONS] COMMAND [ARGS]...

Options

--host <host>

The server hostname to connect to

--port <port>

The server port to connect to

action-log

Subcommand to view the resource action log

inmanta-cli action-log [OPTIONS] COMMAND [ARGS]...

list

List the resource action log for a specific Resource.

inmanta-cli action-log list [OPTIONS]

Options

-e, --environment <environment>

Required The ID or name of the environment to use

--rvid <rvid>

Required The resource version ID of the resource

--action <action>

Only list this resource action

Options
store | push | pull | deploy | dryrun | getfact | other

show-messages

Show the log messages for a specific entry in the resource action log.

inmanta-cli action-log show-messages [OPTIONS]

10.1. Command Reference 143

Inmanta Documentation, Release 2023.1.1

Options

-e, --environment <environment>

Required The ID or name of the environment to use

--rvid <rvid>

Required The resource version ID of the resource

--action-id <action_id>

Required The ID of the resource action record

agent

Subcommand to manage agents

inmanta-cli agent [OPTIONS] COMMAND [ARGS]...

list

List agents in an environment

inmanta-cli agent list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

pause

Pause a specific agent or all agents in a given environment. A paused agent cannot execute deploy operations.

inmanta-cli agent pause [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

--agent <agent>

The name of the agent to pause.

--all

Pause all agents in the given environment

144 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

unpause

Unpause a specific agent or all agents in a given environment. A unpaused agent will be able to execute deploy
operations.

inmanta-cli agent unpause [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

--agent <agent>

The name of the agent to unpause.

--all

Unpause all agents in the given environment

environment

Subcommand to manage environments

inmanta-cli environment [OPTIONS] COMMAND [ARGS]...

create

Create a new environment

inmanta-cli environment create [OPTIONS]

Options

-n, --name <name>

Required The name of the new environment

-p, --project <project>

Required The id of the project this environment belongs to

-r, --repo-url <repo_url>

The url of the repository that contains the configuration model

-b, --branch <branch>

The branch in the repository that contains the configuration model

-s, --save

Save the ID of the environment and the server to the .inmanta config file

10.1. Command Reference 145

Inmanta Documentation, Release 2023.1.1

delete

Delete an existing environment

ENVIRONMENT: ID or name of the environment to delete

inmanta-cli environment delete [OPTIONS] ENVIRONMENT

Arguments

ENVIRONMENT

Required argument

list

List all environments

inmanta-cli environment list [OPTIONS]

modify

Modify an existing environment

ENVIRONMENT: ID or name of the environment to modify

inmanta-cli environment modify [OPTIONS] ENVIRONMENT

Options

-n, --name <name>

Required The name of the new environment

-r, --repo-url <repo_url>

The url of the repository that contains the configuration model

-b, --branch <branch>

The branch in the repository that contains the configuration model

Arguments

ENVIRONMENT

Required argument

146 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

recompile

Request the server to recompile the model of this environment.

ENVIRONMENT: ID or name of the environment to trigger the recompile for

inmanta-cli environment recompile [OPTIONS] ENVIRONMENT

Options

-u, --update

Update the model and its dependencies before recompiling

Default
False

Arguments

ENVIRONMENT

Required argument

save

Save the ID of the environment and the server to the .inmanta config file

ENVIRONMENT: ID or name of the environment to write the config for

inmanta-cli environment save [OPTIONS] ENVIRONMENT

Arguments

ENVIRONMENT

Required argument

setting

Subcommand to manage environment settings

inmanta-cli environment setting [OPTIONS] COMMAND [ARGS]...

delete

Delete an environment setting

inmanta-cli environment setting delete [OPTIONS]

10.1. Command Reference 147

Inmanta Documentation, Release 2023.1.1

Options

-e, --environment <environment>

Required The environment to use

-k, --key <key>

Required The key to delete

get

Get an environment setting

inmanta-cli environment setting get [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

-k, --key <key>

Required The key to get

list

List settings of an environment

inmanta-cli environment setting list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

set

Adjust an environment setting

inmanta-cli environment setting set [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

-k, --key <key>

Required The key to set

-o, --value <value>

Required The value to set

148 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

show

Show details of an environment

ENVIRONMENT: ID or name of the environment to show

inmanta-cli environment show [OPTIONS] ENVIRONMENT

Options

--format <format_string>

Instead of outputting a table, use the supplied format string. Accepts Python format syntax. Supported fields
are ‘id’, ‘name’, ‘project’, ‘repo_url’, ‘repo_branch’

Arguments

ENVIRONMENT

Required argument

monitor

Monitor the deployment process of the configuration model in an environment, receiving continuous updates on
the deployment status

inmanta-cli monitor [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

param

Subcommand to manage parameters

inmanta-cli param [OPTIONS] COMMAND [ARGS]...

get

Get a parameter from an environment

inmanta-cli param get [OPTIONS]

10.1. Command Reference 149

Inmanta Documentation, Release 2023.1.1

Options

-e, --environment <environment>

Required The environment to use

--name <name>

Required The name of the parameter

--resource <resource>

The resource id of the parameter

list

List parameters in an environment

inmanta-cli param list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

set

Set a parameter in an environment

inmanta-cli param set [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

--name <name>

Required The name of the parameter

--value <value>

Required The value of the parameter

project

Subcommand to manage projects

inmanta-cli project [OPTIONS] COMMAND [ARGS]...

150 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

create

Create a new project on the server

inmanta-cli project create [OPTIONS]

Options

-n, --name <name>

Required The name of the new project

delete

Delete an existing project.

PROJECT: The id or name of the project to delete

inmanta-cli project delete [OPTIONS] PROJECT

Arguments

PROJECT

Required argument

list

List all projects

inmanta-cli project list [OPTIONS]

modify

Modify an existing project.

PROJECT: The id or name of the project to modify

inmanta-cli project modify [OPTIONS] PROJECT

Options

-n, --name <name>

Required The new name of the project

10.1. Command Reference 151

Inmanta Documentation, Release 2023.1.1

Arguments

PROJECT

Required argument

show

Show the details of a single project

PROJECT: The id or name of the project to show

inmanta-cli project show [OPTIONS] PROJECT

Arguments

PROJECT

Required argument

token

Subcommand to manage access tokens

inmanta-cli token [OPTIONS] COMMAND [ARGS]...

bootstrap

Generate a bootstrap token that provides access to everything. This token is only valid for 3600 seconds.

inmanta-cli token bootstrap [OPTIONS]

create

Create a new token for an environment for the specified client types

inmanta-cli token create [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use.

--api

Add client_type api to the token.

--compiler

Add client_type compiler to the token.

--agent

Add client_type agent to the token.

152 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

version

Subcommand to manage versions

inmanta-cli version [OPTIONS] COMMAND [ARGS]...

list

List versions in an environment

inmanta-cli version list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

release

Release the specified version of the configuration model for deployment.

VERSION: Version of the model to release

inmanta-cli version release [OPTIONS] VERSION

Options

-e, --environment <environment>

Required The environment to use

-p, --push

Push the version to the deployment agents

--full

Make the agents execute a full deploy instead of an incremental deploy. Should be used together with the
–push option

Arguments

VERSION

Required argument

report

Get a report about a version, describing the involved resources, agents and actions

inmanta-cli version report [OPTIONS]

10.1. Command Reference 153

Inmanta Documentation, Release 2023.1.1

Options

-e, --environment <environment>

Required The environment to use

-i, --version <version>

Required The version to create a report from

-l

Show a detailed version of the report

10.2 Configuration Reference

This document lists all options for the inmanta server and inmanta agent.

The options are listed per config section.

10.2.1 agent_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

ssl-ca-cert-file

Type
optional str

154 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Default
None

CA cert file used to validate the server certificate against

token

Type
optional str

Default
None

The bearer token to use to connect to the API

10.2.2 client_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

ssl-ca-cert-file

Type
optional str

Default
None

CA cert file used to validate the server certificate against

10.2. Configuration Reference 155

Inmanta Documentation, Release 2023.1.1

token

Type
optional str

Default
None

The bearer token to use to connect to the API

10.2.3 cmdline_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

ssl-ca-cert-file

Type
optional str

Default
None

CA cert file used to validate the server certificate against

token

Type
optional str

156 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Default
None

The bearer token to use to connect to the API

10.2.4 compiler

cache

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
True

Enables the caching of compiled files.

dataflow-graphic-enable

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Enables graphic visualization of the data flow in the model. Requires the datatrace_enable option. Requires
graphviz.

datatrace-enable

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Enables the experimental datatrace application on top of the compiler. The application should help in iden-
tifying the cause of compilation errors during the development process.

export-compile-data

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Export structured json containing compile data such as occurred errors.

export-compile-data-file

Type
str

Default
compile_data.json

File to export compile data to. If omitted compile_data.json is used.

10.2. Configuration Reference 157

Inmanta Documentation, Release 2023.1.1

10.2.5 compiler_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

ssl-ca-cert-file

Type
optional str

Default
None

CA cert file used to validate the server certificate against

token

Type
optional str

Default
None

The bearer token to use to connect to the API

158 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.2.6 config

agent-deploy-interval

Type
Time, the number of seconds represented as an integer value

Default
0

The number of seconds between two (incremental) deployment runs of the agent. Set this to 0 to disable the
scheduled deploy runs.

agent-deploy-splay-time

Type
Time, the number of seconds represented as an integer value

Default
600

The splaytime added to the agent-deploy-interval. Set this to 0 to disable the splaytime.

At startup the agent will choose a random number between 0 and agent-deploy-splay-time. It will wait this
number of second before performing the first deployment run. Each subsequent repair deployment will start
agent-deploy-interval seconds after the previous one.

agent-interval

Type
Time, the number of seconds represented as an integer value

Default
600

[DEPRECATED] The run interval of the agent. Every run-interval seconds, the agent will check the current
state of its resources against to desired state model

agent-map

Type
List of comma-separated key=value pairs

Default
None

By default the agent assumes that all agent names map to the host on which the process is executed. With
the agent map it can be mapped to other hosts. This value consists of a list of key/value pairs. The key is the
name of the agent and the format of the value is described in std::AgentConfig. When the configuration
option config.use_autostart_agent_map is set to true, this option will be ignored.

example: iaas_openstack=localhost,vm1=192.16.13.2

agent-names

Type
List of comma-separated values

Default
$node-name

Names of the agents this instance should deploy configuration for. When the configuration option con-
fig.use_autostart_agent_map is set to true, this option will be ignored.

agent-reconnect-delay

Type
int

10.2. Configuration Reference 159

Inmanta Documentation, Release 2023.1.1

Default
5

Time to wait after a failed heartbeat message. DO NOT SET TO 0

agent-repair-interval

Type
Time, the number of seconds represented as an integer value

Default
600

The number of seconds between two repair runs (full deploy) of the agent. Set this to 0 to disable the
scheduled repair runs.

agent-repair-splay-time

Type
Time, the number of seconds represented as an integer value

Default
600

The splaytime added to the agent-repair-interval. Set this to 0 to disable the splaytime.

At startup the agent will choose a random number between 0 and agent-repair-splay-time. It will wait this
number of second before performing the first repair run. Each subsequent repair deployment will start agent-
repair-interval seconds after the previous one.

agent-splay

Type
Time, the number of seconds represented as an integer value

Default
600

[DEPRECATED] The splaytime added to the runinterval. Set this to 0 to disable splaytime. At startup the
agent will choose a random number between 0 and “agent_splay. It will wait this number of second before
performing the first deploy. Each subsequent deploy will start agent-interval seconds after the previous one.

environment

Type
optional uuid

Default
None

The environment this model is associated with

export

Type
List of comma-separated values

Default

The list of exporters to use. This option is ignored when the –export-plugin option is used.

feature-file

Type
optional str

Default
None

The loacation of the inmanta feature file.

160 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

log-dir

Type
str

Default
/var/log/inmanta

The directory where the resource action log is stored and the logs of auto-started agents.

node-name

Type
str

Default
socket.gethostname()

Force the hostname of this machine to a specific value

server-timeout

Type
Time, the number of seconds represented as an integer value

Default
125

Amount of time to wait for a response from the server before we try to reconnect, must be larger than
server.agent-hold

state-dir

Type
str

Default
/var/lib/inmanta

The directory where the server stores its state

use-autostart-agent-map

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

If this option is set to true, the agent-map of this agent will be set the the autostart_agent_map configured on
the server. The agent_map will be kept up-to-date automatically.

10.2.7 database

connection-pool-max-size

Type
int

Default
10

Max number of connections in the pool

10.2. Configuration Reference 161

Inmanta Documentation, Release 2023.1.1

connection-pool-min-size

Type
int

Default
10

Number of connections the pool will be initialized with

connection-timeout

Type
float

Default
60

Connection timeout in seconds

host

Type
str

Default
localhost

Hostname or IP of the postgresql server

name

Type
str

Default
inmanta

The name of the database on the postgresql server

password

Type
str

Default
None

The password that belong to the database user

port

Type
int

Default
5432

The port of the postgresql server

username

Type
str

Default
postgres

The username to access the database in the PostgreSQL server

162 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.2.8 deploy

environment

Type
optional str

Default
deploy

The environment name to use in the deploy

project

Type
optional str

Default
deploy

The project name to use in the deploy

10.2.9 influxdb

host

Type
str

Default

Hostname or IP of the influxdb server to send reports to

interval

Type
int

Default
30

Interval with which to report to influxdb

name

Type
str

Default
inmanta

The name of the database on the influxdb server

password

Type
str

Default
None

The password that belong to the influxdb user

10.2. Configuration Reference 163

Inmanta Documentation, Release 2023.1.1

port

Type
int

Default
8086

The port of the influxdb server

tags

Type
List of comma-separated key=value pairs

Default

a dict of tags to attach to all influxdb records in the form tag=value,tag=value

username

Type
str

Default
None

The username to access the database in the influxdb server

10.2.10 server

access-control-allow-origin

Type
optional str

Default
None

Configures the Access-Control-Allow-Origin setting of the http server.Defaults to not sending an Access-
Control-Allow-Origin header.

agent-hold

Type
Time, the number of seconds represented as an integer value

Default
server.agent-timeout *3/4

Maximal time the server will hold an agent heartbeat call

agent-process-purge-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

The number of seconds between two purges of old and expired agent processes. Set to zero to disable the
cleanup. see server.agent-processes-to-keep

agent-processes-to-keep

Type
int

164 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Default
5

Keep this amount of expired agent processes for a certain hostname

agent-timeout

Type
Time, the number of seconds represented as an integer value

Default
30

Time before an agent is considered to be offline

auth

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Enable authentication on the server API

auto-recompile-wait

Type
Time, the number of seconds represented as an integer value

Default
10

DEPRECATED: The number of seconds to wait before the server may attempt to do a new recompile. Re-
compiles are triggered after facts updates for example.

bind-address

Type
List of comma-separated values

Default
127.0.0.1

A list of addresses on which the server will listen for connections. If this option is set, the
server_rest_transport.port option is ignored.

bind-port

Type
int

Default
8888

The port on which the server will listen for connections. If this option is set, the server_rest_transport.
port option is ignored.

cleanup-compiler-reports-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

Number of seconds between old compile report cleanups. see server.compiler-report-retention

10.2. Configuration Reference 165

Inmanta Documentation, Release 2023.1.1

compiler-report-retention

Type
Time, the number of seconds represented as an integer value

Default
604800

The server regularly cleans up old compiler reports. This options specifies the number of seconds to keep
old compiler reports for. The default is seven days.

delete-currupt-files

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
True

The server logs an error when it detects a file got corrupted. When set to true, the server will also delete the
file, so on subsequent compiles the missing file will be recreated.

enabled-extensions

Type
List of comma-separated values

Default

A list of extensions the server must load. Core is always loaded.If an extension listed in this list is not
available, the server will refuse to start.

fact-expire

Type
Time, the number of seconds represented as an integer value

Default
3600

After how many seconds will discovered facts/parameters expire

fact-renew

Type
time; < server.fact-expire

Default
server.fact-expire /3

After how many seconds will discovered facts/parameters be renewed? This value needs to be lower than
fact-expire

fact-resource-block

Type
Time, the number of seconds represented as an integer value

Default
60

Minimal time between subsequent requests for the same fact

purge-resource-action-logs-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

166 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

The number of seconds between resource-action log purging

purge-versions-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

The number of seconds between version purging, see available_versions_to_keep.

resource-action-log-prefix

Type
str

Default
resource-actions-

File prefix in log-dir, containing the resource-action logs. The after the prefix the environment uuid and .log
is added

server-address

Type
str

Default
localhost

The public ip address of the server. This is required for example to inject the inmanta agent in virtual
machines at boot time.

ssl-ca-cert-file

Type
optional str

Default
None

The CA cert file required to validate the server ssl cert. This setting is used by the serverto correctly configure
the compiler and agents that the server starts itself. If not set and SSL is enabled, the server cert should be
verifiable with the CAs installed in the OS.

ssl-cert-file

Type
optional str

Default
None

SSL certificate file for the server key. Leave blank to disable SSL

ssl-key-file

Type
optional str

Default
None

Server private key to use for this server Leave blank to disable SSL

10.2. Configuration Reference 167

Inmanta Documentation, Release 2023.1.1

wait-after-param

Type
Time, the number of seconds represented as an integer value

Default
5

Time to wait before recompile after new paramters have been received

10.2.11 server_rest_transport

port

Type
int

Default
8888

[DEPRECATED USE server.bind-port] The port on which the server listens for connections

10.2.12 unknown_handler

default

Type
str

Default
prune-agent

default method to handle unknown values

10.2.13 web-ui

console-enabled

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
True

Whether the server should host the web-console or not

console-json-parser

Type
str

Default
Native

Whether the web-console should use the ‘Native’ or the ‘BigInt’ JSON Parser. ‘BigInt’ is useful when the
web-console has to show very large integers (larger than 2^53 - 1).

console-path

Type
str

168 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Default
/usr/share/inmanta/web-console

The path on the local file system where the web-console can be found

oidc-auth-url

Type
str

Default
None

The auth url of the OpenID Connect server to use.

oidc-client-id

Type
str

Default
None

The OpenID Connect client id configured for this application.

oidc-realm

Type
str

Default
inmanta

The realm to use for OpenID Connect authentication.

10.3 Environment Settings Reference

This document lists all settings that can be set per environment. These changes are made through the API, the
web-console or the CLI tool.

The supported settings are:

agent_trigger_method_on_auto_deploy

Type
enum: push_incremental_deploy, push_full_deploy

Default
push_incremental_deploy

The agent trigger method to use when push_on_auto_deploy is enabled

auto_deploy

Type
bool

Default
True

When this boolean is set to true, the orchestrator will automatically release a new version that was compiled
by the orchestrator itself.

10.3. Environment Settings Reference 169

Inmanta Documentation, Release 2023.1.1

auto_full_compile

Type
str

Default
‘’

Periodically run a full compile following a cron-like time-to-run specification, interpreted in UTC (e.g. min
hour dom month dow). A compile will be requested at the scheduled time. The actual compilation may
have to wait in the compile queue for some time, depending on the size of the queue and the RECOM-
PILE_BACKOFF environment setting. This setting has no effect when server_compile is disabled.

autostart_agent_deploy_interval

Type
int

Default
600

The deployment interval of the autostarted agents. See also: config.agent-deploy-interval

autostart_agent_deploy_splay_time

Type
int

Default
10

The splay time on the deployment interval of the autostarted agents. See also: config.
agent-deploy-splay-time

autostart_agent_interval

Type
int

Default
600

[DEPRECATED] Agent interval for autostarted agents in seconds

autostart_agent_map

Type
dict

Default
{‘internal’: ‘local:’}

A dict with key the name of agents that should be automatically started. The value is either an empty string
or an agent map string. See also: config.agent-map

autostart_agent_repair_interval

Type
int

Default
86400

The repair interval of the autostarted agents. See also: config.agent-repair-interval

autostart_agent_repair_splay_time

Type
int

170 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Default
600

The splay time on the repair interval of the autostarted agents. See also: config.
agent-repair-splay-time

autostart_on_start

Type
bool

Default
True

Automatically start agents when the server starts instead of only just in time.

autostart_splay

Type
int

Default
10

[DEPRECATED] Splay time for autostarted agents.

available_versions_to_keep

Type
int

Default
100

The number of versions to keep stored in the database

environment_agent_trigger_method

Type
enum: push_incremental_deploy, push_full_deploy

Default
push_full_deploy

The agent trigger method to use. If push_on_auto_deploy is enabled, agent_trigger_method_on_auto_deploy
overrides this setting

environment_metrics_retention

Type
int

Default
8760

The number of hours that environment metrics have to be retained before they are cleaned up. Default=8760
hours (1 year). Set to 0 to disable automatic cleanups.

notification_retention

Type
int

Default
365

The number of days to retain notifications for

10.3. Environment Settings Reference 171

Inmanta Documentation, Release 2023.1.1

protected_environment

Type
bool

Default
False

When set to true, this environment cannot be cleared, deleted or decommissioned.

purge_on_delete

Type
bool

Default
False

Enable purge on delete. When set to true, the server will detect the absence of resources with purge_on_delete
set to true and automatically purges them.

push_on_auto_deploy

Type
bool

Default
True

Push a new version when it has been autodeployed.

recompile_backoff

Type
positive_float

Default
0.1

The number of seconds to wait before the server may attempt to do a new recompile. Recompiles are triggered
after facts updates for example.

resource_action_logs_retention

Type
int

Default
7

The number of days to retain resource-action logs

server_compile

Type
bool

Default
True

Allow the server to compile the configuration model.

172 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.4 Compiler Configuration Reference

10.4.1 project.yml

Inside any project the compiler expects a project.yml file that defines metadata about the project, the location
to store modules, repositories where to find modules and possibly specific versions of modules.

For basic usage information, see Project creation guide.

The project.yml file defines the following settings:

class inmanta.module.ProjectMetadata(*, requires: List[str] = [], name: str, description: Optional[str]
= None, freeze_recursive: bool = False, freeze_operator:
ConstrainedStrValue = '~=', author: Optional[str] = None,
author_email: Optional[NameEmail] = None, license:
Optional[str] = None, copyright: Optional[str] = None,
modulepath: List[str] = [], repo: List[ModuleRepoInfo] = [],
downloadpath: Optional[str] = None, install_mode:
InstallMode = InstallMode.release, relation_precedence_policy:
List[ConstrainedStrValue] = [], strict_deps_check: bool = True,
agent_install_dependency_modules: bool = False)

Parameters

• name – The name of the project.

• description – (Optional) An optional description of the project

• author – (Optional) The author of the project

• author_email – (Optional) The contact email address of author

• license – (Optional) License the project is released under

• copyright – (Optional) Copyright holder name and date.

• modulepath – (Optional) This value is a list of paths where Inmanta should search for
modules.

• downloadpath – (Optional) This value determines the path where Inmanta should
download modules from repositories. This path is not automatically included in the
modulepath!

• install_mode – (Optional) This key determines what version of a module should be
selected when a module is downloaded. For more information see InstallMode.

• repo – (Optional) A list (a yaml list) of repositories where Inmanta can find modules.
Inmanta tries each repository in the order they appear in the list. Each element of this
list requires a type and a url field. The type field can have the following values:

– git: When the type is set to git, the url field should contain a template of the Git repo
URL. Inmanta creates the git repo url by formatting {} or {0} with the name of the
module. If no formatter is present it appends the name of the module to the URL.

– package: When the type is set to package, the URL field should contain the URL of the
Python package repository. The repository should be PEP 503 (the simple repository
API) compliant.

The old syntax, which only defines a Git URL per list entry is maintained for backward
compatibility.

• requires – (Optional) This key can contain a list (a yaml list) of version constraints
for modules used in this project. Similar to the module, version constraints are defined
using PEP440 syntax.

10.4. Compiler Configuration Reference 173

https://www.python.org/dev/peps/pep-0503/
https://www.python.org/dev/peps/pep-0440/#version-specifiers

Inmanta Documentation, Release 2023.1.1

• freeze_recursive – (Optional) This key determined if the freeze command will be-
have recursively or not. If freeze_recursive is set to false or not set, the current version
of all modules imported directly in the main.cf file will be set in project.yml. If it is set
to true, the versions of all modules used in this project will set in project.yml.

• freeze_operator – (Optional) This key determines the comparison operator used by
the freeze command. Valid values are [==, ~=, >=]. Default is ‘~=’

• relation_precedence_policy – [EXPERIMENTAL FEATURE] A list of rules that
indicate the order in which the compiler should freeze lists. The following syntax should
be used to specify a rule <first-type>.<relation-name> before <then-type>.<relation-
name>. With this rule in place, the compiler will first freeze first-type.relation-name
and only then then-type.relation-name.

• strict_deps_check – Determines whether the compiler or inmanta tools that in-
stall/update module dependencies, should check the virtual environment for version con-
flicts in a strict way or not. A strict check means that all transitive dependencies will be
checked for version conflicts and that any violation will result in an error. When a non-
strict check is done, only version conflicts in a direct dependency will result in an error.
All other violations will only result in a warning message.

• agent_install_dependency_modules – [EXPERIMENTAL FEATURE] If true,
when a module declares Python dependencies on other (v2) modules, the agent will
install these dependency modules with pip. This option should only be enabled if the
agent is configured with the appropriate pip related environment variables. The option
allows to an extent for inter-module dependencies within handler code, even if the de-
pendency module doesn’t have any handlers that would otherwise be considered relevant
for this agent.

Care should still be taken when you use inter-module imports. The current code loading
mechanism does not explicitly order reloads. A general guideline is to use qualified
imports where you can (import the module rather than objects from the module). When
this is not feasible, you should be aware of Python’s reload semantics and take this into
account when making changes to handler code.

Another caveat is that if the dependency module does contain code that is relevant for
the agent, it will be loaded like any other handler code and it will be this code that is
imported by any dependent modules (though depending on the load order the very first
import may use the version installed by pip). If at some point this dependency module’s
handlers cease to be relevant for this agent, its code will remain stale. Therefore this
feature should not be depended on in transient scenarios like this.

class inmanta.module.ModuleRepoInfo(*, url: str, type: ModuleRepoType = ModuleRepoType.git)
Bases: BaseModel

class inmanta.module.ModuleRepoType(value)
Bases: Enum

An enumeration.

The code snippet below provides an example of a complete project.yml file:

name: quickstart
description: A quickstart project that installs a drupal website.
author: Inmanta
author_email: code@inmanta.com
license: Apache 2.0
copyright: Inmanta (2021)
modulepath: libs
downloadpath: libs
install_mode: release
repo:

(continues on next page)

174 Chapter 10. Inmanta Reference

https://docs.python.org/3/library/importlib.html#importlib.reload

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

- url: https://github.com/inmanta/
type: git

- url: https://pypi.org/simple/
type: package

requires:
- apache ~= 0.5.2
- drupal ~= 0.7.3
- exec ~= 1.1.4
- ip ~= 1.2.1
- mysql ~= 0.6.2
- net ~= 1.0.5
- php ~= 0.3.1
- redhat ~= 0.9.2
- std ~= 3.0.2
- web ~= 0.3.3
- yum ~= 0.6.2

freeze_recursive: true
freeze_operator: ~=

10.4.2 Module metadata files

The metadata of a V1 module is present in the module.yml file. V2 modules keep their metadata in the setup.cfg
file. Below sections describe each of these metadata files.

module.yml

Inside any V1 module the compiler expects a module.yml file that defines metadata about the module.

The module.yml file defines the following settings:

class inmanta.module.ModuleMetadata(*, name: str, description: Optional[str] = None, freeze_recursive:
bool = False, freeze_operator: ConstrainedStrValue = '~=',
version: str, license: str, deprecated: Optional[bool] = None)

The code snippet below provides an example of a complete module.yml file:

name: openstack
description: A module to manage networks, routers, virtual machine, etc. on an␣
↪→Openstack cluster.
version: 3.7.1
license: Apache 2.0
compiler_version: 2020.2
requires:
- ip
- net
- platform
- ssh
- std

freeze_recursive: false
freeze_operator: ~=

10.4. Compiler Configuration Reference 175

Inmanta Documentation, Release 2023.1.1

setup.cfg

Inside any V2 module the compiler expects a setup.cfg file that defines metadata about the module.

The code snippet below provides an example of a complete setup.cfg file:

[metadata]
name = inmanta-module-openstack
description = A module to manage networks, routers, virtual machine, etc. on an␣
↪→Openstack cluster.
version = 3.7.1
license = Apache 2.0
compiler_version = 2020.2
freeze_recursive = false
freeze_operator = ~=

[options]
install_requires =
inmanta-modules-ip
inmanta-modules-net
inmanta-modules-platform
inmanta-modules-ssh
inmanta-modules-std

10.5 Programmatic API reference

This page describes parts of inmanta code base that provide a stable API that could be used from modules or
extensions.

Warning: Only those parts explicitly mentioned here are part of the API. They provide a stable interface.
Other parts of the containing modules provide no such guarantees.

10.5.1 Constants

class inmanta.const.LogLevel(value)
Bases: str, Enum

Log levels used for various parts of the inmanta orchestrator.

CRITICAL = 'CRITICAL'

DEBUG = 'DEBUG'

ERROR = 'ERROR'

INFO = 'INFO'

TRACE = 'TRACE'

WARNING = 'WARNING'

property to_int: int

class inmanta.const.ResourceAction(value)
Bases: str, Enum

Enumeration of all resource actions.

176 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

deploy = 'deploy'

dryrun = 'dryrun'

getfact = 'getfact'

other = 'other'

pull = 'pull'

push = 'push'

store = 'store'

10.5.2 Compiler exceptions

class inmanta.ast.CompilerException(msg: str)
Bases: Exception, Exportable

Base class for exceptions generated by the compiler

class inmanta.parser.ParserException(location: Location, value: object, msg: Optional[str] = None)
Bases: CompilerException

Exception occurring during the parsing of the code

class inmanta.ast.RuntimeException(stmt: Optional[Locatable], msg: str)
Bases: CompilerException

Baseclass for exceptions raised by the compiler after parsing is complete.

class inmanta.ast.ExternalException(stmt: Optional[Locatable], msg: str, cause: Exception)
Bases: RuntimeException

When a plugin call produces an exception that is not a RuntimeException, it is wrapped in an ExternalEx-
ception to make it conform to the expected interface

class inmanta.ast.ExplicitPluginException(stmt: Optional[Locatable], msg: str, cause:
PluginException)

Bases: ExternalException

Base exception for wrapping an explicit inmanta.plugins.PluginException raised from a plugin call.

10.5.3 Plugins

class inmanta.plugins.Context(resolver: Resolver, queue: QueueScheduler, owner: FunctionCall,
plugin: Plugin, result: ResultVariable)

An instance of this class is used to pass context to the plugin

get_client()→ Client

get_compiler()→ Compiler

get_data_dir()→ str
Get the path to the data dir (and create if it does not exist yet

get_environment_id()→ str

get_queue_scheduler()→ QueueScheduler

get_resolver()→ Resolver

10.5. Programmatic API reference 177

Inmanta Documentation, Release 2023.1.1

get_sync_client()→ SyncClient

get_type(name: LocatableString)→ Type
Get a type from the configuration model.

run_sync(function: Callable[[...], T], timeout: int = 5)→ T
Execute the async function and return its result. This method takes care of starting and stopping the
ioloop. The main use for this function is to use the inmanta internal rpc to communicate with the server.

Parameters

• function – The async function to execute. This function should return a yieldable
object.

• timeout – A timeout for the async function.

Returns
The result of the async call.

Raises
ConnectionRefusedError – When the function timeouts this exception is raised.

inmanta.plugins.plugin(function: Optional[Callable] = None, commands: Optional[List[str]] = None,
emits_statements: bool = False, allow_unknown: bool = False)→ Callable

Python decorator to register functions with inmanta as plugin

Parameters

• function – The function to register with inmanta. This is the first argument when it is
used as decorator.

• commands – A list of command paths that need to be available. Inmanta raises an ex-
ception when the command is not available.

• emits_statements – Set to true if this plugin emits new statements that the compiler
should execute. This is only required for complex plugins such as integrating a template
engine.

• allow_unknown – Set to true if this plugin accepts Unknown values as valid input.

class inmanta.plugins.PluginException(message: str)
Base class for custom exceptions raised from a plugin.

class inmanta.plugins.PluginMeta(name: str, bases: Tuple[type, ...], dct: Dict[str, object])
Bases: type

A metaclass that keeps track of concrete plugin subclasses. This class is responsible for all plugin registration.

classmethod add_function(plugin_class: Type[Plugin])→ None
Add a function plugin class

classmethod clear(inmanta_module: Optional[str] = None)→ None
Clears registered plugin functions.

Parameters
inmanta_module – Clear plugin functions for a specific inmanta module. If omitted,
clears all registered plugin functions.

classmethod get_functions()→ Dict[str, Type[Plugin]]
Get all functions that are registered

178 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.5.4 Resources

inmanta.resources.resource(name: str, id_attribute: str, agent: str)
A decorator that registers a new resource. The decorator must be applied to classes that inherit from
Resource

Parameters

• name – The name of the entity in the configuration model it creates a resources from.
For example std::File

• id_attribute – The attribute of this resource that uniquely identifies a resource on an
agent. This attribute can be mapped.

• agent – This string indicates how the agent of this resource is determined. This string
points to an attribute, but it can navigate relations (this value cannot be mapped). For
example, the agent argument could be host.name

class inmanta.resources.Resource(_id: Id)
Plugins should inherit resource from this class so a resource from a model can be serialized and deserialized.

Such as class is registered when the resource() decorator is used. Each class needs to indicate the fields
the resource will have with a class field named “fields”. A metaclass merges all fields lists from the class
itself and all superclasses. If a field it not available directly in the model object the serializer will look for
static methods in the class with the name “get_$fieldname”.

clone(**kwargs: Any)→ Resource
Create a clone of this resource. The given kwargs can be used to override attributes.

Returns
The cloned resource

class inmanta.resources.PurgeableResource(_id: Id)
See std::PurgeableResource for more information.

class inmanta.resources.ManagedResource(_id: Id)
See std::ManagedResource for more information.

class inmanta.resources.IgnoreResourceException

Throw this exception when a resource should not be included by the exported.

class inmanta.resources.Id(entity_type: str, agent_name: str, attribute: str, attribute_value: str, version:
int = 0)

A unique id that identifies a resource that is managed by an agent

classmethod parse_id(resource_id: Union[ResourceVersionIdStr, ResourceIdStr])→ Id
Parse the resource id and return the type, the hostname and the resource identifier.

resource_str()→ ResourceIdStr

class inmanta.execute.util.Unknown(source: object)
An instance of this class is used to indicate that this value can not be determined yet.

Parameters
source – The source object that can determine the value

10.5. Programmatic API reference 179

Inmanta Documentation, Release 2023.1.1

10.5.5 Handlers

inmanta.agent.handler.cache(func: Optional[T_FUNC] = None, ignore: List[str] = [], timeout: int =
5000, for_version: bool = True, cache_none: bool = True, cacheNone:
Optional[bool] = None, call_on_delete: Optional[Callable[[Any], None]]
= None)→ Union[T_FUNC, Callable[[T_FUNC], T_FUNC]]

decorator for methods in resource handlers to provide caching

this decorator works similar to memoization: when the decorate method is called, its return value is cached,
for subsequent calls, the cached value is used instead of the actual value

The name of the method + the arguments of the method form the cache key

If an argument named version is present and for_version is True, the cache entry is flushed after this version
has been deployed If an argument named resource is present, it is assumed to be a resource and its ID is used,
without the version information

Parameters

• timeout – the number of second this cache entry should live

• for_version – if true, this value is evicted from the cache when this deploy is ready

• ignore – a list of argument names that should not be part of the cache key

• cache_none – cache returned none values

• call_on_delete – A callback function that is called when the value is removed from
the cache, with the value as argument.

inmanta.agent.handler.provider(resource_type: str, name: str)→ None
A decorator that registers a new handler.

Parameters

• resource_type – The type of the resource this handler provides an implementation for.
For example, std::File

• name – A name to reference this provider.

class inmanta.agent.handler.SkipResource

Bases: Exception

A handler should raise this exception when a resource should be skipped. The resource will be marked as
skipped instead of failed.

class inmanta.agent.handler.ResourcePurged

If the read_resource() method raises this exception, the agent will mark the current state of the resource
as purged.

class inmanta.agent.handler.HandlerContext(resource: Resource, dry_run: bool = False, action_id:
Optional[UUID] = None, logger: Optional[Logger] =
None)

Context passed to handler methods for state related “things”

add_change(name: str, desired: object, current: Optional[object] = None)→ None
Report a change of a field. This field is added to the set of updated fields

Parameters

• name – The name of the field that was updated

• desired – The desired value to which the field was updated (or should be updated)

• current – The value of the field before it was updated

180 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

add_changes(**kwargs: Union[BaseModel, UUID, StrictNonIntBool, int, float, datetime, str])→ None
Report a list of changes at once as kwargs

Parameters

• key – The name of the field that was updated. This field is also added to the set of
updated fields

• value – The desired value of the field.

To report the previous value of the field, use the add_change method

critical(msg: str, *args: object, **kwargs: object)→ None
Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.critical("Houston, we have a %s", "major disaster", exc_info=1)

debug(msg: str, *args: object, **kwargs: object)→ None
Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

Keyword arguments should be JSON serializable.

logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)

error(msg: str, *args: object, **kwargs: object)→ None
Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.error("Houston, we have a %s", "major problem", exc_info=1)

exception(msg: str, *args: object, exc_info: bool = True, **kwargs: object)→ None
Convenience method for logging an ERROR with exception information.

fields_updated(fields: str)→ None
Report that fields have been updated

info(msg: str, *args: object, **kwargs: object)→ None
Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

Keyword arguments should be JSON serializable.

logger.info("Houston, we have a %s", "interesting problem", exc_info=1)

is_dry_run()→ bool
Is this a dryrun?

set_fact(fact_id: str, value: str)→ None
Send a fact to the Inmanta server.

Parameters

• fact_id – The name of the fact.

• value – The actual value of the fact.

set_status(status: ResourceState)→ None
Set the status of the handler operation.

update_changes(changes: Dict[str, AttributeStateChange])→ None
update_changes(changes: Dict[str, Dict[str, Optional[SimpleTypes]]])→ None

10.5. Programmatic API reference 181

Inmanta Documentation, Release 2023.1.1

update_changes(changes: Dict[str, Tuple[SimpleTypes, SimpleTypes]])→ None
Update the changes list with changes

Parameters
changes – This should be a dict with a value a dict containing “current” and “desired”
keys

warning(msg: str, *args: object, **kwargs: object)→ None
Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

Keyword arguments should be JSON serializable.

logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)

class inmanta.agent.handler.ResourceHandler(agent: inmanta.agent.agent.AgentInstance, io:
Optional[IOBase] = None)

A baseclass for classes that handle resources. New handler are registered with the provider() decorator.

The implementation of a handler should use the self._io instance to execute io operations. This io objects
makes abstraction of local or remote operations. See LocalIO for the available operations.

Parameters

• agent – The agent that is executing this handler.

• io – The io object to use.

_diff(current: Resource, desired: Resource)→ Dict[str, Dict[str, Any]]
Calculate the diff between the current and desired resource state.

Parameters

• current – The current state of the resource

• desired – The desired state of the resource

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

available(resource: Resource)→ bool
Returns true if this handler is available for the given resource

Parameters
resource – Is this handler available for the given resource?

Returns
Available or not?

can_reload()→ bool
Can this handler reload?

Returns
Return true if this handler needs to reload on requires changes.

check_facts(ctx: HandlerContext, resource: Resource)→ Dict[str, object]
This method is called by the agent to query for facts. It runs pre() and post(). This method calls
facts() to do the actually querying.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to query facts for.

Returns
A dict with fact names as keys and facts values.

182 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

check_resource(ctx: HandlerContext, resource: Resource)→ Resource
Check the current state of a resource

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

Returns
A resource to represents the current state. Use the clone() to create clone of the given
resource that can be modified.

close()→ None

deploy(ctx: HandlerContext, resource: Resource, requires: Dict[ResourceIdStr, ResourceState])→
None

This method is always be called by the agent, even when one of the requires of the given resource
failed to deploy. The default implementation of this method will deploy the given resource when all its
requires were deployed successfully. Override this method if a different condition determines whether
the resource should deploy.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to deploy

• requires – A dictionary mapping the resource id of each dependency of the given
resource to its resource state.

do_changes(ctx: HandlerContext, resource: Resource, changes: Dict[str, Dict[str, object]])→ None
Do the changes required to bring the resource on this system in the state of the given resource.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

• changes – The changes that need to occur as reported by list_changes()

do_reload(ctx: HandlerContext, resource: Resource)→ None
Perform a reload of this resource.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to reload.

execute(ctx: HandlerContext, resource: Resource, dry_run: bool = False)→ None
Update the given resource. This method is called by the agent. Most handlers will not override this
method and will only override check_resource(), optionally list_changes() and do_changes()

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

• dry_run – True will only determine the required changes but will not execute them.

facts(ctx: HandlerContext, resource: Resource)→ Dict[str, object]
Override this method to implement fact querying. A queried fact can be reported back in two different
ways: either via the return value of this method or by adding the fact to the HandlerContext via the
set_fact() method. pre() and post() are called before and after this method.

Parameters

10.5. Programmatic API reference 183

Inmanta Documentation, Release 2023.1.1

• ctx – Context object to report changes, logs and facts to the agent and server.

• resource – The resource to query facts for.

Returns
A dict with fact names as keys and facts values.

get_client()→ SessionClient
Get the client instance that identifies itself with the agent session.

Returns
A client that is associated with the session of the agent that executes this handler.

get_file(hash_id: str)→ Optional[bytes]
Retrieve a file from the fileserver identified with the given id. The convention is to use the sha1sum of
the content to identify it.

Parameters
hash_id – The id of the content/file to retrieve from the server.

Returns
The content in the form of a bytestring or none is the content does not exist.

list_changes(ctx: HandlerContext, resource: Resource)→ Dict[str, Dict[str, Any]]
Returns the changes required to bring the resource on this system in the state described in the resource
entry. This method calls check_resource()

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

post(ctx: HandlerContext, resource: Resource)→ None
Method executed after an operation. Override this method to run after an operation.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to query facts for.

pre(ctx: HandlerContext, resource: Resource)→ None
Method executed before a handler operation (Facts, dryrun, real deployment, . . .) is executed. Override
this method to run before an operation.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to query facts for.

run_sync(func: Callable[[], Awaitable[T]])→ T
Run a the given async function on the ioloop of the agent. It will block the current thread until the
future resolves.

Parameters
func – A function that returns a yieldable future.

Returns
The result of the async function.

set_cache(cache: AgentCache)→ None

184 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

stat_file(hash_id: str)→ bool
Check if a file exists on the server. This method does and async call to the server and blocks on the
result.

Parameters
hash_id – The id of the file on the server. The convention is the use the sha1sum of the
content as id.

Returns
True if the file is available on the server.

upload_file(hash_id: str, content: bytes)→ None
Upload a file to the server

Parameters

• hash_id – The id to identify the content. The convention is to use the sha1sum of the
content to identify it.

• content – A byte string with the content

class inmanta.agent.handler.CRUDHandler(agent: inmanta.agent.agent.AgentInstance, io:
Optional[IOBase] = None)

This handler base class requires CRUD methods to be implemented: create, read, update and delete. Such a
handler only works on purgeable resources.

available(resource: Resource)→ bool
Returns true if this handler is available for the given resource

Parameters
resource – Is this handler available for the given resource?

Returns
Available or not?

calculate_diff(ctx: HandlerContext, current: Resource, desired: Resource)→ Dict[str, Dict[str,
Any]]

Calculate the diff between the current and desired resource state.

Parameters

• ctx – Context can be used to get values discovered in the read method. For example,
the id used in API calls. This context should also be used to let the handler know what
changes were made to the resource.

• current – The current state of the resource

• desired – The desired state of the resource

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

can_reload()→ bool
Can this handler reload?

Returns
Return true if this handler needs to reload on requires changes.

check_facts(ctx: HandlerContext, resource: Resource)→ Dict[str, object]
This method is called by the agent to query for facts. It runs pre() and post(). This method calls
facts() to do the actually querying.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

10.5. Programmatic API reference 185

Inmanta Documentation, Release 2023.1.1

• resource – The resource to query facts for.

Returns
A dict with fact names as keys and facts values.

check_resource(ctx: HandlerContext, resource: Resource)→ Resource
Check the current state of a resource

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

Returns
A resource to represents the current state. Use the clone() to create clone of the given
resource that can be modified.

close()→ None

create_resource(ctx: HandlerContext, resource: PurgeableResource)→ None
This method is called by the handler when the resource should be created.

Parameters

• context – Context can be used to get values discovered in the read method. For
example, the id used in API calls. This context should also be used to let the handler
know what changes were made to the resource.

• resource – The desired resource state.

delete_resource(ctx: HandlerContext, resource: PurgeableResource)→ None
This method is called by the handler when the resource should be deleted.

Parameters

• ctx – Context can be used to get values discovered in the read method. For example,
the id used in API calls. This context should also be used to let the handler know what
changes were made to the resource.

• resource – The desired resource state.

deploy(ctx: HandlerContext, resource: Resource, requires: Dict[ResourceIdStr, ResourceState])→
None

This method is always be called by the agent, even when one of the requires of the given resource
failed to deploy. The default implementation of this method will deploy the given resource when all its
requires were deployed successfully. Override this method if a different condition determines whether
the resource should deploy.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to deploy

• requires – A dictionary mapping the resource id of each dependency of the given
resource to its resource state.

do_changes(ctx: HandlerContext, resource: Resource, changes: Dict[str, Dict[str, object]])→ None
Do the changes required to bring the resource on this system in the state of the given resource.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

• changes – The changes that need to occur as reported by list_changes()

186 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

do_reload(ctx: HandlerContext, resource: Resource)→ None
Perform a reload of this resource.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to reload.

execute(ctx: HandlerContext, resource: Resource, dry_run: Optional[bool] = None)→ None
Update the given resource. This method is called by the agent. Override the CRUD methods of this
class.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

• dry_run – True will only determine the required changes but will not execute them.

facts(ctx: HandlerContext, resource: Resource)→ Dict[str, object]
Override this method to implement fact querying. A queried fact can be reported back in two different
ways: either via the return value of this method or by adding the fact to the HandlerContext via the
set_fact() method. pre() and post() are called before and after this method.

Parameters

• ctx – Context object to report changes, logs and facts to the agent and server.

• resource – The resource to query facts for.

Returns
A dict with fact names as keys and facts values.

get_client()→ SessionClient
Get the client instance that identifies itself with the agent session.

Returns
A client that is associated with the session of the agent that executes this handler.

get_file(hash_id: str)→ Optional[bytes]
Retrieve a file from the fileserver identified with the given id. The convention is to use the sha1sum of
the content to identify it.

Parameters
hash_id – The id of the content/file to retrieve from the server.

Returns
The content in the form of a bytestring or none is the content does not exist.

list_changes(ctx: HandlerContext, resource: Resource)→ Dict[str, Dict[str, Any]]
Returns the changes required to bring the resource on this system in the state described in the resource
entry. This method calls check_resource()

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

post(ctx: HandlerContext, resource: Resource)→ None
Method executed after an operation. Override this method to run after an operation.

Parameters

10.5. Programmatic API reference 187

Inmanta Documentation, Release 2023.1.1

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to query facts for.

pre(ctx: HandlerContext, resource: Resource)→ None
Method executed before a handler operation (Facts, dryrun, real deployment, . . .) is executed. Override
this method to run before an operation.

Parameters

• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to query facts for.

read_resource(ctx: HandlerContext, resource: PurgeableResource)→ None
This method reads the current state of the resource. It provides a copy of the resource that should be
deployed, the method implementation should modify the attributes of this resource to the current state.

Parameters

• ctx – Context can be used to pass value discovered in the read method to the CUD
methods. For example, the id used in API calls

• resource – A clone of the desired resource state. The read method need to set values
on this object.

Raises

• SkipResource – Raise this exception when the handler should skip this resource

• ResourcePurged – Raise this exception when the resource does not exist yet.

run_sync(func: Callable[[], Awaitable[T]])→ T
Run a the given async function on the ioloop of the agent. It will block the current thread until the
future resolves.

Parameters
func – A function that returns a yieldable future.

Returns
The result of the async function.

set_cache(cache: AgentCache)→ None

stat_file(hash_id: str)→ bool
Check if a file exists on the server. This method does and async call to the server and blocks on the
result.

Parameters
hash_id – The id of the file on the server. The convention is the use the sha1sum of the
content as id.

Returns
True if the file is available on the server.

update_resource(ctx: HandlerContext, changes: Dict[str, Dict[str, Any]], resource:
PurgeableResource)→ None

This method is called by the handler when the resource should be updated.

Parameters

• ctx – Context can be used to get values discovered in the read method. For example,
the id used in API calls. This context should also be used to let the handler know what
changes were made to the resource.

• changes – A map of resource attributes that should be changed. Each value is a tuple
with the current and the desired value.

• resource – The desired resource state.

188 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

upload_file(hash_id: str, content: bytes)→ None
Upload a file to the server

Parameters

• hash_id – The id to identify the content. The convention is to use the sha1sum of the
content to identify it.

• content – A byte string with the content

class inmanta.agent.io.local.LocalIO(uri: str, config: Dict[str, Optional[str]])
This class provides handler IO methods

This class is part of the stable API.

chmod(path: str, permissions: str)→ None
Change the permissions

Parameters

• path (str) – The path of the file or directory to change the permission of.

• permissions (str) – An octal string with the permission to set.

chown(path: str, user: Optional[str] = None, group: Optional[str] = None)→ None
Change the ownership of a file.

Parameters

• path (str) – The path of the file or directory to change the ownership of.

• user (str) – The user to change to

• group (str) – The group to change to

close()→ None
Close any resources

file_exists(path: str)→ bool
Check if a given file exists

Parameters
path (str) – The path to check if it exists.

Returns
Returns true if the file exists

Return type
bool

file_stat(path: str)→ Dict[str, Union[int, str]]
Do a stat call on a file

Parameters
path (str) – The file or direct to stat

Returns
A dict with the owner, group and permissions of the given path

Return type
dict[str, str]

hash_file(path: str)→ str
Return the sha1sum of the file at path

Parameters
path (str) – The path of the file to hash the content of

10.5. Programmatic API reference 189

Inmanta Documentation, Release 2023.1.1

Returns
The sha1sum in a hex string

Return type
str

is_remote()→ bool
Are operation executed remote

Returns
Returns true if the io operations are remote.

Return type
bool

is_symlink(path: str)→ bool
Is the given path a symlink

Parameters
path (str) – The path of the symlink

Returns
Returns true if the given path points to a symlink

Return type
str

mkdir(path: str)→ None
Create a directory

Parameters
path (str) – Create this directory. The parent needs to exist.

put(path: str, content: str)→ None
Put the given content at the given path

Parameters

• path (str) – The location where to write the file

• content (bytes) – The binarystring content to write to the file.

read(path: str)→ str
Read in the file in path and return its content as string

Parameters
path (str) – The path of the file to read.

Returns
The string content of the file

Return type
string

read_binary(path: str)→ bytes
Read in the file in path and return its content as a bytestring

Parameters
path (str) – The path of the file to read.

Returns
The byte content of the file

Return type
bytes

190 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

readlink(path: str)→ str
Return the target of the path

Parameters
path (str) – The symlink to get the target for.

Returns
The target of the symlink

Return type
str

remove(path: str)→ None
Remove a file

Parameters
path (str) – The path of the file to remove.

rmdir(path: str)→ None
Remove a directory

Parameters
path (str) – The directory to remove

run(command: str, arguments: List[str] = [], env: Optional[Dict[str, str]] = None, cwd: Optional[str] =
None, timeout: Optional[int] = None)→ Tuple[str, str, int]
Execute a command with the given argument and return the result

Parameters

• command (str) – The command to execute.

• arguments (list) – The arguments of the command

• env (dict) – A dictionary with environment variables.

• cwd (str) – The working dir to execute the command in.

• timeout (int) – The timeout for this command. This parameter is ignored if the
command is executed remotely with a python 2 interpreter.

Returns
A tuple with (stdout, stderr, returncode)

Return type
tuple

symlink(source: str, target: str)→ None
Symlink source to target

Parameters

• source (str) – Create a symlink of this path to target

• target (str) – The path of the symlink to create

10.5. Programmatic API reference 191

Inmanta Documentation, Release 2023.1.1

10.5.6 Export

@inmanta.export.dependency_manager(function: Callable[[Dict[str, Entity], Dict[Id, Resource]], None])
→ None

Register a function that manages dependencies in the configuration model that will be deployed.

10.5.7 Attributes

class inmanta.ast.attribute.Attribute(entity: Entity, value_type: Type, name: str, location: Location,
multi: bool = False, nullable: bool = False)

The attribute base class for entity attributes.

Parameters
entity – The entity this attribute belongs to

get_type()→ Type
Get the type of this attribute.

property type: Type

Get the type of this attribute.

validate(value: object)→ None
Validate a value that is going to be assigned to this attribute. Raises a inmanta.ast.
RuntimeException if validation fails.

class inmanta.ast.attribute.RelationAttribute(entity: Entity, value_type: Type, name: str, location:
Location)

Bases: Attribute

An attribute that is a relation

10.5.8 Modules

class inmanta.module.InstallMode(value)
Bases: str, Enum

The module install mode determines what version of a module should be selected when a module is down-
loaded.

master = 'master'

For V1 modules: Use the module’s master branch. For V2 modules: Equivalent to InstallMode.
prerelease

prerelease = 'prerelease'

Similar to InstallMode.release but prerelease versions are allowed as well.

release = 'release'

Only use a released version that is compatible with the current compiler and any version con-
straints defined in the requires lists for the project or any other modules (see ProjectMetadata,
ModuleV1Metadata and ModuleV2Metadata).

A module is considered released in the following situations:

• For V1 modules: There is a tag on a commit. This tag is a valid, pep440 compliant
version identifier and it’s not a

prelease version.

• For V2 modules: The python package was published on a Python package repository,
the version identifier is pep440

compliant and is not a prerelease version.

192 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

inmanta.module.INSTALL_OPTS: List[str] = ['release', 'prerelease', 'master']

List of possible module install modes, kept for backwards compatibility. New code should use InstallMode
instead.

class inmanta.module.InvalidModuleException(msg: str)
This exception is raised if a module is invalid.

class inmanta.module.InvalidMetadata(msg: str, validation_error: Optional[ValidationError] = None)
This exception is raised if the metadata file of a project or module is invalid.

class inmanta.module.ModuleLike(path: str)
Bases: ABC, Generic[TMetadata]

Commons superclass for projects and modules, which are both versioned by git

Variables
name – The name for this module like instance, in the context of the Inmanta DSL.

abstract classmethod from_path(path: str)→ Optional[ModuleLike]
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

property metadata: TMetadata

class inmanta.module.Module(project: Optional[Project], path: str)
Bases: ModuleLike[TModuleMetadata], ABC

This class models an inmanta configuration module

abstract classmethod from_path(path: str)→ Optional[Module]
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

get_plugin_files()→ Iterator[Tuple[Path, ModuleName]]
Returns a tuple (absolute_path, fq_mod_name) of all python files in this module.

unload()→ None
Unloads this module instance from the project, the registered plugins and the loaded Python modules.

inmanta.module.ModuleName

alias of str

class inmanta.module.ModuleV1(project: Optional[Project], path: str)
Bases: Module[ModuleV1Metadata], ModuleLikeWithYmlMetadataFile

classmethod from_path(path: str)→ Optional[TModule]
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

class inmanta.module.ModuleV2(project: Optional[Project], path: str, is_editable_install: bool = False,
installed_version: Optional[Version] = None)

Bases: Module[ModuleV2Metadata]

classmethod from_path(path: str)→ Optional[TModule]
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

is_editable()→ bool
Returns True iff this module has been installed in editable mode.

class inmanta.module.ModuleSource

Bases: Generic[TModule]

10.5. Programmatic API reference 193

Inmanta Documentation, Release 2023.1.1

get_installed_module(project: Optional[Project], module_name: str)→ Optional[TModule]
Returns a module object for a module if it is installed.

Parameters

• project – The project associated with the module.

• module_name – The name of the module.

class inmanta.module.ModuleV2Source(urls: List[str])
Bases: ModuleSource[ModuleV2]

inmanta.module.Path

alias of str

class inmanta.loader.PluginModuleFinder(modulepaths: List[str])
Bases: MetaPathFinder

Custom module finder which handles V1 Inmanta modules. V2 modules are handled using the standard
Python finder. This finder is stored as the last entry in meta_path, as such that the default Python Finders
detect V2 modules first.

classmethod reset()→ None
Remove the PluginModuleFinder from sys.meta_path.

inmanta.loader.unload_inmanta_plugins(inmanta_module: Optional[str] = None)→ None
Unloads Python modules associated with inmanta modules (inmanta_plugins submodules).

Parameters
inmanta_module – Unload the Python modules for a specific inmanta module. If omitted,
unloads the Python modules for all inmanta modules.

10.5.9 Project

class inmanta.module.Project(path: str, autostd: bool = True, main_file: str = 'main.cf', venv_path:
Optional[Union[str, VirtualEnv]] = None, attach_cf_cache: bool = True,
strict_deps_check: Optional[bool] = None)

Bases: ModuleLike[ProjectMetadata], ModuleLikeWithYmlMetadataFile

An inmanta project

Variables

• modules – The collection of loaded modules for this project.

• module_source – The v2 module source for this project.

classmethod get(main_file: str = 'main.cf', strict_deps_check: Optional[bool] = None)→ Project
Get the instance of the project

install_modules(*, bypass_module_cache: bool = False, update_dependencies: bool = False)→
None

Installs all modules, both v1 and v2.

Parameters

• bypass_module_cache – Fetch the module data from disk even if a cache entry exists.

• update_dependencies – Update all Python dependencies (recursive) to their latest
versions.

load(install: bool = False)→ None
Load this project’s AST and plugins.

194 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Parameters
install – Whether to install the project’s modules before attempting to load it.

classmethod set(project: Project, *, clean: bool = True)→ None
Set the instance of the project.

Parameters
clean – Clean up all side effects of any previously loaded projects. Clears the registered
plugins and loaded Python plugins packages.

class inmanta.module.ProjectNotFoundException(msg: str)
Bases: CompilerException

This exception is raised when inmanta is unable to find a valid project

10.5.10 Python Environment

inmanta.env.mock_process_env(*, python_path: Optional[str] = None, env_path: Optional[str] = None)
→ None

Overrides the process environment information. This forcefully sets the environment that is recognized as
the outer Python environment. This function should only be called when a Python environment has been set
up dynamically and this environment should be treated as if this process was spawned from it, and even then
with great care.

Parameters

• python_path – The path to the python binary. Only one of python_path and env_path
should be set.

• env_path – The path to the python environment directory. Only one of python_path
and env_path should be set.

class inmanta.env.VirtualEnv(env_path: str)
Creates and uses a virtual environment for this process. This virtualenv inherits from the previously active
one.

init_env()→ None
Initialize the virtual environment.

use_virtual_env()→ None
Activate the virtual environment.

10.5.11 Variables

class inmanta.ast.variables.Reference(name: LocatableString)
This class represents a reference to a value

Variables
name – The name of the Reference as a string.

name

10.5. Programmatic API reference 195

Inmanta Documentation, Release 2023.1.1

10.5.12 Typing

The inmanta.ast.type module contains a representation of inmanta types, as well as validation logic for those types.

class inmanta.ast.type.Type

This class is the abstract base class for all types in the Inmanta DSL that represent basic data. These are types
that are not relations. Instances of subclasses represent a type in the Inmanta language.

get_base_type()→ Type
Returns the base type for this type, i.e. the plain type without modifiers such as expressed by [] and ?
in the DSL.

is_primitive()→ bool
Returns true iff this type is a primitive type, i.e. number, string, bool.

type_string()→ Optional[str]
Returns the type string as expressed in the Inmanta DSL, if this type can be expressed in the DSL.
Otherwise returns None.

validate(value: Optional[object])→ bool
Validate the given value to check if it satisfies the constraints associated with this type. Returns true iff
validation succeeds, otherwise raises a inmanta.ast.RuntimeException.

with_base_type(base_type: Type)→ Type
Returns the type formed by replacing this type’s base type with the supplied type.

class inmanta.ast.type.NullableType(element_type: Type)
Bases: Type

Represents a nullable type in the Inmanta DSL. For example NullableType(Number()) represents number?.

class inmanta.ast.type.Primitive

Bases: Type

Abstract base class representing primitive types.

cast(value: Optional[object])→ object
Cast a value to this type. If the value can not be cast, raises a inmanta.ast.RuntimeException.

class inmanta.ast.type.Number

Bases: Primitive

This class represents an integer or float in the configuration model. On these numbers the following opera-
tions are supported:

+, -, /, *

class inmanta.ast.type.Integer

Bases: Number

An instance of this class represents the int type in the configuration model.

class inmanta.ast.type.Bool

Bases: Primitive

This class represents a simple boolean that can hold true or false.

class inmanta.ast.type.String

Bases: Primitive

This class represents a string type in the configuration model.

196 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

class inmanta.ast.type.Union(types: List[Type])
Bases: Type

Instances of this class represent a union of multiple types.

class inmanta.ast.type.Literal

Bases: Union

Instances of this class represent a literal in the configuration model. A literal is a primitive or a list or dict
where all values are literals themselves.

class inmanta.ast.type.List

Bases: Type

Instances of this class represent a list type containing any types of values.

class inmanta.ast.type.TypedList(element_type: Type)
Bases: List

Instances of this class represent a list type containing any values of type element_type. For example Type-
dList(Number()) represents number[].

class inmanta.ast.type.LiteralList

Bases: TypedList

Instances of this class represent a list type containing only Literal values. This is the list type in the DSL

class inmanta.ast.type.Dict

Bases: Type

Instances of this class represent a dict type with any types of values.

class inmanta.ast.type.TypedDict(element_type: Type)
Bases: Dict

Instances of this class represent a dict type containing only values of type element_type.

class inmanta.ast.type.LiteralDict

Bases: TypedDict

Instances of this class represent a dict type containing only Literal values. This is the dict type in the DSL

class inmanta.ast.type.ConstraintType(namespace: Namespace, name: str)
Bases: NamedType

A type that is based on a primitive type but defines additional constraints on this type. These constraints
only apply on the value of the type.

inmanta.ast.type.TYPES

Maps Inmanta DSL types to their internal representation. For each key, value pair, value.type_string() is
guaranteed to return key.

Note: The type classes themselves do not represent inmanta types, their instances do. For example, the type
representation for the inmanta type number is Number(), not Number.

10.5. Programmatic API reference 197

Inmanta Documentation, Release 2023.1.1

10.5.13 Protocol

class inmanta.protocol.common.Result(code: int = 0, result: Optional[Dict[str, Any]] = None)
A result of a method call

code

The result code of the method call.

property result: Optional[Dict[str, Any]]

10.5.14 Data

Warning: In contrast to the rest of this section, the data API interface is subject to change. It is documented
here because it is currently the only available API to interact with the data framework. A restructure of the data
framework is expected at some point. Until then, this API should be considered unstable.

inmanta.data.TBaseDocument : typing.TypeVar

TypeVar with BaseDocument bound.

class inmanta.data.BaseDocument(from_postgres: bool = False, **kwargs: object)
A base document in the database. Subclasses of this document determine collections names. This type is
mainly used to bundle query methods and generate validate and query methods for optimized DB access.
This is not a full ODM.

Fields are modelled using type annotations similar to protocol and pydantic. The following is supported:

• Attributes are defined at class level with type annotations

• Attributes do not need a default value. When no default is provided, they are marked as required.

• When a value does not have to be set: either a default value or making it optional can be used. When a
field is optional without a default value, none will be set as default value so that the field is available.

• Fields that should be ignored, can be added to __ignore_fields__ This attribute is a tuple of strings

• Fields that are part of the primary key should be added to the __primary_key__ attributes. This attribute
is a tuple of strings.

async classmethod get_by_id(doc_id: UUID, connection: Optional[Connection] = None)→
Optional[TBaseDocument]

Get a specific document based on its ID

Returns
An instance of this class with its fields filled from the database.

async classmethod get_list(*, order_by_column: Optional[str] = None, order: Optional[str] =
None, limit: Optional[int] = None, offset: Optional[int] = None,
no_obj: Optional[bool] = None, lock: Optional[RowLockMode] =
None, connection: Optional[Connection] = None, **query: object)→
List[TBaseDocument]

Get a list of documents matching the filter args

class inmanta.data.Compile(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A run of the compiler

Parameters

• environment – The environment this resource is defined in

• requested – Time the compile was requested

198 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• started – Time the compile started

• completed – Time to compile was completed

• do_export – should this compiler perform an export

• force_update – should this compile definitely update

• metadata – exporter metadata to be passed to the compiler

• environment_variables – environment variables to be passed to the compiler

• success – was the compile successful

• handled – were all registered handlers executed?

• version – version exported by this compile

• remote_id – id as given by the requestor, used by the requestor to distinguish between
different requests

• compile_data – json data as exported by compiling with the –export-compile-data
parameter

• substitute_compile_id – id of this compile’s substitute compile, i.e. the compile
request that is similar to this one that actually got compiled.

• partial – True if the compile only contains the entities/resources for the resource sets
that should be updated

• removed_resource_sets – indicates the resource sets that should be removed from
the model

• exporter_plugin – Specific exporter plugin to use

• notify_failed_compile – if true use the notification service to notify that a compile
has failed. By default, notifications are enabled only for exporting compiles.

• failed_compile_message – Optional message to use when a notification for a failed
compile is created

async classmethod get_substitute_by_id(compile_id: UUID)→ Optional[Compile]
Get a compile’s substitute compile if it exists, otherwise get the compile by id.

Parameters
compile_id – The id of the compile for which to get the substitute compile.

Returns
The compile object for compile c2 that is the substitute of compile c1 with the given id.
If c1 does not have a substitute, returns c1 itself.

to_dto()→ CompileRun

class inmanta.data.ConfigurationModel(**kwargs: object)
Bases: BaseDocument

A specific version of the configuration model.

Parameters

• version – The version of the configuration model, represented by a unix timestamp.

• environment – The environment this configuration model is defined in

• date – The date this configuration model was created

• partial_base – If this version was calculated from a partial export, the version the
partial was applied on.

• released – Is this model released and available for deployment?

• deployed – Is this model deployed?

10.5. Programmatic API reference 199

Inmanta Documentation, Release 2023.1.1

• result – The result of the deployment. Success or error.

• version_info – Version metadata

• total – The total number of resources

async classmethod get_versions(environment: UUID, start: int = 0, limit: int = 100000)→
List[ConfigurationModel]

Get all versions for an environment ordered descending

class inmanta.data.Environment(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A deployment environment of a project

Parameters

• id – A unique, machine generated id

• name – The name of the deployment environment.

• project – The project this environment belongs to.

• repo_url – The repository url that contains the configuration model code for this envi-
ronment

• repo_branch – The repository branch that contains the configuration model code for
this environment

• settings – Key/value settings for this environment

• last_version – The last version number that was reserved for this environment

• description – The description of the environment

• icon – An icon for the environment

class inmanta.data.Report(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A report of a substep of compilation

Parameters

• started – when the substep started

• completed – when it ended

• command – the command that was executed

• name – The name of this step

• errstream – what was reported on system err

• outstream – what was reported on system out

class inmanta.data.Resource(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A specific version of a resource. This entity contains the desired state of a resource.

Parameters

• environment – The environment this resource version is defined in

• rid – The id of the resource and its version

• resource – The resource for which this defines the state

• model – The configuration model (versioned) this resource state is associated with

• attributes – The state of this version of the resource

200 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• attribute_hash – hash of the attributes, excluding requires, provides and version,
used to determine if a resource describes the same state across versions

• resource_id_value – The attribute value from the resource id

• last_non_deploying_status – The last status of this resource that is not the ‘deploy-
ing’ status.

async classmethod get_resources_for_version(environment: UUID, version: int, agent:
Optional[str] = None, no_obj: bool = False, *,
connection: Optional[Connection] = None)→
List[Resource]

class inmanta.data.ResourceAction(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

Log related to actions performed on a specific resource version by Inmanta.

Parameters

• environment – The environment this action belongs to.

• version – The version of the configuration model this action belongs to.

• resource_version_ids – The resource version ids of the resources this action relates
to.

• action_id – This id distinguishes the actions from each other. Action ids have to be
unique per environment.

• action – The action performed on the resource

• started – When did the action start

• finished – When did the action finish

• messages – The log messages associated with this action

• status – The status of the resource when this action was finished

• changes – A dict with key the resource id and value a dict of fields -> value. Value is
a dict that can contain old and current keys and the associated values. An empty dict
indicates that the field was changed but not data was provided by the agent.

• change – The change result of an action

async classmethod get_logs_for_version(environment: UUID, version: int, action: Optional[str]
= None, limit: int = 0)→ List[ResourceAction]

class inmanta.data.model.BaseModel

Bases: BaseModel

Base class for all data objects in Inmanta

class Config

Pydantic config.

use_enum_values = True

inmanta.data.model.ResourceIdStr

The resource id without the version

alias of str

inmanta.data.model.ResourceVersionIdStr

The resource id with the version included.

alias of str

10.5. Programmatic API reference 201

Inmanta Documentation, Release 2023.1.1

class inmanta.db.util.PGRestore(script: List[str], postgresql_client: Connection)
Bases: object

Class that offers support to restore a database dump.

async inmanta.db.util.clear_database(postgresql_client: Connection)→ None
Remove all content from the database. Removes functions, tables and data types.

10.5.15 Domain conversion

This section describes methods for converting values between the plugin domain and the internal domain. This
conversion is performed automatically for plugin arguments and return values so it is only required when bypassing
the usual plugin workflow by calling internal methods directly.

class inmanta.execute.proxy.DynamicProxy

This class wraps an object and makes sure that a model is never modified by native code.

classmethod return_value(value: object)→ Union[None, str, Tuple[object, ...], int, float, bool,
DynamicProxy]

Converts a value from the internal domain to the plugin domain.

classmethod unwrap(item: object)→ object
Converts a value from the plugin domain to the internal domain.

10.5.16 Rest API

The rest API is also available as a swagger spec

The (v2) API endpoints that offer paging, sorting and filtering follow a convention. They share the following
parameters:

limit
specifies the page size, so the maximum number of items returned from the query

start and first_id
These parameters define the lower limit for the page,

end and last_id
These parameters define the upper limit for the page (only one of the (start, first_id), (end, last_id) pairs
should be specified at the same time).

Note: The return value of these methods contain a links tag, with the urls of the next and prev pages, so for simply
going through the pages a client only needs to follow these links.

filter
The filter parameter is used for filtering the result set.

Filters should be specified with the syntax ?filter.<filter_key>=value.

It’s also possible to provide multiple values for the same filter, in this case results are returned, if they match
any of these filter values: ?filter.<filter_key>=value&filter.<filter_key>=value2

Multiple different filters narrow the results however (they are treated as an ‘AND’ operator). For example
?filter.<filter_key>=value&filter.<filter_key2>=value2 returns results that match both filters.

The documentation of each method describes the supported filters.

sort
The sort parameter describes how the result set should be sorted.

It should follow the pattern ?<attribute_to_sort_by>.<order>, for example ?value.desc (case insensitive).

202 Chapter 10. Inmanta Reference

openapi.html#http://

Inmanta Documentation, Release 2023.1.1

The documentation of each method describes the supported attributes to sort by.

Module defining the v1 rest api

inmanta.protocol.methods.clear_environment(id: UUID)

Clear all data from this environment.

Parameters
id – The uuid of the environment.

Raises

• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods.create_environment(project_id: UUID, name: str, repository: Optional[str]
= None, branch: Optional[str] = None,
environment_id: Optional[UUID] = None)

Create a new environment

Parameters

• project_id – The id of the project this environment belongs to

• name – The name of the environment

• repository – The url (in git form) of the repository

• branch – The name of the branch in the repository

• environment_id – A unique environment id, if none an id is allocated by the server

inmanta.protocol.methods.create_project(name: str, project_id: Optional[UUID] = None)
Create a new project

Parameters

• name – The name of the project

• project_id – A unique uuid, when it is not provided the server generates one

inmanta.protocol.methods.create_token(tid: UUID, client_types: list, idempotent: bool = True)
Create or get a new token for the given client types. Tokens generated with this call are scoped to the current
environment.

Parameters

• tid – The environment id

• client_types – The client types for which this token is valid (api, agent, compiler)

• idempotent – The token should be idempotent, such tokens do not have an expire or
issued at set so their value will not change.

inmanta.protocol.methods.decomission_environment(id: UUID, metadata: Optional[dict] = None)
Decommision an environment. This is done by uploading an empty model to the server and let
purge_on_delete handle removal.

Parameters

• id – The uuid of the environment.

• metadata – Optional metadata associated with the decommissioning

Raises

• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

10.5. Programmatic API reference 203

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods.delete_environment(id: UUID)

Delete the given environment and all related data.

Parameters
id – The uuid of the environment.

Raises

• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods.delete_param(tid: UUID, id: str, resource_id: Optional[str] = None)
Delete a parameter on the server

Parameters

• tid – The id of the environment

• id – The name of the parameter

• resource_id – The resource id of the parameter

inmanta.protocol.methods.delete_project(id: UUID)

Delete the given project and all related data

inmanta.protocol.methods.delete_setting(tid: UUID, id: str)
Delete a value

inmanta.protocol.methods.delete_version(tid: UUID, id: int)
Delete a particular version and resources

Parameters

• tid – The id of the environment

• id – The id of the version to retrieve

inmanta.protocol.methods.deploy(tid: UUID, agent_trigger_method: AgentTriggerMethod =
AgentTriggerMethod.push_full_deploy, agents: Optional[list] = None)

Notify agents to perform a deploy now.

Parameters

• tid – The id of the environment.

• agent_trigger_method – Indicates whether the agents should perform a full or an
incremental deploy.

• agents – Optional, names of specific agents to trigger

inmanta.protocol.methods.diff(a: str, b: str)
Returns the diff of the files with the two given ids

inmanta.protocol.methods.do_dryrun(tid: UUID, id: UUID, agent: str, version: int)
Do a dryrun on an agent

Parameters

• tid – The environment id

• id – The id of the dryrun

• agent – The agent to do the dryrun for

• version – The version of the model to dryrun

204 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods.dryrun_list(tid: UUID, version: Optional[int] = None)
Create a list of dry runs

Parameters

• tid – The id of the environment

• version – Only for this version

inmanta.protocol.methods.dryrun_report(tid: UUID, id: UUID)

Create a dryrun report

Parameters

• tid – The id of the environment

• id – The version dryrun to report

inmanta.protocol.methods.dryrun_request(tid: UUID, id: int)
Do a dryrun

Parameters

• tid – The id of the environment

• id – The version of the CM to deploy

inmanta.protocol.methods.dryrun_update(tid: UUID, id: UUID, resource: str, changes: dict)
Store dryrun results at the server

Parameters

• tid – The id of the environment

• id – The version dryrun to report

• resource – The id of the resource

• changes – The required changes

inmanta.protocol.methods.get_agent_process(id: UUID)

Return a detailed report for a node

Parameters
id – The session id of the agent

Returns
The requested node

inmanta.protocol.methods.get_code(tid: UUID, id: int, resource: str)
Get the code for a given version of the configuration model

Parameters

• tid – The environment the code belongs to

• id – The id (version) of the configuration model

inmanta.protocol.methods.get_compile_queue(tid: UUID)→ List[CompileRun]
Get the current compiler queue on the server

inmanta.protocol.methods.get_environment(id: UUID, versions: Optional[int] = None, resources:
Optional[int] = None)

Get an environment and all versions associated

Parameters

• id – The id of the environment to return

• versions – Include this many available version for this environment.

10.5. Programmatic API reference 205

Inmanta Documentation, Release 2023.1.1

• resources – Include this many available resources for this environment.

inmanta.protocol.methods.get_file(id: str)
Retrieve a file

Parameters
id – The id of the file to retrieve

inmanta.protocol.methods.get_param(tid: UUID, id: str, resource_id: Optional[str] = None)
Get a parameter from the server.

Parameters

• tid – The id of the environment

• id – The name of the parameter

• resource_id – Optionally, scope the parameter to resource (fact), if the resource id
should not contain a version, the latest version is used

Returns
Returns the following status codes: 200: The parameter content is returned 404: The param-
eter is not found and unable to find it because its resource is not known to the server 410:
The parameter has expired 503: The parameter is not found but its value is requested from
an agent

inmanta.protocol.methods.get_parameter(tid: UUID, agent: str, resource: dict)
Get all parameters/facts known by the agents for the given resource

Parameters

• tid – The environment

• agent – The agent to get the parameters from

• resource – The resource to query the parameters from

inmanta.protocol.methods.get_project(id: UUID)

Get a project and a list of the ids of all environments

inmanta.protocol.methods.get_report(id: UUID)

Get a compile report from the server

Parameters
id – The id of the compile and its reports to fetch.

inmanta.protocol.methods.get_reports(tid: UUID, start: Optional[str] = None, end: Optional[str] =
None, limit: Optional[int] = None)

Return compile reports newer then start

Parameters

• tid – The id of the environment to get a report from

• start – Reports after start

• end – Reports before end

• limit – Maximum number of results, up to a maximum of 1000

inmanta.protocol.methods.get_resource(tid: UUID, id: str, logs: Optional[bool] = None, status:
Optional[bool] = None, log_action:
Optional[ResourceAction] = None, log_limit: int = 0)

Return a resource with the given id.

Parameters

• tid – The id of the environment this resource belongs to

206 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• id – Get the resource with the given id

• logs – Include the logs in the response

• status – Only return the status of the resource

• log_action – The log action to include, leave empty/none for all actions. Valid actions
are one of the action strings in const.ResourceAction

• log_limit – Limit the number of logs included in the response, up to
a maximum of 1000. To retrieve more entries, use /api/v2/resource_actions
(get_resource_actions())

inmanta.protocol.methods.get_resources_for_agent(tid: UUID, agent: str, sid: Optional[UUID] =
None, version: Optional[int] = None,
incremental_deploy: bool = False)

Return the most recent state for the resources associated with agent, or the version requested

Parameters

• tid – The id of the environment this resource belongs to

• agent – The agent

• sid – Session id of the agent (transparently added by agent client)

• version – The version to retrieve. If none, the latest available version is returned. With
a specific version that version is returned, even if it has not been released yet.

• incremental_deploy – Indicates whether the server should only return the resources
that changed since the previous deployment.

inmanta.protocol.methods.get_server_status()→ StatusResponse
Get the status of the server

inmanta.protocol.methods.get_setting(tid: UUID, id: str)
Get a value

inmanta.protocol.methods.get_state(tid: UUID, sid: UUID, agent: str)
Get the state for this agent.

Returns
A map with key enabled and value a boolean.

inmanta.protocol.methods.get_status()

A call from the server to the agent to report its status to the server

Returns
A map with report items

inmanta.protocol.methods.get_version(tid: UUID, id: int, include_logs: Optional[bool] = None,
log_filter: Optional[str] = None, limit: Optional[int] = None)

Get a particular version and a list of all resources in this version

Parameters

• tid – The id of the environment

• id – The id of the version to retrieve

• include_logs – If true, a log of all operations on all resources is included

• log_filter – Filter log to only include actions of the specified type

• limit – The maximal number of actions to return per resource (starting from the lat-
est), up to a maximum of 1000. To retrieve more entries, use /api/v2/resource_actions
(get_resource_actions())

10.5. Programmatic API reference 207

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods.heartbeat(sid: UUID, tid: UUID, endpoint_names: list, nodename: str,
no_hang: bool = False)

Send a heartbeat to the server

Parameters

• sid – The session ID used by this agent at this moment

• tid – The environment this node and its agents belongs to

• endpoint_names – The names of the endpoints on this node

• nodename – The name of the node from which the heart beat comes

• no_hang – don’t use this call for long polling, but for connectivity check

also registered as API method, because it is called with an invalid SID the first time

inmanta.protocol.methods.heartbeat_reply(sid: UUID, reply_id: UUID, data: dict)
Send a reply back to the server

Parameters

• sid – The session ID used by this agent at this moment

• reply_id – The id data is a reply to

• data – The data as a response to the reply

async inmanta.protocol.methods.ignore_env(obj: Any, metadata: dict)→ Any
This mapper only adds an env all for authz

inmanta.protocol.methods.is_compiling(id: UUID)

Is a compiler running for the given environment

Parameters
id – The environment id

inmanta.protocol.methods.list_agent_processes(environment: Optional[UUID] = None, expired:
bool = True, start: Optional[UUID] = None, end:
Optional[UUID] = None, limit: Optional[int] =
None)

Return a list of all nodes and the agents for these nodes

Parameters

• environment – An optional environment. If set, only the agents that belong to this
environment are returned

• expired – Optional, also show expired processes, otherwise only living processes are
shown.

• start – Agent processes after start (sorted by sid in ASC)

• end – Agent processes before end (sorted by sid in ASC)

• limit – Maximum number of results, up to a maximum of 1000

Raises

• BadRequest – limit parameter can not exceed 1000

• NotFound – The given environment id does not exist!

Returns
A list of nodes

208 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods.list_agents(tid: UUID, start: Optional[str] = None, end: Optional[str] =
None, limit: Optional[int] = None)

List all agent for an environment

Parameters

• tid – The environment the agents are defined in

• start – Agent after start (sorted by name in ASC)

• end – Agent before end (sorted by name in ASC)

• limit – Maximum number of results, up to a maximum of 1000

Raises

• BadRequest – limit parameter can not exceed 1000

• NotFound – The given environment id does not exist!

inmanta.protocol.methods.list_environments()

Create a list of environments

inmanta.protocol.methods.list_params(tid: UUID, query: dict = {})
List/query parameters in this environment

Parameters

• tid – The id of the environment

• query – A query to match against metadata

inmanta.protocol.methods.list_projects()

Create a list of projects

inmanta.protocol.methods.list_settings(tid: UUID)

List the settings in the current environment

inmanta.protocol.methods.list_versions(tid: UUID, start: Optional[int] = None, limit: Optional[int]
= None)

Returns a list of all available versions

Parameters

• tid – The id of the environment

• start – Optional, parameter to control the amount of results that are returned. 0 is the
latest version.

• limit – Optional, parameter to control the amount of results returned, up to a maximum
of 1000.

inmanta.protocol.methods.modify_environment(id: UUID, name: str, repository: Optional[str] =
None, branch: Optional[str] = None)

Modify the given environment

Parameters

• id – The id of the environment

• name – The name of the environment

• repository – The url (in git form) of the repository

• branch – The name of the branch in the repository

inmanta.protocol.methods.modify_project(id: UUID, name: str)
Modify the given project

10.5. Programmatic API reference 209

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods.notify_change(id: UUID, update: bool = True, metadata: dict = {})
Notify the server that the repository of the environment with the given id, has changed.

Parameters

• id – The id of the environment

• update – Update the model code and modules. Default value is true

• metadata – The metadata that indicates the source of the compilation trigger.

inmanta.protocol.methods.notify_change_get(id: UUID, update: bool = True)
Simplified GET version of the POST method

inmanta.protocol.methods.put_version(tid: UUID, version: int, resources: list, resource_state: dict =
{}, unknowns: Optional[list] = None, version_info:
Optional[dict] = None, compiler_version: Optional[str] =
None, resource_sets: Dict[ResourceIdStr, Optional[str]] = {})

Store a new version of the configuration model

The version number must be obtained through the reserve_version call

Parameters

• tid – The id of the environment

• version – The version of the configuration model

• resources – A list of all resources in the configuration model (deployable)

• resource_state – A dictionary with the initial const.ResourceState per resource id.
The ResourceState should be set to undefined when the resource depends on an unknown
or available when it doesn’t.

• unknowns – A list of unknown parameters that caused the model to be incomplete

• version_info – Module version information

• compiler_version – version of the compiler, if not provided, this call will return an
error

• resource_sets – a dictionary describing which resource belongs to which resource
set

inmanta.protocol.methods.release_version(tid: UUID, id: int, push: bool = False,
agent_trigger_method: Optional[AgentTriggerMethod] =
None)

Release version of the configuration model for deployment.

Parameters

• tid – The id of the environment

• id – The version of the CM to deploy

• push – Notify all agents to deploy the version

• agent_trigger_method – Indicates whether the agents should perform a full or an
incremental deploy when push is true.

inmanta.protocol.methods.resource_action_update(tid: UUID, resource_ids: list, action_id: UUID,
action: ResourceAction, started:
Optional[datetime] = None, finished:
Optional[datetime] = None, status:
Optional[Union[ResourceState,
DeprecatedResourceState]] = None, messages:
list = [], changes: dict = {}, change:
Optional[Change] = None, send_events: bool =
False)

210 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Send a resource update to the server

Parameters

• tid – The id of the environment this resource belongs to

• resource_ids – The resource with the given resource_version_id id from the agent

• action_id – A unique id to indicate the resource action that has be updated

• action – The action performed

• started – The timestamp when this action was started. When this action (action_id)
has not been saved yet, started has to be defined.

• finished – The timestamp when this action was finished. Afterwards, no changes with
the same action_id can be stored. The status field also has to be set.

• status – The current status of the resource (if known)

• messages – A list of log entries to add to this entry.

:param change:s A dict of changes to this resource. The key of this dict indicates the attributes/fields
that

have been changed. The value contains the new value and/or the original value.

Parameters

• change – The result of the changes

• send_events – [DEPRECATED] The value of this field is not used anymore.

inmanta.protocol.methods.resource_event(tid: UUID, id: str, resource: str, send_events: bool, state:
ResourceState, change: Change, changes={})

Tell an agent a resource it waits for has been updated

Parameters

• tid – The environment this agent is defined in

• id – The name of the agent

• resource – The resource ID of the resource being updated

• send_events – [DEPRECATED] The value of this field is not used anymore.

• state – State the resource acquired (deployed, skipped, canceled)

• change – The change that was made to the resource

• changes – The changes made to the resource

inmanta.protocol.methods.set_param(tid: UUID, id: str, source: ParameterSource, value: str,
resource_id: Optional[str] = None, metadata: dict = {},
recompile: bool = False)

Set a parameter on the server. If the parameter is an tracked unknown, it will trigger a recompile on the
server. Otherwise, if the value is changed and recompile is true, a recompile is also triggered.

Parameters

• tid – The id of the environment

• id – The name of the parameter

• resource_id – Optionally, scope the parameter to resource (fact)

• source – The source of the parameter.

• value – The value of the parameter

10.5. Programmatic API reference 211

Inmanta Documentation, Release 2023.1.1

• metadata – metadata about the parameter

• recompile – Whether to trigger a recompile

inmanta.protocol.methods.set_parameters(tid: UUID, parameters: list)
Set a parameter on the server

Parameters

• tid – The id of the environment

• parameters – A list of dicts with the following keys: - id The name of the parameter
- source The source of the parameter. Valid values are defined in the ParameterSource
enum (see: inmanta/const.py) - value The value of the parameter - resource_id Option-
ally, scope the parameter to resource (fact) - metadata metadata about the parameter

inmanta.protocol.methods.set_setting(tid: UUID, id: str, value: Union[UUID, StrictNonIntBool, int,
float, datetime, str, Dict[str, Any]])

Set a value

inmanta.protocol.methods.set_state(agent: str, enabled: bool)
Set the state of the agent.

inmanta.protocol.methods.stat_file(id: str)
Does the file exist

Parameters
id – The id of the file to check

inmanta.protocol.methods.stat_files(files: list)
Check which files exist in the given list

Parameters
files – A list of file id to check

Returns
A list of files that do not exist.

inmanta.protocol.methods.trigger(tid: UUID, id: str, incremental_deploy: bool)
Request an agent to reload resources

Parameters

• tid – The environment this agent is defined in

• id – The name of the agent

• incremental_deploy – Indicates whether the agent should perform an incremental
deploy or a full deploy

inmanta.protocol.methods.trigger_agent(tid: UUID, id: str)
Request the server to reload an agent

Parameters

• tid – The environment this agent is defined in

• id – The name of the agent

Returns
The requested node

inmanta.protocol.methods.upload_code_batched(tid: UUID, id: int, resources: dict)
Upload the supporting code to the server

Parameters

• tid – The environment the code belongs to

212 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• id – The id (version) of the configuration model

• resource – a dict mapping resources to dicts mapping file names to file hashes

inmanta.protocol.methods.upload_file(id: str, content: str)
Upload a new file

Parameters

• id – The id of the file

• content – The base64 encoded content of the file

Module defining the v2 rest api

inmanta.protocol.methods_v2.agent_action(tid: UUID, name: str, action: AgentAction)→ None
Execute an action on an agent

Parameters

• tid – The environment this agent is defined in.

• name – The name of the agent.

• action – The type of action that should be executed on an agent. Pause and unpause can
only be used when the environment is not halted, while the on_resume actions can only
be used when the environment is halted. * pause: A paused agent cannot execute any
deploy operations. * unpause: A unpaused agent will be able to execute deploy opera-
tions. * keep_paused_on_resume: The agent will still be paused when the environment
is resumed * unpause_on_resume: The agent will be unpaused when the environment is
resumed

Raises
Forbidden – The given environment has been halted and the action is pause/unpause, or
the environment is not halted and the action is related to the on_resume behavior

inmanta.protocol.methods_v2.all_agents_action(tid: UUID, action: AgentAction)→ None
Execute an action on all agents in the given environment.

Parameters

• tid – The environment of the agents.

• action – The type of action that should be executed on the agents. Pause and unpause
can only be used when the environment is not halted, while the on_resume actions can
only be used when the environment is halted. * pause: A paused agent cannot execute
any deploy operations. * unpause: A unpaused agent will be able to execute deploy
operations. * keep_paused_on_resume: The agents will still be paused when the en-
vironment is resumed * unpause_on_resume: The agents will be unpaused when the
environment is resumed

Raises
Forbidden – The given environment has been halted and the action is pause/unpause, or
the environment is not halted and the action is related to the on_resume behavior

inmanta.protocol.methods_v2.compile_details(tid: UUID, id: UUID)→ CompileDetails

Returns
The details of a compile

Raises
NotFound – This exception is raised when the referenced environment or compile is not
found

inmanta.protocol.methods_v2.dryrun_trigger(tid: UUID, version: int)→ UUID
Trigger a new dryrun

Parameters

10.5. Programmatic API reference 213

Inmanta Documentation, Release 2023.1.1

• tid – The id of the environment

• version – The version of the configuration model to execute the dryrun for

Raises
NotFound – This exception is raised when the referenced environment or version is not found

Returns
The id of the new dryrun

inmanta.protocol.methods_v2.environment_clear(id: UUID)→ None
Clear all data from this environment.

Parameters
id – The uuid of the environment.

Raises

• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods_v2.environment_create(project_id: UUID, name: str, repository:
Optional[str] = None, branch: Optional[str] =
None, environment_id: Optional[UUID] = None,
description: str = '', icon: str = '')→ Environment

Create a new environment

Parameters

• project_id – The id of the project this environment belongs to

• name – The name of the environment

• repository – The url (in git form) of the repository

• branch – The name of the branch in the repository

• environment_id – A unique environment id, if none an id is allocated by the server

• description – The description of the environment, maximum 255 characters

• icon – The data-url of the icon of the environment. It should follow the pattern <mime-
type>;base64,<image>, where <mime-type> is one of: ‘image/png’, ‘image/jpeg’, ‘im-
age/webp’, ‘image/svg+xml’, and <image> is the image in the format matching the speci-
fied mime-type, and base64 encoded. The length of the whole string should be maximum
64 kb.

Raises
BadRequest – When the parameters supplied are not valid.

inmanta.protocol.methods_v2.environment_create_token(tid: UUID, client_types: List[str],
idempotent: bool = True)→ str

Create or get a new token for the given client types. Tokens generated with this call are scoped to the current
environment.

Parameters

• tid – The environment id

• client_types – The client types for which this token is valid (api, agent, compiler)

• idempotent – The token should be idempotent, such tokens do not have an expire or
issued at set so their value will not change.

inmanta.protocol.methods_v2.environment_decommission(id: UUID, metadata:
Optional[ModelMetadata] = None)→ int

Decommission an environment. This is done by uploading an empty model to the server and let
purge_on_delete handle removal.

214 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Parameters

• id – The uuid of the environment.

• metadata – Optional metadata associated with the decommissioning

Raises

• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods_v2.environment_delete(id: UUID)→ None
Delete the given environment and all related data.

Parameters
id – The uuid of the environment.

Raises

• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods_v2.environment_get(id: UUID, details: bool = False)→ Environment
Get an environment and all versions associated

Parameters

• id – The id of the environment to return

• details – Whether to include the icon and description of the environment

inmanta.protocol.methods_v2.environment_list(details: bool = False)→ List[Environment]
Returns a list of environments :param details: Whether to include the icon and description of the environ-
ments in the results

inmanta.protocol.methods_v2.environment_modify(id: UUID, name: str, repository: Optional[str] =
None, branch: Optional[str] = None, project_id:
Optional[UUID] = None, description:
Optional[str] = None, icon: Optional[str] = None)
→ Environment

Modify the given environment The optional parameters that are unspecified will be left unchanged by the
update.

Parameters

• id – The id of the environment

• name – The name of the environment

• repository – The url (in git form) of the repository

• branch – The name of the branch in the repository

• project_id – The id of the project the environment belongs to

• description – The description of the environment, maximum 255 characters

• icon – The data-url of the icon of the environment. It should follow the pattern <mime-
type>;base64,<image> , where <mime-type> is one of: ‘image/png’, ‘image/jpeg’, ‘im-
age/webp’, ‘image/svg+xml’, and <image> is the image in the format matching the speci-
fied mime-type, and base64 encoded. The length of the whole string should be maximum
64 kb. The icon can be removed by setting this parameter to an empty string.

Raises

• BadRequest – When the parameters supplied are not valid.

• NotFound – The given environment doesn’t exist.

10.5. Programmatic API reference 215

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods_v2.environment_setting_delete(tid: UUID, id: str)→
ReturnValue[None]

Delete a value

inmanta.protocol.methods_v2.environment_setting_get(tid: UUID, id: str)→
EnvironmentSettingsReponse

Get a value

inmanta.protocol.methods_v2.environment_settings_list(tid: UUID)→
EnvironmentSettingsReponse

List the settings in the current environment

inmanta.protocol.methods_v2.environment_settings_set(tid: UUID, id: str, value:
Union[StrictNonIntBool, int, float, str,
Dict[str, Union[str, int,
StrictNonIntBool]]])→
ReturnValue[None]

Set a value

inmanta.protocol.methods_v2.get_agent_process_details(tid: UUID, id: UUID, report: bool =
False)→ AgentProcess

Get the details of an agent process

Parameters

• tid – Id of the environment

• id – The id of the specific agent process

• report – Whether to include a report from the agent or not

Returns
The details of an agent process

Raises
NotFound – This exception is raised when the referenced environment or agent process is
not found

inmanta.protocol.methods_v2.get_agents(tid: UUID, limit: Optional[int] = None, start:
Optional[Union[datetime, bool, str]] = None, end:
Optional[Union[datetime, bool, str]] = None, first_id:
Optional[str] = None, last_id: Optional[str] = None, filter:
Optional[Dict[str, List[str]]] = None, sort: str = 'name.asc')
→ List[Agent]

Get all of the agents in the given environment

Parameters

• tid – The id of the environment the agents should belong to.

• limit – Limit the number of agents that are returned.

• start – The lower limit for the order by column (exclusive).

• first_id – The name to use as a continuation token for paging, in combination with
the ‘start’ value, because the order by column might contain non-unique values.

• last_id – The name to use as a continuation token for paging, in combination with the
‘end’ value, because the order by column might contain non-unique values. Only one of
‘start’ and ‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned agents. Filtering by ‘name’, ‘process_name’ and
‘status’ is supported.

216 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• sort – Return the results sorted according to the parameter value. Sorting by ‘name’,
‘process_name’, ‘status’, ‘paused’ and ‘last_failover’ is supported. The following orders
are supported: ‘asc’, ‘desc’

Returns
A list of all matching agents

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_all_facts(tid: UUID, limit: Optional[int] = None, first_id:
Optional[UUID] = None, last_id: Optional[UUID] =
None, start: Optional[str] = None, end: Optional[str] =
None, filter: Optional[Dict[str, List[str]]] = None, sort:
str = 'name.asc')→ List[Fact]

List the facts in an environment.

Parameters

• tid – The id of the environment

• limit – Limit the number of facts that are returned

• first_id – The fact id to use as a continuation token for paging, in combination with
the ‘start’ value, because the order by column might contain non-unique values

• last_id – The fact id to use as a continuation token for paging, in combination with
the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned facts. The following options are available: name:
filter by the name of the fact resource_id: filter by the resource_id of the fact

• sort – Return the results sorted according to the parameter value. The following sorting
attributes are supported: ‘name’, ‘resource_id’. The following orders are supported:
‘asc’, ‘desc’

Returns
A list of all matching facts

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_api_docs(format: Optional[ApiDocsFormat] =
ApiDocsFormat.swagger)→
ReturnValue[Union[OpenAPI, str]]

Get the OpenAPI definition of the API :param format: Use ‘openapi’ to get the schema in json format, leave
empty or use ‘swagger’ to get the Swagger-UI view

inmanta.protocol.methods_v2.get_compile_data(id: UUID)→ Optional[CompileData]
Get the compile data for the given compile request.

Parameters
id – The id of the compile.

10.5. Programmatic API reference 217

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods_v2.get_compile_reports(tid: UUID, limit: Optional[int] = None, first_id:
Optional[UUID] = None, last_id:
Optional[UUID] = None, start:
Optional[datetime] = None, end:
Optional[datetime] = None, filter:
Optional[Dict[str, List[str]]] = None, sort: str =
'requested.desc')→ List[CompileReport]

Get the compile reports from an environment.

Parameters

• tid – The id of the environment

• limit – Limit the number of instances that are returned

• first_id – The id to use as a continuation token for paging, in combination with the
‘start’ value, because the order by column might contain non-unique values

• last_id – The id to use as a continuation token for paging, in combination with the
‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned compile reports. Filters should be specified with
the syntax ?filter.<filter_key>=value, for example ?filter.success=True It’s also possi-
ble to provide multiple values for the same filter, in this case resources are returned,
if they match any of these filter values. For example: ?filter.requested=ge:2021-08-
18T09:21:30.568353&filter.requested=lt:2021-08-18T10:21:30.568353 returns com-
pile reports that were requested between the specified dates. Multiple different filters
narrow the results however (they are treated as an ‘AND’ operator). For example ?fil-
ter.success=True&filter.completed=True returns compile reports that are completed and
successful. The following options are available: success: whether the compile was suc-
cessful or not started: whether the compile has been started or not completed: whether
the compile has been completed or not

requested: return the logs matching the timestamp constraints. Valid constraints
are of the form

”<lt|le|gt|ge>:<x>”. The expected format is YYYY-MM-DDTHH:mm:ss.ssssss,
so an ISO-8601 datetime string, in UTC timezone. Specifying mi-
croseconds is optional. For example: ?filter.requested=ge:2021-08-
18T09:21:30.568353&filter.requested=lt:2021-08-18T10:21:30. Multiple con-
straints can be specified, in which case only compile reports that match all constraints
will be returned.

• sort – Return the results sorted according to the parameter value. It should follow
the pattern ?sort=<attribute_to_sort_by>.<order>, for example ?sort=requested.desc
(case insensitive). Only sorting by the requested timestamp is supported. The following
orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching compile reports

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_diff_of_versions(tid: UUID, from_version: int, to_version: int)
→ List[ResourceDiff]

218 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Compare two versions of desired states, and provide the difference between them, with regard to their re-
sources and the attributes of these resources. Resources that are the same in both versions are not mentioned
in the results.

A resource diff describes whether the resource was ‘added’, ‘modified’ or ‘deleted’, and what the values of
their attributes were in the versions. The values are also returned in a stringified, easy to compare way, which
can be used to calculate a git diff -like summary of the changes.

Parameters

• tid – The id of the environment

• from_version – The (lower) version number to compare

• to_version – The other (higher) version number to compare

Returns
The resource diffs between from_version and to_version

Raises

• NotFound – This exception is raised when the referenced environment or versions are
not found

• BadRequest – When the version parameters are not valid

inmanta.protocol.methods_v2.get_dryrun_diff(tid: UUID, version: int, report_id: UUID)→
DryRunReport

Get the report of a dryrun, describing the changes a deployment would make, with the difference between
the current and target states provided in a form similar to the desired state diff endpoint.

Parameters

• tid – The id of the environment

• version – The version of the configuration model the dryrun belongs to

• report_id – The dryrun id to calculate the diff for

Raises
NotFound – This exception is raised when the referenced environment or version is not found

Returns
The dryrun report, with a summary and the list of differences.

inmanta.protocol.methods_v2.get_environment_metrics(tid: UUID, metrics: List[str], start_interval:
datetime, end_interval: datetime,
nb_datapoints: int)→
EnvironmentMetricsResult

Obtain metrics about the given environment for the given time interval.

Parameters

• tid – The id of the environment for which the metrics have to be collected.

• metrics – List of names of metrics that have to be returned.

• start_interval – The start of the time window for which the metrics should be re-
turned.

• end_interval – The end of the time window for which the metrics should be returned.

• nb_datapoints – The amount of datapoint that will be returned within the given time
interval for each metric.

10.5. Programmatic API reference 219

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods_v2.get_fact(tid: UUID, rid: ResourceIdStr, id: UUID)→ Fact
Get one specific fact :param tid: The id of the environment :param rid: The id of the resource :param id: The
id of the fact :return: A specific fact corresponding to the id :raise NotFound: This status code is returned
when the referenced environment or fact is not found

inmanta.protocol.methods_v2.get_facts(tid: UUID, rid: ResourceIdStr)→ List[Fact]
Get the facts related to a specific resource :param tid: The id of the environment :param rid: Id of the resource
:return: The facts related to this resource :raise NotFound: This status code is returned when the referenced
environment is not found

inmanta.protocol.methods_v2.get_notification(tid: UUID, notification_id: UUID)→ Notification
Get a single notification

Parameters

• tid – The id of the environment

• notification_id – The id of the notification

Returns
The notification with the specified id

Raises
NotFound – When the referenced environment or notification is not found

inmanta.protocol.methods_v2.get_parameters(tid: UUID, limit: Optional[int] = None, first_id:
Optional[UUID] = None, last_id: Optional[UUID] =
None, start: Optional[Union[datetime, str]] = None,
end: Optional[Union[datetime, str]] = None, filter:
Optional[Dict[str, List[str]]] = None, sort: str =
'name.asc')→ List[Parameter]

List the parameters in an environment

Parameters

• tid – The id of the environment

• limit – Limit the number of parameters that are returned

• first_id – The parameter id to use as a continuation token for paging, in combination
with the ‘start’ value, because the order by column might contain non-unique values

• last_id – The parameter id to use as a continuation token for paging, in combination
with the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned parameters.

The following options are available:

– name: filter by the name of the parameter

– source: filter by the source of the parameter

– updated: filter by the updated time of the parameter

• sort – Return the results sorted according to the parameter value. The following sort-
ing attributes are supported: ‘name’, ‘source’, ‘updated’. The following orders are sup-
ported: ‘asc’, ‘desc’

Returns
A list of all matching parameters

Raises

220 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_resource_actions(tid: UUID, resource_type: Optional[str] =
None, agent: Optional[str] = None, attribute:
Optional[str] = None, attribute_value:
Optional[str] = None, log_severity:
Optional[str] = None, limit: Optional[int] = 0,
action_id: Optional[UUID] = None,
first_timestamp: Optional[datetime] = None,
last_timestamp: Optional[datetime] = None)→
ReturnValue[List[ResourceAction]]

Return resource actions matching the search criteria.

Parameters

• tid – The id of the environment this resource belongs to

• resource_type – The resource entity type that should be queried

• agent – Agent name that is used to filter the results

• attribute – Attribute name used for filtering

• attribute_value – Attribute value used for filtering. Attribute and attribute value
should be supplied together.

• log_severity – Only include ResourceActions which have a log message with this
severity.

• limit – Limit the number of resource actions included in the response, up to 1000

• action_id – Start the query from this action_id. To be used in combination with either
the first or last timestamp.

• first_timestamp – Limit the results to resource actions that started later than the value
of this parameter (exclusive)

• last_timestamp – Limit the results to resource actions that started earlier than the
value of this parameter (exclusive). Only the first_timestamp or last_timestamp param-
eter should be supplied

Returns
the list of matching Resource Actions in a descending order according to the ‘started’ times-
tamp. If a limit was specified, also return the links to the next and previous pages. The “next”
page always refers to the actions that started earlier, while the “prev” page refers to actions
that started later.

Raises
BadRequest – When the supplied parameters are not valid.

inmanta.protocol.methods_v2.get_resource_events(tid: UUID, rvid: ResourceVersionIdStr)→
Dict[ResourceIdStr, List[ResourceAction]]

Return relevant events for a resource, i.e. all deploy actions for each of its dependencies since this resources’
last deploy or all deploy actions if this resources hasn’t been deployed before. The resource actions are sorted
in descending order according to their started timestamp.

This method searches through all versions of this resource. This method should only be called when a deploy
is in progress.

Parameters

• tid – The id of the environment this resource belongs to

• rvid – The id of the resource to get events for.

10.5. Programmatic API reference 221

Inmanta Documentation, Release 2023.1.1

Raises
BadRequest – When this endpoint in called while the resource with the given resource
version is not in the deploying state.

inmanta.protocol.methods_v2.get_resources_in_version(tid: UUID, version: int, limit:
Optional[int] = None, first_id:
Optional[ResourceVersionIdStr] = None,
last_id: Optional[ResourceVersionIdStr] =
None, start: Optional[str] = None, end:
Optional[str] = None, filter:
Optional[Dict[str, List[str]]] = None, sort:
str = 'resource_type.desc')→
List[VersionedResource]

Get the resources that belong to a specific version.

Parameters

• tid – The id of the environment

• version – The version number

• limit – Limit the number of resources that are returned

• first_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘start’ value, because the order by column might contain non-unique
values

• last_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘end’ value, because the order by column might contain non-unique
values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned resources. The following options are available: agent:
filter by the agent name of the resource resource_type: filter by the type of the resource
resource_id_value: filter by the attribute values of the resource

• sort – Return the results sorted according to the parameter value. The following sorting
attributes are supported: ‘resource_type’, ‘agent’, ‘resource_id_value’. The following
orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching resources

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_source_code(tid: UUID, version: int, resource_type: str)→
List[Source]

Get the code for the given version and the given resource :param tid: The id of the environment :param
version: The id of the model version :param resource_type: The type name of the resource :raises NotFound:
Raised when the version or type is not found

inmanta.protocol.methods_v2.halt_environment(tid: UUID)→ None
Halt all orchestrator operations for an environment. The environment will enter a state where all agents are
paused and can not be unpaused. Incoming compile requests will still be queued but compilation will halt.
Normal operation can be restored using the resume_environment endpoint.

222 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Parameters
tid – The environment id

Raises
NotFound – The given environment doesn’t exist.

inmanta.protocol.methods_v2.list_desired_state_versions(tid: UUID, limit: Optional[int] =
None, start: Optional[int] = None,
end: Optional[int] = None, filter:
Optional[Dict[str, List[str]]] = None,
sort: str = 'version.desc')→
List[DesiredStateVersion]

Get the desired state versions from an environment.

Parameters

• tid – The id of the environment

• limit – Limit the number of versions that are returned

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned desired state versions. Filtering by ‘version’ range,
‘date’ range and ‘status’ is supported.

• sort – Return the results sorted according to the parameter value. Only sorting by
‘version’ is supported. The following orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching compile reports

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.list_dryruns(tid: UUID, version: int)→ List[DryRun]
Query a list of dry runs for a specific version

Parameters

• tid – The id of the environment

• version – The configuration model version to return dryruns for

Raises
NotFound – This exception is raised when the referenced environment or version is not found

Returns
The list of dryruns for the specified version in descending order by date

inmanta.protocol.methods_v2.list_notifications(tid: UUID, limit: Optional[int] = None, first_id:
Optional[UUID] = None, last_id:
Optional[UUID] = None, start:
Optional[datetime] = None, end:
Optional[datetime] = None, filter:
Optional[Dict[str, List[str]]] = None, sort: str =
'created.desc')→ List[Notification]

List the notifications in an environment.

Parameters

• tid – The id of the environment

10.5. Programmatic API reference 223

Inmanta Documentation, Release 2023.1.1

• limit – Limit the number of notifications that are returned

• first_id – The notification id to use as a continuation token for paging, in combination
with the ‘start’ value, because the order by column might contain non-unique values

• last_id – The notification id to use as a continuation token for paging, in combination
with the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned notifications. The following options are available:
read: Whether the notification was read or not cleared: Whether the notification was
cleared or not severity: Filter by the severity field of the notifications title: Filter by the
title of the notifications message: Filter by the message of the notifications

• sort – Return the results sorted according to the parameter value. Only sorting by the
‘created’ date is supported. The following orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching notifications

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering or paging are not valid

inmanta.protocol.methods_v2.project_create(name: str, project_id: Optional[UUID] = None)→
Project

Create a new project

Parameters

• name – The name of the project

• project_id – A unique uuid, when it is not provided the server generates one

inmanta.protocol.methods_v2.project_delete(id: UUID)→ None
Delete the given project and all related data

inmanta.protocol.methods_v2.project_get(id: UUID, environment_details: bool = False)→ Project
Get a project and a list of the environments under this project :param environment_details: Whether to
include the icon and description of the environments in the results

inmanta.protocol.methods_v2.project_list(environment_details: bool = False)→ List[Project]
Returns a list of projects :param environment_details: Whether to include the icon and description of the
environments in the results

inmanta.protocol.methods_v2.project_modify(id: UUID, name: str)→ Project
Modify the given project

inmanta.protocol.methods_v2.promote_desired_state_version(tid: UUID, version: int,
trigger_method:
Optional[PromoteTriggerMethod] =
None)→ None

Promote a desired state version, making it the active version in the environment.

Parameters

• tid – The id of the environment

• version – The number of the version to promote

224 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• trigger_method – If set to ‘push_incremental_deploy’ or ‘push_full_deploy’, the
agents will perform an incremental or full deploy, respectively. If set to ‘no_push’, the
new version is not pushed to the agents. If the parameter is not set (or set to null), the
new version is pushed and the environment setting ‘environment_agent_trigger_method’
decides if the deploy should be full or incremental

inmanta.protocol.methods_v2.put_partial(tid: ~uuid.UUID, resource_state:
~typing.Optional[~typing.Dict[ResourceIdStr,
~typing.Literal[<ResourceState.available: 'available'>,
<ResourceState.undefined: 'undefined'>]]] = None,
unknowns: ~typing.Optional[~typing.List[~typing.Dict[str,
~typing.Union[~uuid.UUID,
~inmanta.types.StrictNonIntBool, int, float,
~datetime.datetime, str]]]] = None, resource_sets:
~typing.Optional[~typing.Dict[ResourceIdStr,
~typing.Optional[str]]] = None, removed_resource_sets:
~typing.Optional[~typing.List[str]] = None, **kwargs:
object)→ int

Store a new version of the configuration model after a partial recompile. The partial is applied on top of the
latest version. Dynamically acquires a new version and serializes concurrent calls. Python code for the new
version is copied from the base version.

Concurrent put_partial calls are safe from race conditions provided that their resource sets are disjunct. A
put_version call concurrent with a put_partial is not guaranteed to be safe. It is the caller’s responsibility
to appropriately serialize them with respect to one another. The caller must ensure the reserve_version +
put_version operation is atomic with respect to put_partial. In other words, put_partial must not be called in
the window between reserve_version and put_version. If not respected, either the full or the partial export
might be immediately stale, and future exports will only be applied on top of the non-stale one.

Parameters

• tid – The id of the environment

• resource_state – A dictionary with the initial const.ResourceState per resource id.
The ResourceState should be set to undefined when the resource depends on an unknown
or available when it doesn’t.

• unknowns – A list of unknown parameters that caused the model to be incomplete

• resource_sets – a dictionary describing which resources belong to which resource
set

• removed_resource_sets – a list of resource_sets that should be deleted from the
model

• **kwargs – The following arguments are supported: * resources: a list of resource
objects. Since the version is not known yet resource versions should be set to 0. *
version_info: Model version information

Returns
The newly stored version number.

inmanta.protocol.methods_v2.reserve_version(tid: UUID)→ int
Reserve a version number in this environment.

inmanta.protocol.methods_v2.resource_deploy_done(tid: UUID, rvid: ResourceVersionIdStr,
action_id: UUID, status: ResourceState,
messages: List[LogLine] = [], changes:
Dict[str, AttributeStateChange] = {}, change:
Optional[Change] = None)→ None

Report to the server that an agent has finished the deployment of a certain resource.

Parameters

10.5. Programmatic API reference 225

Inmanta Documentation, Release 2023.1.1

• tid – The id of the environment the resource belongs to

• rvid – The resource version id of the resource for which the deployment is finished.

• action_id – A unique ID associated with this resource deployment action. This should
be the same ID that was passed to the /resource/<resource_id>/deploy/start API call.

• status – The current status of the resource (if known)

• messages – A list of log entries produced by the deployment action.

• changes – A dict of changes to this resource. The key of this dict indicates the at-
tributes/fields that have been changed. The value contains the new value and/or the
original value.

• change – The type of change that was done the given resource.

inmanta.protocol.methods_v2.resource_deploy_start(tid: UUID, rvid: ResourceVersionIdStr,
action_id: UUID)→
Dict[ResourceVersionIdStr, ResourceState]

Report to the server that the agent will start the deployment of the given resource.

Parameters

• tid – The id of the environment the resource belongs to

• rvid – The resource version id of the resource for which the deployment will start

• action_id – A unique id used to track the action of this deployment

Returns
A dict mapping the resource version id of each dependency of resource_id to the last deploy-
ment status of that resource.

inmanta.protocol.methods_v2.resource_details(tid: UUID, rid: ResourceIdStr)→
ReleasedResourceDetails

Returns
The details of the latest released version of a resource

Raises
NotFound – This exception is raised when the referenced environment or resource is not
found

inmanta.protocol.methods_v2.resource_did_dependency_change(tid: UUID, rvid:
ResourceVersionIdStr)→ bool

Returns True iff this resources’ events indicate a change in its dependencies since the resource’s last deploy-
ment.

This method searches through all versions of this resource. This method should only be called when a deploy
is in progress.

Parameters

• tid – The id of the environment this resource belongs to

• rvid – The id of the resource.

Raises
BadRequest – When this endpoint in called while the resource with the given resource
version is not in the deploying state.

inmanta.protocol.methods_v2.resource_history(tid: UUID, rid: ResourceIdStr, limit: Optional[int] =
None, first_id: Optional[str] = None, last_id:
Optional[str] = None, start: Optional[datetime] =
None, end: Optional[datetime] = None, sort: str =
'date.desc')→ List[ResourceHistory]

226 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Parameters

• tid – The id of the environment this resource belongs to

• rid – The id of the resource

• limit – Limit the number of instances that are returned

• first_id – The attribute_hash to use as a continuation token for paging, in combination
with the ‘start’ value, because the order by column might contain non-unique values

• last_id – The attribute_hash to use as a continuation token for paging, in combination
with the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• sort – Return the results sorted according to the parameter value. It should follow
the pattern <attribute_to_sort_by>.<order>, for example date.desc (case insensitive).
Sorting by date is supported. The following orders are supported: ‘asc’, ‘desc’

Returns
The history of a resource, according to its attributes

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for sorting or paging are not valid

inmanta.protocol.methods_v2.resource_list(tid: UUID, limit: Optional[int] = None, first_id:
Optional[ResourceVersionIdStr] = None, last_id:
Optional[ResourceVersionIdStr] = None, start:
Optional[str] = None, end: Optional[str] = None, filter:
Optional[Dict[str, List[str]]] = None, sort: str =
'resource_type.desc', deploy_summary: bool = False)→
List[LatestReleasedResource]

Parameters

• tid – The id of the environment this resource belongs to

• limit – Limit the number of instances that are returned

• first_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘start’ value, because the order by column might contain non-unique
values

• last_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘end’ value, because the order by column might contain non-unique
values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned resources. Filters should be specified with the syntax
?filter.<filter_key>=value, for example ?filter.status=deployed It’s also possible to pro-
vide multiple values for the same filter, in this case resources are returned, if they match
any of these filter values. For example: ?filter.status=deployed&filter.status=available
returns instances with either of the statuses deployed or available. Multiple different

10.5. Programmatic API reference 227

Inmanta Documentation, Release 2023.1.1

filters narrow the results however (they are treated as an ‘AND’ operator). For exam-
ple filter.status=deployed&filter.agent=internal returns resources with ‘deployed’ sta-
tus, where the ‘agent’ is set to ‘internal_agent’. The following options are available:
agent: filter by the agent of the resource resource_type: filter by the type of the resource
resource_id_value: filter by the attribute values of the resource status: filter by the cur-
rent status of the resource. For status filters it’s also possible to invert the condition with
‘!’, for example filter.status=!orphaned will return all the resources that are not in ‘or-
phaned’ state The values for the ‘agent’, ‘resource_type’ and ‘value’ filters are matched
partially.

• sort – Return the results sorted according to the parameter value. It should follow
the pattern <attribute_to_sort_by>.<order>, for example resource_type.desc (case in-
sensitive). The following sorting attributes are supported: ‘resource_type’, ‘agent’, ‘re-
source_id_value’, ‘status’. The following orders are supported: ‘asc’, ‘desc’

• deploy_summary – If set to true, returns a summary of the deployment status of the
resources in the environment in the metadata, describing how many resources are in
each state as well as the total number of resources. The summary does not take into
account the current filters or paging parameters. Orphaned resources are not included
in the summary

Returns
A list of all matching released resources

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.resource_logs(tid: UUID, rid: ResourceIdStr, limit: Optional[int] =
None, start: Optional[datetime] = None, end:
Optional[datetime] = None, filter: Optional[Dict[str,
List[str]]] = None, sort: str = 'timestamp.desc')→
List[ResourceLog]

Get the logs of a specific resource.

Parameters

• tid – The id of the environment this resource belongs to

• rid – The id of the resource

• limit – Limit the number of instances that are returned

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned logs. Filters should be specified with the syntax ?fil-
ter.<filter_key>=value, for example ?filter.minimal_log_level=INFO. It’s also possible
to provide multiple values for the same filter, in this case resources are returned, if they
match any of these filter values.

For example: ?filter.action=pull&filter.action=deploy returns logs with ei-
ther of the actions pull or deploy. Multiple different filters narrow the re-
sults however (they are treated as an ‘AND’ operator). For example fil-
ter.minimal_log_level=INFO&filter.action=deploy returns logs with ‘deploy’ action,
where the ‘log_level’ is at least ‘INFO’.

The following options are available:

– action: filter by the action of the log

228 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

– timestamp: return the logs matching the timestamp constraints. Valid con-
straints are of the form “<lt|le|gt|ge>:<x>”. The expected format is YYYY-MM-
DDTHH:mm:ss.ssssss, so an ISO-8601 datetime string, in UTC timezone.

For example: ?filter.timestamp=ge:2021-08-18T09:21:30.568353&filter.timestamp=lt:2021-
08-18T10:21:30.568353. Multiple constraints can be specified, in which case only
log messages that match all constraints will be returned.

– message: filter by the content of the log messages. Partial matches are allowed.
(case-insensitive)

– minimal_log_level: filter by the log level of the log messages. The filter specifies
the minimal level, so messages with either this level, or a higher severity level are
going to be included in the result.

For example, for filter.minimal_log_level=INFO, the log messages with level INFO,
WARNING, ERROR, CRITICAL all match the query.

• sort – Return the results sorted according to the parameter value. It should follow
the pattern <attribute_to_sort_by>.<order>, for example timestamp.desc (case insen-
sitive). Only sorting by timestamp is supported. The following orders are supported:
‘asc’, ‘desc’

Returns
A list of all matching resource logs

Raises

• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.resume_environment(tid: UUID)→ None
Resume all orchestrator operations for an environment. Resumes normal environment operation and un-
pauses all agents that were active when the environment was halted.

Parameters
tid – The environment id

Raises
NotFound – The given environment doesn’t exist.

inmanta.protocol.methods_v2.update_agent_map(agent_map: Dict[str, str])→ None
Notify an agent about the fact that the autostart_agent_map has been updated.

Parameters
agent_map – The content of the new autostart_agent_map

inmanta.protocol.methods_v2.update_notification(tid: UUID, notification_id: UUID, read:
Optional[bool] = None, cleared: Optional[bool]
= None)→ Notification

Update a notification by setting its flags

Parameters

• tid – The id of the environment

• notification_id – The id of the notification to update

• read – Whether the notification has been read

• cleared – Whether the notification has been cleared

Returns
The updated notification

Raises
NotFound – When the referenced environment or notification is not found

10.5. Programmatic API reference 229

Inmanta Documentation, Release 2023.1.1

inmanta.protocol.methods_v2.versioned_resource_details(tid: UUID, version: int, rid:
ResourceIdStr)→
VersionedResourceDetails

Parameters

• tid – The id of the environment

• version – The version number of the resource

• rid – The id of the resource

Returns
The details of a specific version of a resource

Raises
NotFound – This exception is raised when the referenced environment or resource is not
found

10.5.17 Server

class inmanta.server.extensions.ApplicationContext

Bases: object

class inmanta.server.bootloader.InmantaBootloader

Bases: object

The inmanta bootloader is responsible for: - discovering extensions - loading extensions - loading core and
extension slices - starting the server and its slices in the correct order

10.6 Inmanta Compile Data Reference

This page documents the compile data output when compiling with the –export-compile-data flag. The structure
of this JSON is defined by inmanta.data.model.CompileData which inherits from pydantic.BaseModel.
To produce the JSON representation of the object, model.json() is called. See the pydantic documentation for more
information on how exactly a JSON is generated from a model.

class inmanta.data.model.CompileData(*, errors: List[Error])
Bases: BaseModel

Top level structure of compiler data to be exported.

errors: List[Error]

All errors occurred while trying to compile.

class inmanta.ast.export.Error(*, category: ErrorCategory = ErrorCategory.runtime, type: str,
message: str, location: Optional[Location] = None, **extra_data:
Any)

Bases: BaseModel

Error occurred while trying to compile.

category: ErrorCategory

Category of this error.

location: Optional[Location]

Location where this error occurred.

message: str

Error message.

230 Chapter 10. Inmanta Reference

https://pydantic-docs.helpmanual.io/usage/exporting_models/#modeljson

Inmanta Documentation, Release 2023.1.1

type: str

Fully qualified name of the actual exception.

class inmanta.ast.export.ErrorCategory(value)
Bases: str, Enum

Category of an error.

parser = 'parse_error'

Error occurred while parsing.

plugin = 'plugin_exception'

A plugin explicitly raised an inmanta.plugins.PluginException.

runtime = 'runtime_error'

Error occurred after parsing.

class inmanta.ast.export.Location(*, uri: str, range: Range)
Bases: BaseModel

Location in a file. Based on the LSP spec 3.15

range: Range

uri: str

class inmanta.ast.export.Range(*, start: Position, end: Position)
Bases: BaseModel

Range in a file. Based on the LSP spec 3.15

end: Position

start: Position

class inmanta.ast.export.Position(*, line: int, character: int)
Bases: BaseModel

Position in a file. Based on the LSP spec 3.15

character: int

line: int

10.7 Inmanta modules

10.7.1 Module apt

• License: Apache 2.0

• Version: 0.4.18

• This module requires compiler version 2017.1 or higher

• Upstream project: https://github.com/inmanta/apt.git

10.7. Inmanta modules 231

https://microsoft.github.io/language-server-protocol/specifications/specification-3-15/#location
https://microsoft.github.io/language-server-protocol/specifications/specification-3-15/#range
https://microsoft.github.io/language-server-protocol/specifications/specification-3-15/#position
https://github.com/inmanta/apt.git

Inmanta Documentation, Release 2023.1.1

Entities

entity apt::Repository

Parents: std::Entity

An apt repository

attribute string name

attribute string base_url

attribute string release

attribute string repo

attribute bool trusted=false

relation std::Host host [1]
other end: std::Host.repository [0:*]

The following implementations are defined for this entity:

• apt::simpleRepo

The following implements statements select implementations for this entity:

• apt::simpleRepo constraint true

Implementations

implementation apt::simpleRepo

Handlers

class apt.AptPackage

A Package handler that uses apt

TODO: add latest support

• Handler name apt

• Handler for entity std::Package

10.7.2 Module aws

• License: Apache 2.0

• Version: 3.2.8

• This module requires compiler version 2017.2 or higher

• Upstream project: https://github.com/inmanta/aws.git

232 Chapter 10. Inmanta Reference

https://github.com/inmanta/aws.git

Inmanta Documentation, Release 2023.1.1

Typedefs

typedef aws::direction

• Base type string

• Type constraint ((self == 'ingress') or (self == 'egress'))

typedef aws::instance_tenancy

• Base type string

• Type constraint /^(default|dedicated|host)$/

Entities

entity aws::AWSResource

Parents: std::PurgeableResource, std::ManagedResource

relation aws::Provider provider [1]

entity aws::ELB

Parents: aws::AWSResource

An ELB load balancer

attribute string name

attribute string security_group='default'

attribute number listen_port=80

attribute number dest_port=80

attribute string protocol='http'

relation aws::VirtualMachine instances [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::GroupRule

Parents: aws::SecurityRule

relation aws::SecurityGroup remote_group [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::Host

Parents: aws::VMAttributes, ip::Host

A subclass of ip::Host that creates a virtual machine on AWS.

attribute bool install_agent=false

relation aws::VirtualMachine vm [1]

relation aws::Provider provider [1]

relation ssh::Key public_key [1]

relation ip::IP public_ip [0:1]

10.7. Inmanta modules 233

Inmanta Documentation, Release 2023.1.1

relation ip::IP private_ip [1]

relation aws::Subnet subnet [0:1]

relation aws::SecurityGroup security_groups [0:*]

The following implementations are defined for this entity:

• aws::awsHost

The following implements statements select implementations for this entity:

• std::hostDefaults, aws::awsHost constraint true

• aws::userData constraint install_agent

entity aws::IPrule

Parents: aws::SecurityRule

attribute ip::cidr remote_prefix

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::InternetGateway

Parents: aws::AWSResource

An Internet gateway for use with a VPC.

attribute string name

relation aws::VPC vpc [0:1]
other end: aws::VPC.internet_gateway [0:1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::Provider

Parents: std::Entity

The configuration to access Amazon Web Services

attribute string name

attribute string region

attribute string availability_zone

attribute string? access_key=null

attribute string? secret_key=null

attribute bool auto_agent=true

The following implementations are defined for this entity:

• aws::agentConfig

The following implements statements select implementations for this entity:

• std::none constraint true

• aws::agentConfig constraint auto_agent

entity aws::Route

Parents: aws::AWSResource

A route entry in the main VPC routing table

234 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute ip::cidr destination
The destination route

attribute ip::ip nexthop

The private ip associated with a ENI in the VPC.

relation aws::VPC vpc [1]
other end: aws::VPC.routes [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::SecurityGroup

Parents: aws::AWSResource

attribute string description=''

attribute string name

attribute bool manage_all=true

attribute number retries=10
A security group can only be deleted when it is no longer in use. The API confirms the delete of a
virtual machine for example, but it might still be in progress. This results in a failure to delete the
security group. To speed up deployments, the handler can retry this number of times before skipping
the resource.

attribute number wait=5
The number of seconds to wait between retries.

relation aws::SecurityRule rules [0:*]
other end: aws::SecurityRule.group [1]

relation aws::VPC vpc [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::SecurityRule

Parents: std::Entity

A filter rule in the a security group

attribute ip::protocol ip_protocol
The type of ip protocol to allow. Currently this support tcp/udp/icmp/sctp or all

attribute ip::port port_min=0

attribute ip::port port_max=0

attribute ip::port port=0

attribute aws::direction direction

relation aws::SecurityGroup group [1]
other end: aws::SecurityGroup.rules [0:*]

entity aws::Subnet

Parents: aws::AWSResource

A subnet in a vpc

10.7. Inmanta modules 235

Inmanta Documentation, Release 2023.1.1

attribute string name

The name of the subnet. Inmanta uses this name to idenfiy the subnet. It is set as the name tag on the
subnet resource.

attribute string? availability_zone=null
The Availability Zone for the subnet.

attribute ip::cidr cidr_block
The IPv4 network range for the VPC, in CIDR notation. For example, 10.0.0.0/24.

attribute bool map_public_ip_on_launch=false
Specify true to indicate that network interfaces created in the specified subnet should be assigned a
public IPv4 address. This includes a network interface that’s created when launching an instance into
the subnet (the instance therefore receives a public IPv4 address).

relation aws::VPC vpc [1]
The VPC the subnet is created in.

other end: aws::VPC.subnets [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::VMAttributes

Parents: platform::UserdataVM

attribute string flavor

attribute string image

attribute string user_data

attribute string? subnet_id=null

attribute bool source_dest_check=true

attribute bool ebs_optimized=false

attribute bool install_agent=false

attribute bool ignore_extra_volumes=false

attribute bool ignore_wrong_image=false

attribute number root_volume_size=16

attribute string root_volume_type='gp2'

entity aws::VPC

Parents: aws::AWSResource

A VPC on Amazon

attribute string name

The name of the VPC. Inmanta uses this name to idenfiy the vpc. It is set as the name tag on the vpc
resource.

attribute ip::cidr cidr_block
The IPv4 network range for the VPC, in CIDR notation. For example, 10.0.0.0/16.

236 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute aws::instance_tenancy instance_tenancy='default'
The tenancy options for instances launched into the VPC. For default , instances are launched with
shared tenancy by default. You can launch instances with any tenancy into a shared tenancy VPC.
For dedicated , instances are launched as dedicated tenancy instances by default. You can only launch
instances with a tenancy of dedicated or host into a dedicated tenancy VPC.

attribute bool enableDnsHostnames=false

attribute bool enableDnsSupport=false

relation aws::Subnet subnets [0:*]
The VPC the subnet is created in.

other end: aws::Subnet.vpc [1]

relation aws::InternetGateway internet_gateway [0:1]
other end: aws::InternetGateway.vpc [0:1]

relation aws::Route routes [0:*]
other end: aws::Route.vpc [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::VirtualMachine

Parents: aws::VMAttributes, aws::AWSResource

This entity represents a virtual machine that is hosted on an IaaS

attribute string name

attribute dict tags=Dict()

relation ssh::Key public_key [1]

relation aws::Subnet subnet [0:1]
Boot the vm in this subnet. Either use this relation or provide a subnet id directly.

relation aws::SecurityGroup security_groups [0:*]
The security groups that apply to this vm. If no group is supplied the default security group will be
applied by EC2

relation aws::Volume volumes [0:*]
other end: aws::Volume.vm [0:1]

The following implementations are defined for this entity:

• aws::req

The following implements statements select implementations for this entity:

• aws::req constraint true

• aws::userData constraint install_agent

entity aws::Volume

Parents: aws::AWSResource

attribute string name

attribute string attachmentpoint='/dev/sdb'

attribute string availability_zone

attribute bool encrypted=false

10.7. Inmanta modules 237

Inmanta Documentation, Release 2023.1.1

attribute number size=10

attribute string volume_type='gp2'

attribute dict tags=Dict()

relation aws::VirtualMachine vm [0:1]
other end: aws::VirtualMachine.volumes [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::analytics::ElasticSearch

Parents: aws::AWSResource

Amazon Elasticsearch Service (Amazon ES) is a managed service that makes it easy to create a domain and
deploy, operate, and scale Elasticsearch clusters in the AWS Cloud.

attribute string domain_name

attribute string elasticsearch_version

attribute string instance_type

attribute number instance_count=1

attribute bool dedicated_master_enabled=false

attribute bool zone_awareness_enabled=false

attribute string dedicated_master_type=''

attribute number dedicated_master_count=1

attribute bool ebs_enabled=true

attribute string volume_type='gp2'

attribute number volume_size

attribute string access_policies

attribute number automated_snapshot_start_hour=0

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::database::RDS

Parents: aws::AWSResource

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate,
and scale a relational database in the cloud.

attribute string name

attribute number allocated_storage=10

attribute string flavor='db.t2.small'

attribute string engine='mysql'

attribute string engine_version='5.7.17'

attribute string master_user_name='root'

238 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute string master_user_password

attribute string subnet_group

attribute ip::port port=3306

attribute bool public=false

attribute dict tags=Dict()

The following implements statements select implementations for this entity:

• std::none constraint true

Implementations

implementation aws::agentConfig

implementation aws::awsHost

implementation aws::req

implementation aws::userData

Plugins

aws.elbid(name: string)→ string

aws.get_api_id(provider: aws::Provider, api_name: string)→ string

Resources

class aws.ELB

Amazon Elastic loadbalancer

• Resource for entity aws::ELB

• Id attribute name

• Agent name provider.name

• Handlers aws.ELBHandler

class aws.InternetGateway

• Resource for entity aws::InternetGateway

• Id attribute name

• Agent name provider.name

• Handlers aws.InternetGatewayHandler

class aws.Route

• Resource for entity aws::Route

• Id attribute destination

• Agent name provider.name

• Handlers aws.RouteHandler

10.7. Inmanta modules 239

Inmanta Documentation, Release 2023.1.1

class aws.SecurityGroup

A security group in an OpenStack tenant

• Resource for entity aws::SecurityGroup

• Id attribute name

• Agent name provider.name

• Handlers aws.SecurityGroupHandler

class aws.Subnet

• Resource for entity aws::Subnet

• Id attribute name

• Agent name provider.name

• Handlers aws.SubnetHandler

class aws.VPC

• Resource for entity aws::VPC

• Id attribute name

• Agent name provider.name

• Handlers aws.VPCHandler

class aws.VirtualMachine

• Resource for entity aws::VirtualMachine

• Id attribute name

• Agent name provider.name

• Handlers aws.VirtualMachineHandler

class aws.Volume

• Resource for entity aws::Volume

• Id attribute name

• Agent name provider.name

• Handlers aws.VolumeHandler

class aws.ElasticSearch

• Resource for entity aws::analytics::ElasticSearch

• Id attribute domain_name

• Agent name provider.name

• Handlers aws.ElasticSearchHandler

class aws.RDS

• Resource for entity aws::database::RDS

• Id attribute name

• Agent name provider.name

• Handlers aws.RDSHandler

240 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Handlers

class aws.ELBHandler

This class manages ELB instances on amazon ec2

• Handler name ec2

• Handler for entity aws::ELB

class aws.VirtualMachineHandler

• Handler name ec2

• Handler for entity aws::VirtualMachine

class aws.VolumeHandler

• Handler name volume

• Handler for entity aws::Volume

class aws.ElasticSearchHandler

• Handler name elasticsearch

• Handler for entity aws::analytics::ElasticSearch

class aws.RDSHandler

• Handler name elasticsearch

• Handler for entity aws::database::RDS

class aws.VPCHandler

• Handler name ec2

• Handler for entity aws::VPC

class aws.RouteHandler

• Handler name ec2

• Handler for entity aws::Route

class aws.SubnetHandler

• Handler name ec2

• Handler for entity aws::Subnet

class aws.InternetGatewayHandler

• Handler name ec2

• Handler for entity aws::InternetGateway

class aws.SecurityGroupHandler

• Handler name ec2

• Handler for entity aws::SecurityGroup

10.7. Inmanta modules 241

Inmanta Documentation, Release 2023.1.1

10.7.3 Module cron

• License: Apache 2.0

• Version: 1.0.8

• Upstream project: https://github.com/inmanta/cron.git

Typedefs

typedef cron::cronjob_name

• Base type string

• Type constraint /^[a-zA-Z0-9]+$/

Entities

entity cron::Cronjob

Parents: std::PurgeableResource

attribute cron::cronjob_name name
The name of the cronjob.

attribute string user

Command will be executed with this user.

attribute string schedule

A cron expression indicating when the command should be executed.

attribute string command

The command executed when the cronjob fires.

attribute dict env_vars=Dict()
The environment variables that should be available to the command being executed.

relation std::Host host [1]
other end: std::Host.cronjobs [0:*]

The following implementations are defined for this entity:

• cron::cronjob

The following implements statements select implementations for this entity:

• cron::cronjob constraint true

Implementations

implementation cron::cronjob

242 Chapter 10. Inmanta Reference

https://github.com/inmanta/cron.git

Inmanta Documentation, Release 2023.1.1

10.7.4 Module exec

• License: Apache 2.0

• Version: 1.1.15

• This module requires compiler version 2017.1 or higher

• Upstream project: https://github.com/inmanta/exec.git

Entities

entity exec::Run

Parents: std::Resource

Run a command with almost exact semantics as the exec type of puppet

The command is not executed in a shell! This means:

• shell operators like ;, |, > don’t work

• variable substitution doesn’t work: echo $PATH will literally print $PATH

• variable substitution doesn’t work in environment variables either: setting PATH to $PATH will result
in command not found

If want to run a command in a shell, use the plugin ‘in_shell’:

exec::Run(host=host, command=exec::in_shell(command))

If you want variable substitution on environment variables, use the export command in the shell:

exec::Run(host=host, command=exec::in_shell("export PATH=$PATH:/usr/local/bin; {
↪→{command}}"))

attribute string command

The actual command to execute. The command should be almost always be idempotent.

attribute string creates=''
A file that the command creates, when the file already exists the command will not be executed. This
helps to make simple commands idempotent

attribute string cwd=''
The directory from which to run the command. WARNING: Command is spawned in a subshell. This
implies that the real path of cwd is used and not a possible symlinked path.

attribute dict environment=Dict()
Environment variables to set before the command is executed. A dictionary of variables can be passed
in the form {“var”: “value”}.

attribute string onlyif=''
Only execute the command if this command is true (returns 0)

attribute string path=''
The path to search the command in

attribute string reload=''
The command to execute when this run needs to reload. If empty the command itself will be executed
again.

attribute bool reload_only=false
Only use this command to reload

10.7. Inmanta modules 243

https://github.com/inmanta/exec.git

Inmanta Documentation, Release 2023.1.1

attribute number[] returns=List()
A list of valid return codes, by default this is only 0

attribute number timeout=300
The maximum time the command should take. If the command takes longer, the deploy agent will try
to end it.

attribute string unless=''
If this attribute is set, the command will only execute if the command in this attribute is not successful
(returns not 0). If the command passed to this attribute does not exist, this is interpreted as a non-
successful execution.

attribute bool skip_on_fail=false
Report this resource as skipped instead of failed.

relation std::Host host [1]

The following implementations are defined for this entity:

• exec::execHost

The following implements statements select implementations for this entity:

• exec::execHost constraint true

Implementations

implementation exec::execHost

Plugins

exec.in_shell(command: string)
Wrap the command such that it is executed in a shell

Resources

class exec.Run

This class represents a service on a system.

• Resource for entity exec::Run

• Id attribute command

• Agent name host.name

• Handlers exec.PosixRun

Handlers

class exec.PosixRun

A handler to execute commands on posix compatible systems. This is a very atypical resource as
this executes a command. The check_resource method will determine based on the “reload_only”,
“creates”, “unless” and “onlyif” attributes if the command will be executed.

• Handler name posix

• Handler for entity exec::Run

244 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.7.5 Module graph

• License: Apache V2

• Version: 0.8.11

• Upstream project: https://github.com/inmanta/graph.git

Entities

entity graph::ClassDiagram

Parents: std::Entity

Create a class diagram of a given module expression

attribute string name

The name of the graph, this is used to determine the name of the resulting image file

attribute string[] moduleexpression
List of regexes matching module names

attribute string header=''
file header for plantuml file

The following implements statements select implementations for this entity:

• std::none constraint true

entity graph::Graph

Parents: std::Entity

Create a graph with the given name and the grap definition in config

attribute string name

The name of the graph, this is used to determine the name of the resulting image file

attribute string config

The definition used to generate the graph

The following implements statements select implementations for this entity:

• std::none constraint true

10.7.6 Module ip

• License: Apache 2.0

• Version: 1.2.14

• This module requires compiler version 2016.5 or higher

• Upstream project: https://github.com/inmanta/ip.git

10.7. Inmanta modules 245

https://github.com/inmanta/graph.git
https://github.com/inmanta/ip.git

Inmanta Documentation, Release 2023.1.1

Typedefs

typedef ip::cidr

• Base type string

• Type constraint (ip::is_valid_cidr(self) == true)

typedef ip::cidr_v10

• Base type string

• Type constraint (ip::is_valid_cidr_v10(self) == true)

typedef ip::cidr_v6

• Base type string

• Type constraint (ip::is_valid_cidr_v6(self) == true)

typedef ip::ip

• Base type string

• Type constraint (ip::is_valid_ip(self) == true)

typedef ip::ip_v10

• Base type string

• Type constraint (ip::is_valid_ip_v10(self) == true)

typedef ip::ip_v6

• Base type string

• Type constraint (ip::is_valid_ip_v6(self) == true)

typedef ip::mask

• Base type string

• Type constraint (ip::is_valid_netmask(self) == true)

typedef ip::port

• Base type number

• Type constraint ((self >= 0) and (self < 65536))

typedef ip::protocol

• Base type string

• Type constraint (((((self == 'tcp') or (self == 'udp')) or (self == 'icmp')) or
(self == 'sctp')) or (self == 'all'))

Entities

entity ip::Address

Parents: ip::Alias

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Alias

Parents: ip::IP

246 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute ip::ip netmask='0.0.0.0'

attribute number alias=0

attribute bool dhcp=false

relation ip::services::Server server [0:*]
other end: ip::services::Server.ips [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::DstService

Parents: ip::Service

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Host

Parents: std::Host

A host that has an ip attribute for easy ip address access in the configuration model.

attribute ip::ip ip

The ipaddress of this node

attribute bool remote_agent=false
Start the mgmt agent for this node on the server and use remote io (ssh)

attribute string remote_user='root'
The remote user for the remote agent to login with

attribute ip::port remote_port=22
The remote port for this remote agent to use.

relation ip::services::Server servers [0:*]
other end: ip::services::Server.host [1]

relation ip::services::Client clients [0:*]
other end: ip::services::Client.host [1]

The following implements statements select implementations for this entity:

• std::hostDefaults constraint true

entity ip::IP

Parents: std::Entity

Base class for all ip addresses

attribute ip::ip v4='0.0.0.0'

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Network

Parents: std::Entity

A network in this infrastructure.

attribute string network

attribute string netmask

10.7. Inmanta modules 247

Inmanta Documentation, Release 2023.1.1

attribute string name

attribute bool dhcp

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Port

Parents: ip::PortRange

attribute ip::port high=0

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::PortRange

Parents: std::Entity

attribute ip::port low

attribute ip::port high

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Service

Parents: std::Entity

Define a service as a protocol and a source and destination port range

attribute ip::protocol proto

relation ip::PortRange dst_range [0:*]

relation ip::PortRange src_range [0:*]

relation ip::services::BaseServer listening_servers [0:*]
other end: ip::services::BaseServer.services [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::BaseClient

Parents: std::Entity

Base client class that connects to a server

relation ip::services::BaseServer servers [0:*]
other end: ip::services::BaseServer.clients [0:*]

entity ip::services::BaseServer

Parents: std::Entity

Base class for servers that accept connections from clients

relation ip::Service services [0:*]
other end: ip::Service.listening_servers [0:*]

relation ip::services::BaseClient clients [0:*]
other end: ip::services::BaseClient.servers [0:*]

248 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

entity ip::services::Client

Parents: ip::services::BaseClient

This interface models a client that is linked to a host

relation ip::Host host [1]
other end: ip::Host.clients [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::Server

Parents: ip::services::BaseServer

This interface models a server that accepts connections from a client

relation ip::Host host [1]
other end: ip::Host.servers [0:*]

relation ip::Alias ips [0:*]
other end: ip::Alias.server [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualClient

Parents: ip::services::BaseClient, ip::services::VirtualSide

This interface models a virtual client. It can for example represent all clients that exist on the internet.

attribute string name

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualHost

Parents: ip::services::VirtualScope

An address represented by a hostname

attribute std::hoststring hostname

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualIp

Parents: ip::services::VirtualScope

Only one ip

attribute ip::ip address

entity ip::services::VirtualNetwork

Parents: ip::services::VirtualScope

Define a virtual network segment

attribute ip::ip network

attribute ip::ip netmask

entity ip::services::VirtualRange

Parents: ip::services::VirtualScope

A range defined by from/to

10.7. Inmanta modules 249

Inmanta Documentation, Release 2023.1.1

attribute ip::ip from

attribute ip::ip to

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualScope

Parents: std::Entity

This interface represents a scope to determine what a virtual client or server is.

relation ip::services::VirtualSide side [0:*]
other end: ip::services::VirtualSide.scope [0:*]

entity ip::services::VirtualServer

Parents: ip::services::BaseServer, ip::services::VirtualSide

Same as VirtualClient but then for a server

attribute string name

entity ip::services::VirtualSide

Parents: std::Entity

A base class for a virtual server or client

relation ip::services::VirtualScope scope [0:*]
other end: ip::services::VirtualScope.side [0:*]

Implementations

implementation ip::agentConfig

Plugins

ip.add(addr: ip::ip_v10, n: number)→ ip::ip_v10
Add a number to the given ip.

ip.cidr_to_network(cidr: string)→ string
Given cidr return the network address

ip.concat(host: std::hoststring, domain: std::hoststring)→ std::hoststring
Concat host and domain

ip.hostname(fqdn: string)→ string
Return the hostname part of the fqdn

ip.ipindex(addr: ip::cidr_v10, position: number)→ string
Return the address at position in the network.

ip.ipnet(addr: ip::cidr_v10, what: string)→ string
Return the ip, prefixlen, netmask or network address of the CIDR

Parameters

• addr – CIDR

• what – The required result:

– ip: The IP address of addr object.

– prefixlen: The prefix length of addr object.

250 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

– netmask: The subnet mask of addr object.

– network: The network address of addr object.

For instance:

std::print(ipnet(“192.168.1.100/24”, “ip”)) –> 192.168.1.100
std::print(ipnet(“192.168.1.100/24”, “prefixlen”)) –> 24
std::print(ipnet(“192.168.1.100/24”, “netmask”)) –> 255.255.255.0
std::print(ipnet(“192.168.1.100/24”, “network”)) –> 192.168.1.0

ip.is_valid_cidr(addr: string)→ bool

ip.is_valid_cidr_v10(addr: string)→ bool
Validate if the string matches a v6 or a v4 network in CIDR notation

ip.is_valid_cidr_v6(addr: string)→ bool

ip.is_valid_ip(addr: string)→ bool

ip.is_valid_ip_v10(addr: string)→ bool
Validate if the string matches a v6 or v4 address

ip.is_valid_ip_v6(addr: string)→ bool

ip.is_valid_netmask(netmask: string)→ bool
Validate if the string matches a netmask

ip.net_to_nm(network_addr: string)→ string

ip.netmask(cidr: number)→ ip::ip
Given the cidr, return the netmask

ip.network(ip: ip::ip, cidr: string)→ string
Given the ip and the cidr, return the network address

10.7.7 Module mysql

• License: Apache 2.0

• Version: 0.6.10

• This module requires compiler version 2017.2 or higher

• Upstream project: https://github.com/inmanta/mysql.git

Entities

entity mysql::DBMS

Parents: std::Entity

A DB management system (a service on a machina, DBaaS, . . .)

attribute string hostref

reference to host, e.g. ip or hostname

attribute ip::port port=3306

relation mysql::Database databases [0:*]
other end: mysql::Database.server [1]

entity mysql::Database

Parents: std::Entity

10.7. Inmanta modules 251

https://github.com/inmanta/mysql.git

Inmanta Documentation, Release 2023.1.1

attribute string name

attribute string user

attribute string password

attribute string encoding='utf8'

attribute string collation='utf8_general_ci'

relation mysql::DBMS server [1]
other end: mysql::DBMS.databases [0:*]

The following implementations are defined for this entity:

• mysql::dBDependsOnServer

The following implements statements select implementations for this entity:

• mysql::dBDependsOnServer constraint true

entity mysql::ManagedMysql

Parents: mysql::DBMS

attribute string user

attribute string password

relation ip::Host agenthost [1]

The following implementations are defined for this entity:

• mysql::manageManaged

The following implements statements select implementations for this entity:

• mysql::manageManaged constraint true

entity mysql::Server

Parents: ip::services::Server, mysql::DBMS

Mysql server configuration

attribute bool remove_anon_users=false
Required when trying to connect to a mysql database on the same host over it’ external IP.

relation std::Service _svc [1]

The following implementations are defined for this entity:

• mysql::removeAnonUsers

• mysql::ports

• mysql::mysqlRedhat

• mysql::mysqlMariaDB

• mysql::ubuntuMysql

The following implements statements select implementations for this entity:

• mysql::removeAnonUsers constraint (remove_anon_users == true)

• mysql::ports constraint true

• mysql::mysqlRedhat constraint (std::familyof(host.os,'rhel') and (host.os.version
<= 6))

• mysql::mysqlMariaDB constraint ((std::familyof(host.os,'rhel') and (host.os.
version >= 7)) or std::familyof(host.os,'fedora'))

252 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• mysql::ubuntuMysql constraint std::familyof(host.os,'ubuntu')

Implementations

implementation mysql::dBDependsOnServer

implementation mysql::manageManaged

implementation mysql::mysqlMariaDB

implementation mysql::mysqlRedhat

implementation mysql::ports

implementation mysql::removeAnonUsers

implementation mysql::ubuntuMysql

10.7.8 Module net

• License: Apache 2.0

• Version: 1.0.16

• This module requires compiler version 2020.1 or higher

• Upstream project: https://github.com/inmanta/net.git

Typedefs

typedef net::mac_addr

• Base type string

• Type constraint (std::validate_type('pydantic.constr',self,Dict()) == true)

typedef net::vlan_id

• Base type int

• Type constraint (std::validate_type('pydantic.conint',self,Dict()) == true)

Entities

entity net::Interface

Parents: std::Entity

This interface models an ethernet network interface.

attribute net::mac_addr mac=''

attribute string name

attribute number mtu=1500

attribute bool vlan=false

10.7. Inmanta modules 253

https://github.com/inmanta/net.git

Inmanta Documentation, Release 2023.1.1

relation std::Host host [1]
Host ethernet interface are always placed inside a host

other end: std::Host.ifaces [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

10.7.9 Module openstack

• License: Apache 2.0

• Version: 3.8.7

• This module requires compiler version 2020.2 or higher

• Upstream project: https://github.com/inmanta/openstack.git

Typedefs

typedef openstack::admin_state

• Base type string

• Type constraint ((self == 'up') or (self == 'down'))

typedef openstack::container_format

• Base type string

• Type constraint (self in ['ami','ari','aki','bare','ovf','ova','docker'])

typedef openstack::direction

• Base type string

• Type constraint ((self == 'ingress') or (self == 'egress'))

typedef openstack::disk_format

• Base type string

• Type constraint (self in ['ami','ari','aki','vhd','vhdx','vmdk','raw','qcow2',
'vdi','iso','ploop'])

typedef openstack::visibility

• Base type string

• Type constraint (self in ['public','private'])

Entities

entity openstack::AddressPair

Parents: std::Entity

An address pair that is added to a host port

attribute ip::cidr address
The address range that is allowed on this port (network interface)

254 Chapter 10. Inmanta Reference

https://github.com/inmanta/openstack.git

Inmanta Documentation, Release 2023.1.1

attribute net::mac_addr? mac=null

The following implements statements select implementations for this entity:

• std::none constraint true

entity openstack::EndPoint

Parents: openstack::OpenStackResource

attribute string region

attribute string internal_url

attribute string public_url

attribute string admin_url

attribute string service_id

relation openstack::Service service [1]
other end: openstack::Service.endpoint [0:1]

relation openstack::Provider provider [1]
other end: openstack::Provider.endpoints [0:*]

The following implementations are defined for this entity:

• openstack::endPoint

The following implements statements select implementations for this entity:

• openstack::endPoint, openstack::providerRequire constraint true

entity openstack::Flavor

Parents: openstack::OpenStackResource

A machine flavor for OpenStack VMs

attribute string name

Descriptive name of the flavor. While OpenStack does not consider the name unique, this module does.

attribute number ram
Memory in MB for the flavor

attribute number vcpus
Number of VCPUs for the flavor

attribute number disk
Size of local disk in GB

attribute string? flavor_id=null
OpenStack unique ID. You can use the reserved value “auto” to have Nova generate a UUID for the
flavor in cases where you cannot simply pass null.

attribute number ephemeral=0
Ephemeral disk size in GB

attribute number swap=0
Swap space in MB

attribute number rxtx_factor=1.0
RX/TX factor

attribute bool is_public=true
Whether the flavor is publicly visible

10.7. Inmanta modules 255

Inmanta Documentation, Release 2023.1.1

attribute dict extra_specs=Dict()
Set extra specs on a flavor. See https://docs.openstack.org/nova/rocky/admin/flavors.html

relation openstack::Provider provider [1]
other end: openstack::Provider.flavors [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::FloatingIP

Parents: openstack::OpenStackResource

attribute string name

attribute ip::ip address

attribute bool force_ip=false

relation openstack::Project project [1]
other end: openstack::Project.floating_ips [0:*]

relation openstack::Provider provider [1]
other end: openstack::Provider.floating_ips [0:*]

relation openstack::Network external_network [1]
other end: openstack::Network.floating_ips [0:*]

relation openstack::HostPort port [1]
other end: openstack::HostPort.floating_ips [0:*]

The following implementations are defined for this entity:

• openstack::fipName

• openstack::fipAddr

The following implements statements select implementations for this entity:

• openstack::fipName, openstack::providerRequire constraint true

• openstack::fipAddr constraint (not force_ip)

entity openstack::GroupRule

Parents: openstack::SecurityRule

relation openstack::SecurityGroup remote_group [1]
other end: openstack::SecurityGroup.remote_group_rules [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity openstack::Host

Parents: ip::Host, openstack::VMAttributes

attribute bool purged=false
Set whether this Host should exist or not.

attribute bool purge_on_delete=false
Purge this Host when it is deleted from the configuration model.

relation openstack::VirtualMachine vm [1]
other end: openstack::VirtualMachine.host [0:1]

relation openstack::Subnet subnet [0:1]

256 Chapter 10. Inmanta Reference

https://docs.openstack.org/nova/rocky/admin/flavors.html

Inmanta Documentation, Release 2023.1.1

relation ssh::Key key_pair [1]

relation openstack::Project project [1]

relation openstack::Provider provider [1]

relation openstack::SecurityGroup security_groups [0:*]

The following implementations are defined for this entity:

• openstack::eth0Port

• openstack::openstackVM

The following implements statements select implementations for this entity:

• openstack::eth0Port constraint subnet is defined

• std::hostDefaults, openstack::openstackVM constraint true

• openstack::userData constraint install_agent

entity openstack::HostPort

Parents: openstack::Port

A port attached to a VM

attribute string name

The name of the host port.

attribute bool portsecurity=true
Enable or disable port security (security groups and spoofing filters)

attribute bool dhcp=true
Enable dhcp for this port or not for this port

attribute number port_index=0
The index of the port. This determines the order of the interfaces on the virtual machine. 0 means no
specific order.

attribute number retries=20
A hostport can only be attached to a VM when it is in an active state. The handler will skip this port
when the VM is not ready. To speed up deployments, the handler can retry this number of times before
skipping the resource.

attribute number wait=5
The number of seconds to wait between retries.

relation openstack::Subnet subnet [1]
other end: openstack::Subnet.host_ports [0:*]

relation openstack::VirtualMachine vm [1]
other end: openstack::VirtualMachine.ports [0:*]

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.port [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::IPrule

Parents: openstack::SecurityRule

10.7. Inmanta modules 257

Inmanta Documentation, Release 2023.1.1

attribute ip::cidr remote_prefix

The following implements statements select implementations for this entity:

• std::none constraint true

entity openstack::Image

Parents: openstack::OpenStackResource

A machine image for OpenStack VMs

attribute string name

Name for the flavor. Inmanta treats image names as unique per provider.

attribute string uri

a link to the download location of the image.

attribute openstack::container_format? container_format='bare'
Must be one of [null, ami, ari, aki, bare, ovf, ova, docker].

attribute openstack::disk_format? disk_format='qcow2'
Must be one of [null, ami, ari, aki, vhd, vhdx, vmdk, raw, qcow2, vdi, iso, ploop].

attribute std::uuid? image_id=null
uuid to identify the image. Auto set by OpenStack if not set.

attribute openstack::visibility visibility='public'
Whether the image is visible across all projects. Can either be public or private. Shared and community
are currently not implemented.

attribute bool protected=false
Whether the image can be deleted or not. Inmanta will never delete protected images.

attribute dict metadata=Dict()
Various metadata passed as a dict.

attribute bool skip_on_deploy=true
When set, inmanta will not wait for the image to be deployed and mark it as skipped.

attribute bool purge_on_delete=false
When set to true, the image will be removed when no longer present in the model.

relation openstack::Provider provider [1]
other end: openstack::Provider.images [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::Network

Parents: openstack::OpenStackResource

A neutron network owned by a project

attribute string name

attribute bool external=false

attribute string physical_network=''

attribute string network_type=''

attribute number segmentation_id=0

attribute bool shared=false

258 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute bool? vlan_transparent=null

relation openstack::Provider provider [1]
other end: openstack::Provider.networks [0:*]

relation openstack::Project project [1]
other end: openstack::Project.networks [0:*]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.network [1]

relation openstack::Router routers [0:*]
other end: openstack::Router.ext_gateway [0:1]

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.external_network [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::OpenStackResource

Parents: std::PurgeableResource, std::ManagedResource

Base class for all openstack resources

attribute bool send_event=true
Forced to default true. This means that all resources that subscribe to this resource will run their process
events / reload.

The following implementations are defined for this entity:

• openstack::providerRequire

entity openstack::Port

Parents: openstack::OpenStackResource

A port on a network

attribute ip::ip address

relation openstack::Provider provider [1]
other end: openstack::Provider.ports [0:*]

relation openstack::Project project [1]
other end: openstack::Project.ports [0:*]

relation openstack::AddressPair allowed_address_pairs [0:*]

entity openstack::Project

Parents: openstack::OpenStackResource

A project / tenant in openstack

attribute string name

attribute bool enabled=true

attribute string description=''

relation openstack::Provider provider [1]
other end: openstack::Provider.projects [0:*]

relation openstack::Role roles [0:*]
Each user can have multiple roles

other end: openstack::Role.project [1]

10.7. Inmanta modules 259

Inmanta Documentation, Release 2023.1.1

relation openstack::Network networks [0:*]
other end: openstack::Network.project [1]

relation openstack::Port ports [0:*]
other end: openstack::Port.project [1]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.project [1]

relation openstack::Router routers [0:*]
other end: openstack::Router.project [1]

relation openstack::SecurityGroup security_groups [0:*]
other end: openstack::SecurityGroup.project [1]

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.project [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::Provider

Parents: std::Entity

The configuration for accessing an Openstack based IaaS

attribute string name

attribute string connection_url

attribute bool verify_cert=true
Indicates whether the SSL/TLS certificate should be verified.

attribute string username

attribute string password

attribute string tenant

attribute string token=''

attribute string admin_url=''

attribute bool auto_agent=true

relation openstack::Project projects [0:*]
other end: openstack::Project.provider [1]

relation openstack::User users [0:*]
other end: openstack::User.provider [1]

relation openstack::Role roles [0:*]
other end: openstack::Role.provider [1]

relation openstack::Service services [0:*]
other end: openstack::Service.provider [1]

relation openstack::EndPoint endpoints [0:*]
other end: openstack::EndPoint.provider [1]

relation openstack::Network networks [0:*]
other end: openstack::Network.provider [1]

260 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

relation openstack::Port ports [0:*]
other end: openstack::Port.provider [1]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.provider [1]

relation openstack::Router routers [0:*]
other end: openstack::Router.provider [1]

relation openstack::SecurityGroup security_groups [0:*]
other end: openstack::SecurityGroup.provider [1]

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.provider [1]

relation openstack::VirtualMachine virtual_machines [0:*]
other end: openstack::VirtualMachine.provider [1]

relation openstack::Flavor flavors [0:*]
other end: openstack::Flavor.provider [1]

relation openstack::Image images [0:*]
other end: openstack::Image.provider [1]

The following implementations are defined for this entity:

• openstack::agentConfig

The following implements statements select implementations for this entity:

• std::none constraint true

• openstack::agentConfig constraint auto_agent

entity openstack::Role

Parents: openstack::OpenStackResource

A role in openstack. A role defines membership of a user in a project. This entity is used to connect users
to projects. With this, it implicitly defines the role.

attribute string role_id

attribute string role

relation openstack::Provider provider [1]
other end: openstack::Provider.roles [0:*]

relation openstack::Project project [1]
Each user can have multiple roles

other end: openstack::Project.roles [0:*]

relation openstack::User user [1]
other end: openstack::User.roles [0:*]

The following implementations are defined for this entity:

• openstack::roleImpl

The following implements statements select implementations for this entity:

• openstack::roleImpl, openstack::providerRequire constraint true

entity openstack::Route

Parents: std::Entity

A routing rule to add

10.7. Inmanta modules 261

Inmanta Documentation, Release 2023.1.1

attribute ip::cidr destination

attribute ip::ip nexthop

relation openstack::Router router [0:1]
other end: openstack::Router.routes [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity openstack::Router

Parents: openstack::OpenStackResource

A router

attribute openstack::admin_state admin_state='up'

attribute string name

attribute bool ha=false

attribute bool distributed=false

relation openstack::Provider provider [1]
other end: openstack::Provider.routers [0:*]

relation openstack::Project project [1]
other end: openstack::Project.routers [0:*]

relation openstack::RouterPort ports [0:*]
other end: openstack::RouterPort.router [1]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.router [0:1]

relation openstack::Network ext_gateway [0:1]
other end: openstack::Network.routers [0:*]

relation openstack::Route routes [0:*]
other end: openstack::Route.router [0:1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::RouterPort

Parents: openstack::Port

A port attached to a router

attribute string name

relation openstack::Subnet subnet [1]
other end: openstack::Subnet.routers [0:*]

relation openstack::Router router [1]
other end: openstack::Router.ports [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::SecurityGroup

Parents: openstack::OpenStackResource

262 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute string description=''

attribute string name

attribute bool manage_all=true

attribute number retries=10
A security group can only be deleted when it is no longer in use. The API confirms the delete of a
virtual machine for example, but it might still be in progress. This results in a failure to delete the
security group. To speed up deployments, the handler can retry this number of times before skipping
the resource.

attribute number wait=5
The number of seconds to wait between retries.

relation openstack::Provider provider [1]
other end: openstack::Provider.security_groups [0:*]

relation openstack::Project project [1]
other end: openstack::Project.security_groups [0:*]

relation openstack::VirtualMachine virtual_machines [0:*]
other end: openstack::VirtualMachine.security_groups [0:*]

relation openstack::GroupRule remote_group_rules [0:*]
other end: openstack::GroupRule.remote_group [1]

relation openstack::SecurityRule rules [0:*]
other end: openstack::SecurityRule.group [1]

The following implementations are defined for this entity:

• openstack::sg

The following implements statements select implementations for this entity:

• openstack::sg, openstack::providerRequire constraint true

entity openstack::SecurityRule

Parents: std::Entity

A filter rule in the a security group

attribute ip::protocol ip_protocol
The type of ip protocol to allow. Currently this support tcp/udp/icmp/sctp or all

attribute ip::port port_min=0

attribute ip::port port_max=0

attribute ip::port port=0

attribute openstack::direction direction

relation openstack::SecurityGroup group [1]
other end: openstack::SecurityGroup.rules [0:*]

entity openstack::Service

Parents: openstack::OpenStackResource

attribute string name

attribute string type

attribute string description

10.7. Inmanta modules 263

Inmanta Documentation, Release 2023.1.1

relation openstack::Provider provider [1]
other end: openstack::Provider.services [0:*]

relation openstack::EndPoint endpoint [0:1]
other end: openstack::EndPoint.service [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::Subnet

Parents: openstack::OpenStackResource

A neutron network subnet

attribute ip::cidr network_address

attribute bool dhcp

attribute string name

attribute string allocation_start=''

attribute string allocation_end=''

attribute ip::ip[] dns_servers=List()

attribute ip::ip? gateway_ip=null
The gateway IP to set on this subnet. If set to null, the first IP in the subnet will be used as the gate-
way_ip. Example: 192.168.0.1 will be used for the network 192.168.0.0/24.

attribute bool disable_gateway_ip=false
When set to true, no gateway IP will be set for the subnet. As such, the gateway_ip parameter will be
ignored.

relation openstack::RouterPort routers [0:*]
other end: openstack::RouterPort.subnet [1]

relation openstack::HostPort host_ports [0:*]
other end: openstack::HostPort.subnet [1]

relation openstack::Provider provider [1]
other end: openstack::Provider.subnets [0:*]

relation openstack::Project project [1]
other end: openstack::Project.subnets [0:*]

relation openstack::Network network [1]
other end: openstack::Network.subnets [0:*]

relation openstack::Router router [0:1]
other end: openstack::Router.subnets [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::User

Parents: openstack::OpenStackResource

A user in openstack. A handler for this entity type is loaded by agents.

attribute string name

The name of the user. The name of the user has to be unique on a specific IaaS. The handler will use
this name to query for the exact user and its ID.

264 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute string email

The email address of the user to use.

attribute bool enabled=true
Enable or disable this user

attribute string password=''
The password for this user. The handler will always reset back to this password. The handler will
ignore this attribute when an empty string is set.

relation openstack::Provider provider [1]
other end: openstack::Provider.users [0:*]

relation openstack::Role roles [0:*]
other end: openstack::Role.user [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::VMAttributes

Parents: platform::UserdataVM

Entity with vm attributes that can be used for a virtual machine and a host

attribute string flavor

The name of the flavor

attribute string image

The uuid of the image

attribute string user_data

The user_data script to pass

attribute dict metadata=Dict()
A dict of metadata items

attribute dict personality=Dict()
A dict of files (personality)

attribute bool config_drive=false
Attach a configuration drive to the vm

attribute bool install_agent=false
Create a script and pass it as user_data to install the inmanta agent at boot time.

entity openstack::VirtualMachine

Parents: openstack::OpenStackResource, openstack::VMAttributes

attribute string name

relation openstack::HostPort ports [0:*]
other end: openstack::HostPort.vm [1]

relation openstack::SecurityGroup security_groups [0:*]
other end: openstack::SecurityGroup.virtual_machines [0:*]

relation openstack::HostPort eth0_port [1]

relation ssh::Key key_pair [1]

relation openstack::Project project [1]

10.7. Inmanta modules 265

Inmanta Documentation, Release 2023.1.1

relation openstack::Provider provider [1]
other end: openstack::Provider.virtual_machines [0:*]

relation openstack::Host host [0:1]
other end: openstack::Host.vm [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

• openstack::userData constraint install_agent

Implementations

implementation openstack::agentConfig

implementation openstack::endPoint

implementation openstack::eth0Port

implementation openstack::fipAddr

implementation openstack::fipName

implementation openstack::openstackVM

implementation openstack::providerRequire

implementation openstack::roleImpl

implementation openstack::sg

implementation openstack::userData

Plugins

openstack.find_flavor(provider: openstack::Provider, vcpus: number, ram: number, pinned: bool=False)
→ string

Find the flavor that matches the closest to the resources requested.

Parameters

• vcpus – The number of virtual cpus in the flavor

• ram – The amount of ram in gigabyte

• pinned – Wether the CPUs need to be pinned (#vcpu == #pcpu)

openstack.find_image(provider: openstack::Provider, os: std::OS, name: string=None)→ string
Search for an image that matches the given operating system. This plugin uses the os_distro and os_version
tags of an image and the name and version attributes of the OS parameter.

If multiple images match, the most recent image is returned.

Parameters

• provider – The provider to query for an image

• os – The operating system and version (using os_distro and os_version metadata)

• name – An optional string that the image name should contain

266 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Resources

class openstack.EndPoint

An endpoint for a service

• Resource for entity openstack::EndPoint

• Id attribute service_id

• Agent name provider.name

• Handlers openstack.EndpointHandler

class openstack.Flavor

A flavor is an available hardware configuration for a server.

• Resource for entity openstack::Flavor

• Id attribute name

• Agent name provider.name

• Handlers openstack.FlavorHandler

class openstack.FloatingIP

A floating ip

• Resource for entity openstack::FloatingIP

• Id attribute name

• Agent name provider.name

• Handlers openstack.FloatingIPHandler

class openstack.HostPort

A port in a router

• Resource for entity openstack::HostPort

• Id attribute name

• Agent name provider.name

• Handlers openstack.HostPortHandler

class openstack.Image

• Resource for entity openstack::Image

• Id attribute name

• Agent name provider.name

• Handlers openstack.ImageHandler

class openstack.Network

This class represents a network in neutron

• Resource for entity openstack::Network

• Id attribute name

• Agent name provider.name

10.7. Inmanta modules 267

Inmanta Documentation, Release 2023.1.1

• Handlers openstack.NetworkHandler

class openstack.Project

This class represents a project in keystone

• Resource for entity openstack::Project

• Id attribute name

• Agent name provider.name

• Handlers openstack.ProjectHandler

class openstack.Role

A role that adds a user to a project

• Resource for entity openstack::Role

• Id attribute role_id

• Agent name provider.name

• Handlers openstack.RoleHandler

class openstack.Router

This class represent a router in neutron

• Resource for entity openstack::Router

• Id attribute name

• Agent name provider.name

• Handlers openstack.RouterHandler

class openstack.RouterPort

A port in a router

• Resource for entity openstack::RouterPort

• Id attribute name

• Agent name provider.name

• Handlers openstack.RouterPortHandler

class openstack.SecurityGroup

A security group in an OpenStack tenant

• Resource for entity openstack::SecurityGroup

• Id attribute name

• Agent name provider.name

• Handlers openstack.SecurityGroupHandler

268 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

class openstack.Service

A service for which endpoints can be registered

• Resource for entity openstack::Service

• Id attribute name

• Agent name provider.name

• Handlers openstack.ServiceHandler

class openstack.Subnet

This class represent a subnet in neutron

• Resource for entity openstack::Subnet

• Id attribute name

• Agent name provider.name

• Handlers openstack.SubnetHandler

class openstack.User

A user in keystone

• Resource for entity openstack::User

• Id attribute name

• Agent name provider.name

• Handlers openstack.UserHandler

class openstack.VirtualMachine

A virtual machine managed by a hypervisor or IaaS

• Resource for entity openstack::VirtualMachine

• Id attribute name

• Agent name provider.name

• Handlers openstack.VirtualMachineHandler

Handlers

class openstack.FlavorHandler

• Handler name openstack

• Handler for entity openstack::Flavor

class openstack.ImageHandler

• Handler name openstack

• Handler for entity openstack::Image

class openstack.VirtualMachineHandler

• Handler name openstack

• Handler for entity openstack::VirtualMachine

10.7. Inmanta modules 269

Inmanta Documentation, Release 2023.1.1

class openstack.NetworkHandler

• Handler name openstack

• Handler for entity openstack::Network

class openstack.RouterHandler

• Handler name openstack

• Handler for entity openstack::Router

class openstack.SubnetHandler

• Handler name openstack

• Handler for entity openstack::Subnet

class openstack.RouterPortHandler

• Handler name openstack

• Handler for entity openstack::RouterPort

class openstack.HostPortHandler

• Handler name openstack

• Handler for entity openstack::HostPort

class openstack.SecurityGroupHandler

• Handler name openstack

• Handler for entity openstack::SecurityGroup

class openstack.FloatingIPHandler

• Handler name openstack

• Handler for entity openstack::FloatingIP

class openstack.ProjectHandler

• Handler name openstack

• Handler for entity openstack::Project

class openstack.UserHandler

• Handler name openstack

• Handler for entity openstack::User

class openstack.RoleHandler

creates roles and user, project, role assocations

• Handler name openstack

• Handler for entity openstack::Role

class openstack.ServiceHandler

• Handler name openstack

• Handler for entity openstack::Service

class openstack.EndpointHandler

• Handler name openstack

• Handler for entity openstack::EndPoint

270 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.7.10 Module platform

• License: ASL 2.0

• Version: 1.1.9

• This module requires compiler version 2019.1 or higher

• Upstream project: https://github.com/inmanta/platform.git

Entities

entity platform::UserdataBootstrap

Parents: std::Entity

Bootstrap an inmanta agent on the host by passing a shell script to the virtual machine user data. Setting the
INMANTA_RELEASE environment variable to dev will install the agent from development snapshots.

The user script will force the correct hostname and setenforce 0 to disable enforcing selinux.

Warning: Currently this script only support centos 7 or equivalent (rhel7, aws linux, sl7, . . .), Ubuntu
and Fedora.

relation platform::UserdataVM vm [1]

The following implementations are defined for this entity:

• platform::userdataBootstrap

The following implements statements select implementations for this entity:

• platform::userdataBootstrap constraint true

entity platform::UserdataVM

Parents: std::Entity

Base class for virtual machines that provide a user_data attribute through which a shell script can be injected
at first boot of the virtual machine.

attribute string user_data

A shell script that is executed at first boot.

Implementations

implementation platform::userdataBootstrap

10.7.11 Module postgresql

• License: Apache 2.0

• Version: 0.3.5

• Upstream project: https://github.com/inmanta/postgresql.git

10.7. Inmanta modules 271

https://github.com/inmanta/platform.git
https://github.com/inmanta/postgresql.git

Inmanta Documentation, Release 2023.1.1

Typedefs

typedef postgresql::username_t

• Base type string

• Type constraint /[a-z0-9]*/

Entities

entity postgresql::Database

Parents: std::PurgeableResource

attribute string db_name

relation postgresql::PostgresqlServer server [1]
other end: postgresql::PostgresqlServer.databases [0:*]

relation postgresql::User owner [1]
other end: postgresql::User.databases [0:*]

The following implementations are defined for this entity:

• postgresql::db_requires

The following implements statements select implementations for this entity:

• postgresql::db_requires constraint true

entity postgresql::PostgresqlServer

Parents: ip::services::Server

attribute bool managed=true

attribute int log_min_duration_statement=-1

attribute bool pg_stat_statements=false

relation postgresql::Database databases [0:*]
other end: postgresql::Database.server [1]

relation postgresql::User users [0:*]
other end: postgresql::User.server [1]

relation std::Entity _packages [0:*]
internal Wait point: do Something(requires=_packages) to wait for all packages to be installed

The following implementations are defined for this entity:

• postgresql::install

• postgresql::postgresqlServer

The following implements statements select implementations for this entity:

• postgresql::postgresqlServer, postgresql::install constraint managed

• std::none constraint (not managed)

entity postgresql::PostgresqlTools

Parents: std::Entity

Install the postgresql client tools on a host.

272 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

relation std::Host host [1]

The following implementations are defined for this entity:

• postgresql::install_tools

The following implements statements select implementations for this entity:

• postgresql::install_tools constraint true

entity postgresql::User

Parents: std::PurgeableResource

attribute postgresql::username_t username

attribute string password

attribute string[] from=List()
network location this user is allowed to connect from

relation postgresql::PostgresqlServer server [1]
other end: postgresql::PostgresqlServer.users [0:*]

relation postgresql::Database databases [0:*]
other end: postgresql::Database.owner [1]

The following implementations are defined for this entity:

• postgresql::user_requires

The following implements statements select implementations for this entity:

• postgresql::user_requires constraint true

entity postgresql::ha::Master

Parents: postgresql::PostgresqlServer

attribute string synchronous_standby_names='inmanta'

attribute string replication_slot_name='replication'

attribute string replication_user='replication'

attribute string replication_user_password

attribute string synchronous_commit='off'

relation postgresql::ha::Standby standby [1]
other end: postgresql::ha::Standby.master [1]

relation postgresql::ha::ReplicationSlot replication_slot [1]
other end: postgresql::ha::ReplicationSlot.server [1]

The following implementations are defined for this entity:

• postgresql::ha::postgresqlMaster

The following implements statements select implementations for this entity:

• postgresql::install, postgresql::ha::postgresqlMaster constraint true

entity postgresql::ha::ReplicationSlot

Parents: std::PurgeableResource

10.7. Inmanta modules 273

Inmanta Documentation, Release 2023.1.1

relation postgresql::ha::Master server [1]
other end: postgresql::ha::Master.replication_slot [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity postgresql::ha::Standby

Parents: postgresql::PostgresqlServer

relation postgresql::ha::Master master [1]
other end: postgresql::ha::Master.standby [1]

The following implementations are defined for this entity:

• postgresql::ha::postgresqlStandby

The following implements statements select implementations for this entity:

• postgresql::install, postgresql::ha::postgresqlStandby constraint true

Implementations

implementation postgresql::db_requires

implementation postgresql::install

implementation postgresql::install_tools

implementation postgresql::postgresqlServer

implementation postgresql::user_requires

implementation postgresql::ha::postgresqlMaster

implementation postgresql::ha::postgresqlStandby

Resources

class postgresql.resources.Database

• Resource for entity postgresql::Database

• Id attribute db_name

• Agent name server.host.name

• Handlers postgresql.resources.DatabaseProvider

class postgresql.resources.User

• Resource for entity postgresql::User

• Id attribute username

• Agent name server.host.name

• Handlers postgresql.resources.UserProvider

class postgresql.resources.ReplicationSlot

• Resource for entity postgresql::ha::ReplicationSlot

• Id attribute replication_user

• Agent name server.host.name

• Handlers postgresql.resources.ReplicationSlotProvider

274 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Handlers

class postgresql.resources.DatabaseProvider

• Handler name postgresql-database

• Handler for entity postgresql::Database

class postgresql.resources.UserProvider

• Handler name postgresql-user

• Handler for entity postgresql::User

class postgresql.resources.ReplicationSlotProvider

• Handler name postgresql-user

• Handler for entity postgresql::ha::ReplicationSlot

10.7.12 Module redhat

• License: Apache 2.0

• Version: 1.0.3

• Upstream project: https://github.com/inmanta/redhat.git

10.7.13 Module rest

• License: Apache 2.0

• Version: 0.2.14

• This module requires compiler version 2018.1 or higher

• Upstream project: https://github.com/inmanta/rest.git

Entities

entity rest::RESTCall

Parents: std::Resource

This resource executes a restcall during the execute phase of the handler

attribute string url_id

attribute string url

The url to call

attribute string method='GET'
The HTTP method to use

attribute dict body
The body of the the http call. By default this body is sent as a json body

attribute dict headers=Dict()
Additional headers to pass to the server.

attribute bool form_encoded=false
Use form encoding for the body

10.7. Inmanta modules 275

https://github.com/inmanta/redhat.git
https://github.com/inmanta/rest.git

Inmanta Documentation, Release 2023.1.1

attribute bool ssl_verify=true
Verify the ssl cert of the server

attribute string? auth_user=null
The user to authenticate with

attribute string? auth_password=null
The password to authenticate with

attribute number[] return_codes=List()
Returns code that indicate that the call was successfull

attribute string? validate_return=null
An JQ expression to validate the return result of the call. The result of this JQ expression evaluates to
a python true or false.

attribute bool skip_on_fail=false
Report this resource as skipped instead of failed.

attribute string agent='internal'
The agent to initiate the REST call from

The following implementations are defined for this entity:

• rest::restCallID

The following implements statements select implementations for this entity:

• rest::restCallID constraint true

Implementations

implementation rest::restCallID

Resources

class rest.RESTCall

A Call to a rest endpoint

• Resource for entity rest::RESTCall

• Id attribute url_id

• Agent name agent

• Handlers rest.RESTHandler

Handlers

class rest.RESTHandler

• Handler name requests

• Handler for entity rest::RESTCall

276 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.7.14 Module ssh

• License: Apache 2.0

• Version: 0.6.13

• Upstream project: https://github.com/inmanta/ssh.git

Entities

entity ssh::Key

Parents: std::Entity

A public ssh-key used to access virtual machine

attribute string public_key

The actual public key that needs to be deployed

attribute string name

An identifier for the public key

attribute string command=''
The command that can be executed with this public key

attribute string options=''
SSH options associated with this public key

relation ssh::SSHUser ssh_users [0:*]
other end: ssh::SSHUser.ssh_keys [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ssh::SSHUser

Parents: std::Entity

An ssh users allows authorized keys to be installed

attribute string home_dir

attribute string user

attribute string group

relation ssh::Key ssh_keys [0:*]
other end: ssh::Key.ssh_users [0:*]

relation std::Host host [1]

The following implementations are defined for this entity:

• ssh::sshUser

The following implements statements select implementations for this entity:

• ssh::sshUser constraint true

entity ssh::Server

Parents: ip::services::Server

A ssh server

The following implementations are defined for this entity:

• ssh::sshServer

10.7. Inmanta modules 277

https://github.com/inmanta/ssh.git

Inmanta Documentation, Release 2023.1.1

The following implements statements select implementations for this entity:

• ssh::sshServer constraint true

Implementations

implementation ssh::sshServer

implementation ssh::sshUser

Plugins

ssh.get_private_key(name: string)→ string
Create or return if it already exists a key with the given name. The private key is returned.

ssh.get_public_key(name: string)→ string
See get_private_key

ssh.get_putty_key(name: string)→ string

10.7.15 Module std

• License: Apache 2.0

• Version: 4.1.3

• This module requires compiler version 2020.8 or higher

• Upstream project: https://github.com/inmanta/std.git

Typedefs

typedef std::alfanum

• Base type string

• Type constraint (std::validate_type('pydantic.constr',self,Dict()) == true)

typedef std::any_http_url

• Base type string

• Type constraint (std::validate_type('pydantic.AnyHttpUrl',self) == true)

typedef std::any_url

• Base type string

• Type constraint (std::validate_type('pydantic.AnyUrl',self) == true)

typedef std::ascii_word

• Base type string

• Type constraint (std::validate_type('pydantic.constr',self,Dict()) == true)

typedef std::base64

• Base type string

• Type constraint (std::is_base64_encoded(self) == true)

278 Chapter 10. Inmanta Reference

https://github.com/inmanta/std.git

Inmanta Documentation, Release 2023.1.1

typedef std::config_agent

• Base type string

• Type constraint (self != 'internal')

typedef std::date

• Base type string

• Type constraint (std::validate_type('datetime.date',self) == true)

typedef std::datetime

• Base type string

• Type constraint (std::validate_type('datetime.datetime',self) == true)

typedef std::email_str

• Base type string

• Type constraint (std::validate_type('pydantic.EmailStr',self) == true)

typedef std::hoststring

• Base type string

• Type constraint /^[A-Za-z0-9-]+(\.[A-Za-z0-9-]+)*$/

typedef std::http_url

• Base type string

• Type constraint (std::validate_type('pydantic.HttpUrl',self) == true)

typedef std::ipv4_address

• Base type string

• Type constraint (std::validate_type('ipaddress.IPv4Address',self) == true)

typedef std::ipv4_interface

• Base type string

• Type constraint (std::validate_type('ipaddress.IPv4Interface',self) == true)

typedef std::ipv4_network

• Base type string

• Type constraint (std::validate_type('ipaddress.IPv4Network',self) == true)

typedef std::ipv6_address

• Base type string

• Type constraint (std::validate_type('ipaddress.IPv6Address',self) == true)

typedef std::ipv6_interface

• Base type string

• Type constraint (std::validate_type('ipaddress.IPv6Interface',self) == true)

typedef std::ipv6_network

• Base type string

• Type constraint (std::validate_type('ipaddress.IPv6Network',self) == true)

10.7. Inmanta modules 279

Inmanta Documentation, Release 2023.1.1

typedef std::ipv_any_address

• Base type string

• Type constraint (std::validate_type('pydantic.IPvAnyAddress',self) == true)

typedef std::ipv_any_interface

• Base type string

• Type constraint (std::validate_type('pydantic.IPvAnyInterface',self) == true)

typedef std::ipv_any_network

• Base type string

• Type constraint (std::validate_type('pydantic.IPvAnyNetwork',self) == true)

typedef std::name_email

• Base type string

• Type constraint (std::validate_type('pydantic.NameEmail',self) == true)

typedef std::negative_float

• Base type number

• Type constraint (std::validate_type('pydantic.NegativeFloat',self) == true)

typedef std::negative_int

• Base type int

• Type constraint (std::validate_type('pydantic.NegativeInt',self) == true)

typedef std::non_empty_string

• Base type string

• Type constraint /^(.*\S.*)$/

typedef std::package_state

• Base type string

• Type constraint (((self == 'installed') or (self == 'removed')) or (self ==
'latest'))

typedef std::positive_float

• Base type number

• Type constraint (std::validate_type('pydantic.PositiveFloat',self) == true)

typedef std::positive_int

• Base type int

• Type constraint (std::validate_type('pydantic.PositiveInt',self) == true)

typedef std::printable_ascii

• Base type string

• Type constraint (std::validate_type('pydantic.constr',self,Dict()) == true)

typedef std::service_state

• Base type string

• Type constraint ((self == 'running') or (self == 'stopped'))

280 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

typedef std::time

• Base type string

• Type constraint (std::validate_type('datetime.time',self) == true)

typedef std::uuid

• Base type string

• Type constraint (std::validate_type('uuid.UUID',self) == true)

Entities

entity std::AgentConfig

Parents: std::PurgeableResource

Control agent settings. Currently these settings are only applied to autostarted agents

attribute bool autostart=false
When this flag is set to true, the resource will be exported and set the agent map on the orchestrator.
When false, this instance is ignored but can be used to generate agent configuration files.

attribute std::config_agent agentname
The name of the agent to which this config applies.

attribute string agent='internal'
If a resource is exported, agent manages the resource.

attribute string uri='local:'
The uri that indicates how the agent should execute. Currently the following uri are supported: *
“” An empty string. This is the same as running it locally * local: Manage resource locally * ssh:
//{[}user@{]}hostname{[}:port] Login using ssh. When user is left out, root is assumed. For port,
the system default is used. * host The actual hostname or ip to use. Altough this is not a valid host
in uri form it is supported. * A query string can be used to set the properties: * python: The python
interpreter to use. The default value is python * retries: The number of retries before giving up. The
default number of retries 10 * retry_wait: The time to wait between retries for the remote target to
become available. The default wait is 30s. Example: ssh://centos@centos-machine/?python=python3
(This would connect to a the centos machine and use python3 as it’s interpreter)

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::ConfigFile

Parents: std::File

A file with often used defaults for configuration files.

attribute number mode=644

attribute string owner='root'

attribute string group='root'

The following implements statements select implementations for this entity:

• std::reload , std::fileHost constraint true

entity std::Content

Parents: std::Entity

A content block as a prefix or suffix to a file. This blocks are only merged with the content at export time.
This is an advanced pattern that can be used to speed up the compilation in very specific use cases.

10.7. Inmanta modules 281

ssh://{[}user@{]}hostname{[}:port
ssh://{[}user@{]}hostname{[}:port
ssh://centos@centos-machine/?python=python3

Inmanta Documentation, Release 2023.1.1

attribute string? sorting_key=null
The key to use to sort the content blocks in the same list. When this attribute is not set value is used as
sorting key.

attribute string value

The value to prepend or append

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::DefaultDirectory

Parents: std::Directory

A directory that is world readable. It is also writable for its owner root.

attribute number mode=755

attribute string owner='root'

attribute string group='root'

The following implements statements select implementations for this entity:

• std::reload , std::dirHost constraint true

entity std::Directory

Parents: std::Reload , std::PurgeableResource

A directory on the filesystem

attribute string path

attribute number mode

attribute string owner

attribute string group

attribute bool purge_on_delete=false

relation std::Host host [1]
other end: std::Host.directories [0:*]

The following implementations are defined for this entity:

• std::dirHost

The following implements statements select implementations for this entity:

• std::reload , std::dirHost constraint true

entity std::Entity

The entity all other entities inherit from.

relation std::Entity requires [0:*]
other end: std::Entity.provides [0:*]

relation std::Entity provides [0:*]
other end: std::Entity.requires [0:*]

The following implementations are defined for this entity:

• std::none

282 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

entity std::File

Parents: std::Reload , std::PurgeableResource

This represents a file on the filesystem

attribute string path

The path of the file

attribute number mode
The permissions of the file

attribute string owner

The owner of the file

attribute string group

The group of the file

attribute string content

The file contents

attribute bool purge_on_delete=false

attribute bool send_event

attribute string content_seperator='\n'

relation std::Content prefix_content [0:*]

relation std::Content suffix_content [0:*]

relation std::Host host [1]
other end: std::Host.files [0:*]

The following implementations are defined for this entity:

• std::fileHost

The following implements statements select implementations for this entity:

• std::reload , std::fileHost constraint true

entity std::Host

Parents: std::ManagedDevice

A host models a server of computer in the managed infrastructure

relation apt::Repository repository [0:*]
other end: apt::Repository.host [1]

relation std::File files [0:*]
other end: std::File.host [1]

relation std::Service services [0:*]
other end: std::Service.host [1]

relation std::Package packages [0:*]
other end: std::Package.host [1]

relation std::Directory directories [0:*]
other end: std::Directory.host [1]

relation std::Symlink symlinks [0:*]
other end: std::Symlink.host [1]

10.7. Inmanta modules 283

Inmanta Documentation, Release 2023.1.1

relation std::OS os [1]
Each host has an OS defined. This values is mostly used to select implementation in the where clause
of an implement statement. The familyof() plugin can be used for this.

relation std::HostConfig host_config [1]
other end: std::HostConfig.host [1]

relation std::HostGroup host_groups [0:*]
other end: std::HostGroup.hosts [0:*]

The following implementations are defined for this entity:

• std::hostDefaults

The following implements statements select implementations for this entity:

• std::hostDefaults constraint true

entity std::HostConfig

Parents: std::Entity

This represents generic configuration for a host. This entity is used by other modules to include their host
specific configuration. This should be instantiated in the implementation of std::Host or subclasses. This
host specific configuration cannot be included by just implementing std::Host because possibly subclasses
of std::Host are instantiated and implementations are not inherited.

relation std::Host host [1]
other end: std::Host.host_config [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::HostGroup

Parents: std::Entity

This entity represents a group of hosts. For example a cluster of machines.

attribute string name

relation std::Host hosts [0:*]
other end: std::Host.host_groups [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::ManagedDevice

Parents: std::Entity

This interface represents all devices that can be managed

attribute std::hoststring name

entity std::ManagedResource

Parents: std::Resource

A base class for a resource that can be ignored/unmanaged by Inmanta.

attribute bool managed=true
This determines whether this resource is managed by Inmanta or not.

entity std::MutableBool

Parents: std::Entity

Wrapper for boolean values, used to pass a boolean out of an if statement.

Example

284 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attr_a = std::MutableBool()
if some_condition:

attr_a.value = True
else:

attr_a.value = Null
end

attribute bool? value

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::MutableNumber

Parents: std::Entity

Wrapper for number values, used to pass a number out of an if statement or to use relations to create a
mutuable set of numbers.

Example

attr_a = std::MutableNumber()
if some_condition:

attr_a.value = 3
else:

attr_a.value = 4
end

Example

entity Test:
end

Test.string_list [0:] -- std::MutableNumber

a = Test()
a.string_list += std::MutableNumber(value=3)
a.string_list += std::MutableNumber(value=7)

attribute number? value

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::MutableString

Parents: std::Entity

Wrapper for string values. It can be used to pass a string out of an if statement, or to use relations to create
a mutuable set of strings.

Example

attr_a = std::MutableString()
if some_condition:

attr_a.value = "a"
else:

attr_a.value = "b"
end

Example

10.7. Inmanta modules 285

Inmanta Documentation, Release 2023.1.1

entity Test:
end

Test.string_list [0:] -- std::MutableString

a = Test()
a.string_list += std::MutableString(value="value1")
a.string_list += std::MutableString(value="value2")

attribute string? value

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::OS

Parents: std::Entity

Defines an operating system

attribute string name

The name of the operating system or family of operating systems

attribute number version=0
A specific version

attribute string? python_cmd='python'
Specifies what command should be used to launch the python interpreter on the other end

relation std::OS member [0:*]
other end: std::OS.family [0:1]

relation std::OS family [0:1]
other end: std::OS.member [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::Package

Parents: std::Reload

A software package installed on a managed device.

attribute string name

The name of the package to manage

attribute std::package_state state
The state of the package. Valid values are ‘installed’, ‘removed’ or ‘latest’. latest will upgrade the
package when an update is available.

relation std::Host host [1]
other end: std::Host.packages [0:*]

The following implementations are defined for this entity:

• std::pkgHost

The following implements statements select implementations for this entity:

• std::reload , std::pkgHost constraint true

entity std::Packages

Parents: std::Entity

Defined the state for multiple packages at once

286 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute string[] name
A list of package names

attribute std::package_state state='installed'
The state of the package

relation std::Host host [1]

The following implementations are defined for this entity:

• std::pkgs

The following implements statements select implementations for this entity:

• std::pkgs constraint true

entity std::PurgeableResource

Parents: std::Resource

A base class for a resource that can be purged and can be purged by Inmanta whenever the resource is no
longer managed.

attribute bool purged=false
Set whether this resource should exist or not.

attribute bool purge_on_delete=false
Purge the resource when it is deleted from the configuration model. When this attribute is true, the
server will include a resource with purged=true when this resource is no longer included in the config-
uration model.

entity std::Reload

Parents: std::Resource

An entity to make the (old) reload mechanism compatible with the event mechanism

attribute bool reload=false
If a service requires this file, reload or restart the service when this file changes.

attribute bool send_event

The following implementations are defined for this entity:

• std::reload

entity std::Resource

Parents: std::Entity

A base entity for resources that can be exported. This type add specific attributes that are common for
most handlers. It is not required to inherit from this entity at the moment but highly recommended for
documentation purposes.

attribute bool send_event=false
This controls wether a resource should send its deploy state to the resources in its provides.

entity std::ResourceSet

Parents: std::Entity

A ResourceSet describes resources that logically belong together, and can be manipulated independently
from other managed resources.

attribute std::non_empty_string name

The name of the resource set.

10.7. Inmanta modules 287

Inmanta Documentation, Release 2023.1.1

relation std::Resource resources [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::Service

Parents: std::Reload

Manage a service on a host.

attribute string name

The name of the service to manage

attribute std::service_state state
The desired state of the service. Valid values are ‘running’ or ‘stopped’

attribute bool onboot
Should the service start on boot.

relation std::Host host [1]
other end: std::Host.services [0:*]

The following implementations are defined for this entity:

• std::serviceHost

The following implements statements select implementations for this entity:

• std::reload , std::serviceHost constraint true

entity std::Symlink

Parents: std::Reload , std::PurgeableResource

A symbolic link on the filesystem

attribute string source

attribute string target

attribute bool purge_on_delete=false

attribute bool send_event

relation std::Host host [1]
other end: std::Host.symlinks [0:*]

The following implementations are defined for this entity:

• std::symHost

The following implements statements select implementations for this entity:

• std::reload , std::symHost constraint true

Implementations

implementation std::dirHost

implementation std::fileHost

implementation std::hostDefaults

implementation std::none

An empty implementation that can be used as a safe default.

288 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

implementation std::pkgHost

implementation std::pkgs

implementation std::reload

implementation std::serviceHost

implementation std::symHost

Plugins

std.add_to_ip(addr: std::ipv_any_address, n: number)→ std::ipv_any_address
Add a number to the given ip.

std.assert(expression: bool, message: string=)
Raise assertion error if expression is false

std.at(objects: list, index: number)→ any
Get the item at index

std.attr(obj: any, attr: string)→ any

std.capitalize(string: string)→ string
Capitalize the given string

std.contains(dct: dict, key: string)→ bool
Check if key exists in dct.

std.count(item_list: list)→ number
Returns the number of elements in this list

std.dict_get(dct: dict, key: string)→ string
Get an element from the dict. Raises an exception when the key is not found in the dict

std.environment()→ string
Return the environment id

std.environment_name()→ string
Return the name of the environment (as defined on the server)

std.environment_server()→ string
Return the address of the management server

std.equals(arg1: any, arg2: any, desc: string = None)
Compare arg1 and arg2

std.familyof(member: std::OS, family: string)→ bool
Determine if member is a member of the given operating system family

std.file(path: string)→ string
Return the textual contents of the given file

std.filter(values: list, not_item: std::Entity)→ list
Filter not_item from values

std.flatten(item_list: list)→ list
Flatten this list

10.7. Inmanta modules 289

Inmanta Documentation, Release 2023.1.1

std.generate_password(pw_id: string, length: number = 20)→ string
Generate a new random password and store it in the data directory of the project. On next invocations the
stored password will be used.

Parameters

• pw_id – The id of the password to identify it.

• length – The length of the password, default length is 20

std.get_env(name: string, default_value: string = None)→ string

std.get_env_int(name: string, default_value: number = None)→ number

std.getattr(entity: std::Entity, attribute_name: string, default_value: any=None, no_unknown: bool=True)
→ any

Return the value of the given attribute. If the attribute does not exist, return the default value.

Attr no_unknown
When this argument is set to true, this method will return the default value when the attribute
is unknown.

std.getfact(resource: any, fact_name: string, default_value: any = None)→ any
Retrieve a fact of the given resource

std.hostname(fqdn: string)→ string
Return the hostname part of the fqdn

std.inlineif(conditional: bool, a: any, b: any)→ any
An inline if

std.invert(value: bool)→ bool
Invert a boolean value

std.ipindex(addr: std::ipv_any_network, position: number)→ string
Return the address at position in the network.

std.is_base64_encoded(s: string)→ bool
Check whether the given string is base64 encoded.

std.is_instance(obj: any, cls: string)→ bool

std.is_unknown(value: any)→ bool

std.isset(value: any)→ bool
Returns true if a value has been set

std.item(objects: list, index: number)→ list
Return a list that selects the item at index from each of the sublists

std.key_sort(items: list, key: any)→ list
Sort an array of object on key

std.length(value: string)→ number
Return the length of the string

std.list_files(path: string)→ list
List files in a directory

std.lower(string: string)→ string
Return a copy of the string with all the cased characters converted to lowercase.

290 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

std.netmask(addr: std::ipv_any_interface)→ std::ipv_any_address
Return the netmask of the CIDR

For instance:

std::print(netmask(“192.168.1.100/24”)) –> 255.255.255.0

std.network_address(addr: std::ipv_any_interface)→ std::ipv_any_address
Return the network address of the CIDR

For instance:

std::print(network_address(“192.168.1.100/24”)) –> 192.168.1.0

std.objid(value: any)→ string

std.password(pw_id: string)→ string
Retrieve the given password from a password file. It raises an exception when a password is not found

Parameters
pw_id – The id of the password to identify it.

std.prefixlen(addr: std::ipv_any_interface)→ int
Return the prefixlen of the CIDR

For instance:

std::print(prefixlen(“192.168.1.100/24”)) –> 24

std.prefixlength_to_netmask(prefixlen: int)→ std::ipv4_address
Given the prefixlength, return the netmask

std.print(message: any)
Print the given message to stdout

std.replace(string: string, old: string, new: string)→ string

std.select(objects: list, attr: string)→ list
Return a list with the select attributes

std.sequence(i: number, start: number = 0, offset: number = 0)→ list
Return a sequence of i numbers, starting from zero or start if supplied.

std.server_ca()→ string

std.server_port()→ number

std.server_ssl()→ bool

std.server_token(client_types: string[]=['agent'])→ string

std.source(path: string)→ string
Return the textual contents of the given file

std.split(string_list: string, delim: string)→ list
Split the given string into a list

Parameters

• string_list – The list to split into parts

• delim – The delimeter to split the text by

10.7. Inmanta modules 291

Inmanta Documentation, Release 2023.1.1

std.template(path: string)
Execute the template in path in the current context. This function will generate a new statement that has
dependencies on the used variables.

std.timestamp(dummy: any = None)→ number
Return an integer with the current unix timestamp

Parameters
any – A dummy argument to be able to use this function as a filter

std.to_number(value: any)→ number
Convert a value to a number

std.type(obj: any)→ any

std.unique(item_list: list)→ bool
Returns true if all items in this sequence are unique

std.unique_file(prefix: string, seed: string, suffix: string, length: number = 20)→ string

std.upper(string: string)→ string
Return a copy of the string with all the cased characters converted to uppercase.

std.validate_type(fq_type_name: string, value: any, validation_parameters: dict = None)→ bool
Check whether value satisfies the constraints of type fq_type_name. When the given type (fq_type_name)
requires validation_parameters, they can be provided using the optional validation_parameters argument.

The following types require validation_parameters:

• pydantic.condecimal:
gt: Decimal = None ge: Decimal = None lt: Decimal = None le: Decimal = None max_digits: int
= None decimal_places: int = None multiple_of: Decimal = None

• pydantic.confloat and pydantic.conint:
gt: float = None ge: float = None lt: float = None le: float = None multiple_of: float = None,

• pydantic.constr:
min_length: int = None max_length: int = None curtail_length: int = None (Only verify the regex
on the first curtail_length characters) regex: str = None (The regex is verified via Pattern.match())

• pydantic.stricturl:
min_length: int = 1 max_length: int = 2 ** 16 tld_required: bool = True allowed_schemes: Op-
tional[Set[str]] = None

Example usage:

• Define a vlan_id type which represent a valid vlan ID (0-4,095):

typedef vlan_id as number matching std::validate_type(“pydantic.conint”, self, {“ge”: 0, “le”: 4095})

Resources

class std.resources.AgentConfig

A resource that can modify the agentmap for autostarted agents

• Resource for entity std::AgentConfig

• Id attribute agentname

• Agent name agent

• Handlers std.resources.AgentConfigHandler

292 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

class std.resources.Directory

A directory on a filesystem

• Resource for entity std::Directory

• Id attribute path

• Agent name host.name

• Handlers std.resources.DirectoryHandler

class std.resources.File

A file on a filesystem

• Resource for entity std::File

• Id attribute path

• Agent name host.name

• Handlers std.resources.PosixFileProvider

class std.resources.Package

A software package installed on an operating system.

• Resource for entity std::Package

• Id attribute name

• Agent name host.name

• Handlers apt.AptPackage, std.resources.YumPackage

class std.resources.Service

This class represents a service on a system.

• Resource for entity std::Service

• Id attribute name

• Agent name host.name

• Handlers std.resources.SystemdService, std.resources.ServiceService, ubuntu.
UbuntuService

class std.resources.Symlink

A symbolic link on the filesystem

• Resource for entity std::Symlink

• Id attribute target

• Agent name host.name

• Handlers std.resources.SymlinkProvider

10.7. Inmanta modules 293

Inmanta Documentation, Release 2023.1.1

Handlers

class std.resources.YumPackage

A Package handler that uses yum

• Handler name yum

• Handler for entity std::Package

class std.resources.PosixFileProvider

This handler can deploy files on a unix system

• Handler name posix_file

• Handler for entity std::File

class std.resources.SystemdService

A handler for services on systems that use systemd

• Handler name systemd

• Handler for entity std::Service

class std.resources.ServiceService

A handler for services on systems that use service

• Handler name redhat_service

• Handler for entity std::Service

class std.resources.DirectoryHandler

A handler for creating directories

TODO: add recursive operations

• Handler name posix_directory

• Handler for entity std::Directory

class std.resources.SymlinkProvider

This handler can deploy symlinks on unix systems

• Handler name posix_symlink

• Handler for entity std::Symlink

class std.resources.AgentConfigHandler

• Handler name agentrest

• Handler for entity std::AgentConfig

294 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

10.7.16 Module terraform

• License: ASL 2.0

• Version: 1.3.9

• This module requires compiler version 2019.3 or higher

• Upstream project: https://github.com/inmanta/terraform.git

Typedefs

typedef terraform::config::nesting_mode_t

• Base type string

• Type constraint (self in ['set','list','dict','single'])

Entities

entity terraform::Provider

Parents: std::Entity

A Terraform provider

attribute string namespace

Organization in the terraform registry, packaging this provider

attribute string type

The provider type (e.g. “aws”, “vsphere”, “local”)

attribute string version='latest'
The version of the provider to use, setting it to null will get the latest one

attribute string alias=''
An alias to differentiate this provider from other providers with the same binary but different config

attribute dict config
The config to apply to this provider

attribute bool manual_config=true
Whether the user wishes to provide the config as a dict, if false the config should be provided as a config
block entity tree via the root_config relation.

attribute bool auto_agent=true
Whether to start an agent automatically or not. If set to false the relation agent_config should be set
manually. :rel agent_config: This needs to be set only if auto_agent=false

relation std::AgentConfig agent_config [1]
Relation to the agent config

relation terraform::config::Block root_config [0:1]
Relation to the root configuration, or null if manual_config is true

The following implementations are defined for this entity:

• terraform::agentConfig

• terraform::providerManualConfig

• terraform::providerBlockConfig

The following implements statements select implementations for this entity:

• terraform::providerManualConfig constraint self.manual_config

10.7. Inmanta modules 295

https://github.com/inmanta/terraform.git

Inmanta Documentation, Release 2023.1.1

• terraform::providerBlockConfig constraint (not self.manual_config)

• terraform::agentConfig constraint auto_agent

entity terraform::Resource

Parents: std::PurgeableResource

A Terraform resource

attribute string type

The type of resource this is

attribute string name

An arbitrary name to identify this resource

attribute string? terraform_id=null
If this is set, and the resource state is not stored in parameter yet, the handler will first try to import it,
using the provided value as terraform id. :rel provider: The terraform provider for this resource

attribute dict config
The configuration for this resource

attribute bool manual_config=true
Whether the user wishes to provide the config as a dict, if false the config should be provided as a config
block entity tree via the root_config relation.

attribute bool purge_on_delete=false

relation terraform::Provider provider [1]
Relation to the resource provider

relation terraform::config::Block root_config [0:1]
Relation to the root configuration, or null if manual_config is true

The following implementations are defined for this entity:

• terraform::resourceManualConfig

• terraform::resourceBlockConfig

The following implements statements select implementations for this entity:

• terraform::resourceManualConfig constraint self.manual_config

• terraform::resourceBlockConfig constraint (not self.manual_config)

entity terraform::config::Block

Parents: std::Entity

This entity represents a block of attributes in a terraform module. It can be used for anyone using the module
to build a config. It is being used by the generator to generate the config of a resource or provider.

Source for the schema:
https://github.com/inmanta/inmanta-tfplugin/blob/7269bc7d28d751b5dc110161dae29a6209c3fb63/
docs/tf_grpc_plugin/proto/inmanta_tfplugin/tfplugin5.proto

tfplugin5.proto: L81: message Block { L82: int64 version = 1; L83: repeated Attribute attributes =
2; L84: repeated NestedBlock block_types = 3; L85: string description = 4; L86: StringKind descrip-
tion_kind = 5; L87: bool deprecated = 6; L88: }

attribute string? name=null
The name of this config section in the parent config block. Should be left null for the root config block.

attribute dict attributes
A dictionary of attributes. The key is the attribute name as specified in the terraform provider schema.
The value is the value assigned to this attribute in the corresponding inmanta entity.

296 Chapter 10. Inmanta Reference

https://github.com/inmanta/inmanta-tfplugin/blob/7269bc7d28d751b5dc110161dae29a6209c3fb63/docs/tf_grpc_plugin/proto/inmanta_tfplugin/tfplugin5.proto
https://github.com/inmanta/inmanta-tfplugin/blob/7269bc7d28d751b5dc110161dae29a6209c3fb63/docs/tf_grpc_plugin/proto/inmanta_tfplugin/tfplugin5.proto

Inmanta Documentation, Release 2023.1.1

attribute bool deprecated=false
If true, will raise a warning everytime the configuration block is used.

attribute terraform::config::nesting_mode_t nesting_mode='single'

attribute string key

The key, required for list and dict nesting mode, automatically set otherwise.

attribute dict _config
Generated, the serialized version of this config.

attribute dict _state
Generated, the current state for the resource attached to this config block. The state here matches
the same element as this config block. (The config should be a subset of the state if there is
not change between last compile config and current compile config, in which case the con-
fig will still be unknown). i.e. The following configuration structure can be constructed with
entities. .. code-block:: terraform::config::Block(name=null, attributes={“name”: “Albert”},
children=[terraform::config::Block(name=”children”, attributes={“name”: “Bob”, “age”: 12},
nesting_mode=”set”,), terraform::config::Block(name=”children”, attributes={“name”: “Alice”,
“age”: 14}, nesting_mode=”set”,), terraform::config::Block(name=”pets”, attributes={“type”:
“dog”}, nesting_mode=”dict”, key=”Brutus”,), terraform::config::Block(name=”favorite_dishes”,
attributes={“name”: “Pizza”}, nesting_mode=”list”, key=”1”,), terraform::config::Block(
name=”favorite_dishes”, attributes={“name”: “Pasta”}, nesting_mode=”list”, key=”2”,)], par-
ent=null, state=get_resource_attribute(terraform_resource, []),) It will be serialized as follows (the
order of the children list might differ): .. code-block:: { “name”: “Albert”, “children”: [{ “name”:
“Alice”, “age”: 14, }, { “name”: “Bob”, “age”: 12, },], “pets”: { “Brutus”: { “type”: “dog”, }, },
“favorite_dishes”: [{“name”: “Pizza”}, {“name”: “Pasta”},], }

relation terraform::config::Block children [0:*]
other end: terraform::config::Block.parent [0:1]

relation terraform::config::Block parent [0:1]
other end: terraform::config::Block.children [0:*]

The following implementations are defined for this entity:

• terraform::config::generate_key

• terraform::config::serialize

• terraform::config::build_state

• terraform::config::deprecation_warning

The following implements statements select implementations for this entity:

• terraform::config::generate_key constraint (not (self.nesting_mode in ['list',
'dict']))

• terraform::config::serialize constraint true

• terraform::config::build_state constraint self.name is defined

• terraform::config::deprecation_warning constraint self.deprecated

10.7. Inmanta modules 297

Inmanta Documentation, Release 2023.1.1

Implementations

implementation terraform::agentConfig

implementation terraform::providerBlockConfig

If self.manual_config is false, the user should provide the root_config relation, the Block entity will be
serialized and attached to this entity config attribute.

implementation terraform::providerManualConfig

If self.manual_config is true, the user should provide the config as a dict directly to the entity. The root_config
relation should then be set to null.

implementation terraform::resourceBlockConfig

If self.manual_config is false, the user should provide the root_config relation, the Block entity will be
serialized and attached to this entity config attribute.

implementation terraform::resourceManualConfig

If self.manual_config is true, the user should provide the config as a dict directly to the entity. The root_config
relation should then be set to null.

implementation terraform::config::build_state

Extract the state matching this block from the parent state. This should only be called on non-root blocks.
The root block should get the config from the resource parameter storing it.

implementation terraform::config::deprecation_warning

Send a warning that the usage of this block is deprecated

implementation terraform::config::generate_key

Automatically generate the key for blocks that don’t require it to be set. This key will be a hash of the block’s
config and can then be used to order the block and generate a consistent config even with unordered sets of
children blocks. (e.a. nesting_mode=set)

implementation terraform::config::serialize

Serialize this block into a config dict.

Plugins

terraform.deprecated_config_block(config_block: terraform::config::Block)
Log a warning for the usage of a deprecated config block

terraform.dict_hash(input: dict)→ string

terraform.extract_state(parent_state: dict, config: terraform::config::Block)→ dict
Extract the state corresponding to the provided config block from the parent state. This method should only
be used with a state originating from the safe_resource_state plugin.

Parameters

• state – The parent state dict, it should include our config at key config.name

• config – The config block we want to find the matching config for.

terraform.get_resource_attribute(resource: terraform::Resource, attribute_path: any)→ any
Get a resource attribute from the saved parameters (facts).

Disclaimer: Whatever comes out of this method might not be very safe to use,
as it might be out of sync with the current state of the model. i.e. If you access here the id of a file,
which is modified in the same

model, the id you will receive will be the one of the previous file not the one deployed in this
model.

It is safer to use safe_resource_state plugin.

298 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Parameters

• resource – The resource we which to get an attribute from.

• attribute_path – The path, in the resource state dict, to the desired value.

terraform.get_resource_attribute_ref(resource: terraform::Resource, attribute_path: any)→ dict
Get a resource attribute reference. The difference with get_resource_attribute is that the value is not resolved
at compile time but during the handler execution. This means that:

1. The value can not be manipulated in the model.

2. We save some time during the compile as we don’t need to make api calls.

3. We avoid multiple recompile due to unknown values.

4. If the targeted value changes, but none of the other attributes of this
resource, we will need a full deploy to have our value up to date.

Parameters

• resource – The resource we which to get an attribute from.

• attribute_path – The path, in the resource state dict, to the desired value.

terraform.safe_resource_state(resource: terraform::Resource)→ dict
Get the state dict of a resource and check whether the current config of the resource has changed since the
state was published. If this is the case, raise an Unknown value, as the state is out of sync and is dangerous
to use.

terraform.serialize_config(config_block: terraform::config::Block)→ dict
Serialize a config block into a dictionnary.

terraform.sorted_list(input_list: list)→ list

Resources

class terraform.terraform_resource.TerraformResource

• Resource for entity terraform::Resource

• Id attribute id

• Agent name provider.agent_config.agentname

• Handlers terraform.terraform_resource.TerraformResourceHandler

Handlers

class terraform.terraform_resource.TerraformResourceHandler

• Handler name terraform-resource

• Handler for entity terraform::Resource

10.7. Inmanta modules 299

Inmanta Documentation, Release 2023.1.1

10.7.17 Module ubuntu

• License: Apache 2.0

• Version: 0.4.15

• Upstream project: https://github.com/inmanta/ubuntu.git

Handlers

class ubuntu.UbuntuService

A handler for services on systems that use upstart

• Handler name ubuntu_service

• Handler for entity std::Service

10.7.18 Module user

• License: ASL 2

• Version: 0.1.17

• Upstream project: https://github.com/inmanta/user.git

Entities

entity user::Group

Parents: std::ManagedResource, std::PurgeableResource

attribute string name

attribute bool system=false

relation std::Host host [1]

The following implementations are defined for this entity:

• user::execGroup

The following implements statements select implementations for this entity:

• user::execGroup constraint true

entity user::User

Parents: std::ManagedResource, std::PurgeableResource

attribute string name

attribute string group

attribute string[] groups=List()

attribute bool system=false

attribute string shell='/bin/bash'

attribute string homedir

300 Chapter 10. Inmanta Reference

https://github.com/inmanta/ubuntu.git
https://github.com/inmanta/user.git

Inmanta Documentation, Release 2023.1.1

relation std::Host host [1]

The following implementations are defined for this entity:

• user::execUser

The following implements statements select implementations for this entity:

• user::execUser constraint true

Implementations

implementation user::execGroup

Exec based implementation until a handler is available

implementation user::execUser

Exec based implementation until a handler is available

10.7.19 Module vyos

• License: ASL2.0

• Version: 3.0.2

• Upstream project: https://github.com/inmanta/vyos.git

Typedefs

typedef vyos::abrtype_t

• Base type string

• Type constraint (self in ['cisco','ibm','shortcut','standard'])

typedef vyos::area

• Base type number

• Type constraint ((self >= 0) and (self < 4294967296))

typedef vyos::duplex

• Base type string

• Type constraint (((self == 'auto') or (self == 'half')) or (self == 'full'))

typedef vyos::ospf_metric_t

• Base type number

• Type constraint ((self > 0) and (self <= 16))

typedef vyos::ospf_metric_type_t

• Base type number

• Type constraint (self in [1,2])

typedef vyos::redistribute_t

• Base type string

• Type constraint (self in ['bgp','connected','kernel','rip','static'])

10.7. Inmanta modules 301

https://github.com/inmanta/vyos.git

Inmanta Documentation, Release 2023.1.1

typedef vyos::speed

• Base type string

• Type constraint (self in ['10','100','1000','2500','10000','auto'])

typedef vyos::tunnel_encap_t

• Base type string

• Type constraint (self in ['gre','gre-bridge','ipip','sit','ipip6','ip6ip6'])

typedef vyos::tunnel_key_t

• Base type number

• Type constraint ((self >= 0) and (self <= 99999))

typedef vyos::tunnel_mtu_t

• Base type number

• Type constraint ((self >= 64) and (self <= 8024))

typedef vyos::vlan_id

• Base type int

• Type constraint ((self >= 0) and (self < 4095))

typedef vyos::firewall::action_t

• Base type string

• Type constraint (self in ['accept','drop','reject'])

typedef vyos::firewall::protocol_t

• Base type string

• Type constraint (self in ['tcp_udp','all','icmp','tcp','udp'])

typedef vyos::routemap::rm_action_t

• Base type string

• Type constraint (self in ['permit','deny'])

typedef vyos::vpn::auth_mode_t

• Base type string

• Type constraint (self in ['pre-shared-secret','rsa','x509'])

typedef vyos::vpn::conn_type_t

• Base type string

• Type constraint (self in ['initiate','respond'])

typedef vyos::vpn::dh_group_t

• Base type string

• Type constraint (self in [2,5,14,15,16,17,18,19,20,21,22,23,24,25,26])

typedef vyos::vpn::encryption_t

• Base type string

• Type constraint (self in ['aes128','aes256','3des'])

302 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

typedef vyos::vpn::esp_mode_t

• Base type string

• Type constraint (self in ['tunnel','transport'])

typedef vyos::vpn::hash_t

• Base type string

• Type constraint (self in ['md5','sha1','sha256','sha384','sha512'])

typedef vyos::vpn::kex_t

• Base type string

• Type constraint (self in ['ikev1','ikev2'])

typedef vyos::vpn::local_address_t

• Base type string

• Type constraint (ip::is_valid_ip_v10(self) or (self == 'any'))

Entities

entity vyos::Address

Parents: std::Entity

An address entity to add multiple addresses to an interface

attribute ip::cidr_v10 ip

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::BaseHost

Parents: ip::Host

A vyos (or derivative) based host.

attribute string user='inmanta'

attribute string password='inmanta'

attribute number port=22

attribute bool skip_on_connect_error=false
When true, vyos resources deployed on this host will be skipped when the handler fails to connect to
the host. Otherwise the resource will be marked as failed.

relation vyos::Credential credential [1]

The following implementations are defined for this entity:

• vyos::vyosConfig

• vyos::commonConfig

The following implements statements select implementations for this entity:

• vyos::vyosConfig constraint true

• constraint true

entity vyos::BaseInterface

Parents: vyos::ConfigNode

10.7. Inmanta modules 303

Inmanta Documentation, Release 2023.1.1

attribute string name

attribute ip::cidr_v10? address=null

attribute bool dhcp=false

relation vyos::Address addresses [0:*]

relation vyos::PolicyRoute policy_route [0:1]
Set a policy route for this interface.

relation vyos::Shaper traffic_policy_out [0:1]
other end: vyos::Shaper.interfaces_in [0:*]

relation vyos::Shaper traffic_policy_in [0:1]
other end: vyos::Shaper.interfaces_out [0:*]

relation vyos::Bridge bridge_group [0:1]
other end: vyos::Bridge.members [0:*]

The following implementations are defined for this entity:

• vyos::ifacePolicyRoute

The following implements statements select implementations for this entity:

• vyos::ifacePolicyRoute constraint policy_route is defined

entity vyos::Bridge

Parents: vyos::BaseInterface

attribute string type='bridge'

relation vyos::BaseInterface members [0:*]
other end: vyos::BaseInterface.bridge_group [0:1]

The following implementations are defined for this entity:

• vyos::bridge

The following implements statements select implementations for this entity:

• vyos::bridge constraint true

entity vyos::Config

Parents: vyos::ConfigItem , std::PurgeableResource

VYOS config block resource

This is the central resource, that is used to deploy specific configlets.

attribute string device

attribute string node

attribute bool never_delete=false

attribute bool save=true

attribute bool send_event=true

attribute string[] keys_only=List()
Only compare these keys, ignore all other keys that are in the current state

attribute string[] ignore_keys=List()
Ignore these keys in the current state

304 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute bool facts=false
When set to true the config is never executed. The value under node is exposed as a fact

attribute bool skip_on_connect_error

relation vyos::Credential credential [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::ConfigItem

Parents: std::Entity

attribute string config

relation vyos::ExtraConfig extra [0:*]
other end: vyos::ExtraConfig.parent [1]

entity vyos::ConfigNode

Parents: std::Entity

attribute string node_name

attribute bool purged=false

attribute bool purge_on_delete=false

relation vyos::ConfigItem config [0:1]

relation vyos::BaseHost host [1]

The following implementations are defined for this entity:

• vyos::vpn::ipsecOptions

entity vyos::Credential

Parents: std::Entity

attribute string address

attribute string user

attribute string password

attribute number port

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::DhcpServer

Parents: vyos::ConfigNode

attribute string name

attribute ip::cidr subnet

attribute ip::ip default_router

attribute ip::ip[] dns_servers

attribute ip::ip range_start

10.7. Inmanta modules 305

Inmanta Documentation, Release 2023.1.1

attribute ip::ip range_end

The following implementations are defined for this entity:

• vyos::dhcpServer

The following implements statements select implementations for this entity:

• vyos::dhcpServer constraint true

entity vyos::ExtraConfig

Parents: vyos::ConfigItem

relation vyos::ConfigItem parent [1]
other end: vyos::ConfigItem.extra [0:*]

The following implementations are defined for this entity:

• vyos::extraconfig_depends

The following implements statements select implementations for this entity:

• vyos::extraconfig_depends constraint true

entity vyos::Host

Parents: vyos::BaseHost

The following implements statements select implementations for this entity:

• constraint true

• vyos::commonConfig constraint true

entity vyos::Hostname

Parents: vyos::ConfigNode

attribute string name

The following implementations are defined for this entity:

• vyos::hostname

The following implements statements select implementations for this entity:

• vyos::hostname constraint true

entity vyos::Interface

Parents: vyos::BaseInterface

attribute bool never_delete=false

attribute vyos::duplex duplex='auto'

attribute vyos::speed speed='auto'

relation vyos::firewall::RuleSet inbound_ruleset [0:1]

relation vyos::firewall::RuleSet local_ruleset [0:1]

relation vyos::firewall::RuleSet outbound_ruleset [0:1]

The following implementations are defined for this entity:

• vyos::iface

The following implements statements select implementations for this entity:

• vyos::iface constraint true

306 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

entity vyos::IpFact

Parents: std::PurgeableResource

Discover interface IP

attribute string id

attribute string device

relation vyos::BaseHost host [1]

relation vyos::Credential credential [1]

relation vyos::Interface interface [1]

The following implementations are defined for this entity:

• vyos::wireup_ipfact

The following implements statements select implementations for this entity:

• vyos::wireup_ipfact constraint true

entity vyos::Loopback

Parents: vyos::ConfigNode

attribute ip::cidr address

The following implementations are defined for this entity:

• vyos::loopback

The following implements statements select implementations for this entity:

• vyos::loopback constraint true

entity vyos::Masquerade

Parents: vyos::ConfigNode

attribute string outbound_interface

attribute string source_address

attribute number rule

The following implementations are defined for this entity:

• vyos::masq

The following implements statements select implementations for this entity:

• vyos::masq constraint true

entity vyos::Ospf

Parents: vyos::ConfigNode

attribute vyos::area area=0

attribute ip::cidr[] network

attribute ip::ip router_id

attribute string[]? passive_interfaces=null

attribute string[]? passive_interface_excludes=null

attribute vyos::abrtype_t abrtype='cisco'

10.7. Inmanta modules 307

Inmanta Documentation, Release 2023.1.1

relation vyos::OspfRedistribute redistributes [0:*]
other end: vyos::OspfRedistribute.ospf [1]

The following implementations are defined for this entity:

• vyos::ospf

The following implements statements select implementations for this entity:

• vyos::ospf constraint true

entity vyos::OspfRedistribute

Parents: std::Entity

attribute vyos::redistribute_t type

attribute vyos::ospf_metric_t? metric=null

attribute vyos::ospf_metric_type_t metric_type=2

attribute string? route_map=null

relation vyos::Ospf ospf [1]
other end: vyos::Ospf.redistributes [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::PolicyRoute

Parents: vyos::ConfigNode

Route policy for Vyos Polciy Based Routing.

attribute std::alfanum name

The name for this policy route

relation vyos::PolicyRouteRule rules [1:*]
other end: vyos::PolicyRouteRule.policy [1]

The following implementations are defined for this entity:

• vyos::policyRoute

The following implements statements select implementations for this entity:

• vyos::policyRoute constraint true

entity vyos::PolicyRouteRule

Parents: vyos::ConfigNode

Rule in a route policy for Vyos Polciy Based Routing.

attribute number id
The rule number

attribute number table
Routing table for traffic matching this rule

attribute std::alfanum? description=null
Description for this rule

attribute ip::cidr? match_source_address=null
The source address to match traffic on

attribute ip::cidr? match_destination_address=null
The destination address to match traffic on. Can only be specified if match_protocol is set

308 Chapter 10. Inmanta Reference

https://docs.vyos.io/en/latest/routing/pbr.html
https://docs.vyos.io/en/latest/routing/pbr.html

Inmanta Documentation, Release 2023.1.1

attribute ip::port? match_source_port=null
The source port to match traffic on. Can only be specified if match_protocol in [“tcp”, “udp”]

attribute ip::port? match_destination_port=null
The destination port to match traffic on

attribute std::alfanum? match_protocol=null
The protocol to match traffic on

relation vyos::PolicyRoute policy [1]
other end: vyos::PolicyRoute.rules [1:*]

The following implementations are defined for this entity:

• vyos::policyRouteRule

The following implements statements select implementations for this entity:

• vyos::policyRouteRule constraint true

entity vyos::RouteMap

Parents: vyos::ConfigNode

attribute string name

attribute string? description=null

relation vyos::routemap::Rule rules [0:*]

The following implementations are defined for this entity:

• vyos::routeMap

The following implements statements select implementations for this entity:

• vyos::routeMap constraint true

entity vyos::Shaper

Parents: vyos::ConfigNode

attribute string name

attribute string bandwidth

attribute string default_bandwidth='50%'

attribute string default_ceiling='100%'

attribute string default_queue_type='fair-queue'

relation vyos::BaseInterface interfaces_in [0:*]
other end: vyos::BaseInterface.traffic_policy_out [0:1]

relation vyos::BaseInterface interfaces_out [0:*]
other end: vyos::BaseInterface.traffic_policy_in [0:1]

The following implementations are defined for this entity:

• vyos::shaper

The following implements statements select implementations for this entity:

• vyos::shaper constraint true

entity vyos::StaticRoute

Parents: vyos::ConfigNode

attribute ip::cidr destination

10.7. Inmanta modules 309

Inmanta Documentation, Release 2023.1.1

attribute ip::ip next_hop

attribute number table=0

The following implementations are defined for this entity:

• vyos::staticRouteDefault

• vyos::staticRouteTable

The following implements statements select implementations for this entity:

• vyos::staticRouteDefault constraint (table == 0)

• vyos::staticRouteTable constraint (table > 0)

entity vyos::Tunnel

Parents: vyos::BaseInterface

attribute string? description=null

attribute vyos::tunnel_mtu_t mtu=1476

attribute vyos::tunnel_encap_t encapsulation

attribute ip::ip_v10 local_ip

attribute ip::ip_v10? remote_ip=null

attribute vyos::tunnel_key_t? key=null

The following implementations are defined for this entity:

• vyos::tunnel

The following implements statements select implementations for this entity:

• vyos::tunnel constraint true

entity vyos::Vif

Parents: vyos::BaseInterface

attribute vyos::vlan_id vlan

attribute string type='vif'

attribute string name=''

relation vyos::Interface parent [1]

The following implementations are defined for this entity:

• vyos::vif

The following implements statements select implementations for this entity:

• vyos::vif constraint true

entity vyos::firewall::AddressGroup

Parents: vyos::firewall::Group

attribute string[] addresses

string vyos::firewall::AddressGroup.description='inmanta managed address-group'

The following implementations are defined for this entity:

• vyos::firewall::addressGroup

The following implements statements select implementations for this entity:

310 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

• vyos::firewall::addressGroup constraint true

entity vyos::firewall::Group

Parents: vyos::ConfigNode

attribute string name

attribute string group_type

entity vyos::firewall::NetworkGroup

Parents: vyos::firewall::Group

attribute ip::cidr[] networks

string vyos::firewall::NetworkGroup.description='inmanta managed network-group'

The following implementations are defined for this entity:

• vyos::firewall::networkGroup

The following implements statements select implementations for this entity:

• vyos::firewall::networkGroup constraint true

entity vyos::firewall::PortGroup

Parents: vyos::firewall::Group

attribute string[] ports

string vyos::firewall::PortGroup.description='inmanta managed port-group'

The following implementations are defined for this entity:

• vyos::firewall::portGroup

The following implements statements select implementations for this entity:

• vyos::firewall::portGroup constraint true

entity vyos::firewall::Rule

Parents: std::Entity

attribute number id

attribute vyos::firewall::action_t action

attribute vyos::firewall::protocol_t protocol

string vyos::firewall::Rule.description='inmanta managed rule'

relation vyos::firewall::Group source [0:*]

relation vyos::firewall::Group destination [0:*]

relation vyos::firewall::RuleSet ruleset [1]
other end: vyos::firewall::RuleSet.rules [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::firewall::RuleSet

Parents: vyos::ConfigNode

attribute string name

attribute vyos::firewall::action_t default_action

10.7. Inmanta modules 311

Inmanta Documentation, Release 2023.1.1

string vyos::firewall::RuleSet.description='inmanta managed ruleset'

relation vyos::firewall::Rule rules [0:*]
other end: vyos::firewall::Rule.ruleset [1]

The following implementations are defined for this entity:

• vyos::firewall::ruleSet

The following implements statements select implementations for this entity:

• vyos::firewall::ruleSet constraint true

entity vyos::openstackext::OpenstackHost

Parents: vyos::BaseHost, openstack::Host

A vyos based host for Openstack

attribute string? floatingIP=null

The following implementations are defined for this entity:

• vyos::openstackext::openstackConfig

• vyos::openstackext::withFip

The following implements statements select implementations for this entity:

• vyos::openstackext::withFip constraint floatingIP is defined

• vyos::commonConfig constraint (not floatingIP is defined)

• constraint true

• vyos::openstackext::openstackConfig constraint true

entity vyos::routemap::Match

Parents: std::Entity

attribute string? interface=null

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::routemap::Rule

Parents: std::Entity

attribute number id

attribute vyos::routemap::rm_action_t action

relation vyos::routemap::Match match [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::vpn::Authentication

Parents: std::Entity

attribute string id

attribute vyos::vpn::auth_mode_t mode

attribute string? pre_shared_key=null

attribute string? remote_id=null

312 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

attribute string? rsa_key_name=null

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::vpn::ESPGroup

Parents: vyos::ConfigNode

attribute string name

attribute bool compression

attribute number lifetime

attribute vyos::vpn::esp_mode_t mode

attribute bool pfs

relation vyos::vpn::ESPProposal proposals [1:*]

The following implementations are defined for this entity:

• vyos::vpn::espGroup

The following implements statements select implementations for this entity:

• vyos::vpn::espGroup constraint true

entity vyos::vpn::ESPProposal

Parents: std::Entity

attribute number id

attribute vyos::vpn::encryption_t encryption

attribute vyos::vpn::hash_t hash='sha1'

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::vpn::IKEGroup

Parents: vyos::ConfigNode

attribute string name

attribute vyos::vpn::kex_t key_exchange='ikev1'

attribute number lifetime

relation vyos::vpn::IKEProposal proposals [1:*]

The following implementations are defined for this entity:

• vyos::vpn::ikeGroup

The following implements statements select implementations for this entity:

• vyos::vpn::ikeGroup constraint true

entity vyos::vpn::IKEProposal

Parents: std::Entity

attribute number id

attribute vyos::vpn::dh_group_t? dh_group=null

10.7. Inmanta modules 313

Inmanta Documentation, Release 2023.1.1

attribute vyos::vpn::encryption_t encryption

attribute vyos::vpn::hash_t hash='sha1'

The following implements statements select implementations for this entity:

• std::none constraint true

entity vyos::vpn::IPSECOptions

Parents: vyos::ConfigNode

attribute string[] ipsec_interfaces=List()

attribute string[] log_modes=List()

attribute bool nat_traversal=false

attribute ip::cidr[] allowed_nat_networks=List()

The following implements statements select implementations for this entity:

• vyos::vpn::ipsecOptions constraint true

entity vyos::vpn::KeyGen

Parents: std::PurgeableResource

Ensure an RSA key has been generated

attribute string id='keygen'

attribute string device

relation vyos::BaseHost host [1]

relation vyos::Credential credential [1]

The following implementations are defined for this entity:

• vyos::vpn::wireup

The following implements statements select implementations for this entity:

• vyos::vpn::wireup constraint true

entity vyos::vpn::RSAKey

Parents: vyos::ConfigNode

attribute string name

attribute string rsa_key

The following implementations are defined for this entity:

• vyos::vpn::rsaKey

The following implements statements select implementations for this entity:

• vyos::vpn::rsaKey constraint true

entity vyos::vpn::SiteToSite

Parents: vyos::ConfigNode

attribute string peer

attribute vyos::vpn::conn_type_t connection_type

attribute vyos::vpn::local_address_t local_address

relation vyos::vpn::Authentication authentication [1]

314 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

relation vyos::vpn::IKEGroup ike_group [1]

relation vyos::vpn::ESPGroup default_esp_group [0:1]

relation vyos::vpn::Tunnel tunnels [0:*]

The following implementations are defined for this entity:

• vyos::vpn::siteToSite

The following implements statements select implementations for this entity:

• vyos::vpn::siteToSite constraint true

entity vyos::vpn::Tunnel

Parents: std::Entity

attribute number id

attribute ip::cidr_v10 local_prefix

attribute ip::cidr_v10 remote_prefix

The following implements statements select implementations for this entity:

• std::none constraint true

Implementations

implementation vyos::bridge

implementation vyos::commonConfig

implementation vyos::dhcpServer

implementation vyos::extraconfig_depends

implementation vyos::hostname

implementation vyos::iface

implementation vyos::ifacePolicyRoute

implementation vyos::loopback

implementation vyos::masq

implementation vyos::ospf

implementation vyos::policyRoute

implementation vyos::policyRouteRule

implementation vyos::routeMap

implementation vyos::shaper

implementation vyos::staticRouteDefault

implementation vyos::staticRouteTable

implementation vyos::tunnel

implementation vyos::vif

10.7. Inmanta modules 315

Inmanta Documentation, Release 2023.1.1

implementation vyos::vyosConfig

implementation vyos::wireup_ipfact

implementation vyos::firewall::addressGroup

implementation vyos::firewall::networkGroup

implementation vyos::firewall::portGroup

implementation vyos::firewall::ruleSet

implementation vyos::openstackext::openstackConfig

implementation vyos::openstackext::withFip

implementation vyos::vpn::espGroup

implementation vyos::vpn::ikeGroup

implementation vyos::vpn::ipsecOptions

implementation vyos::vpn::rsaKey

implementation vyos::vpn::siteToSite

implementation vyos::vpn::wireup

Resources

class vyos.Config

• Resource for entity vyos::Config

• Id attribute nodeid

• Agent name device

• Handlers vyos.VyosHandler

class vyos.IpFact

• Resource for entity vyos::IpFact

• Id attribute id

• Agent name device

• Handlers vyos.IpFactHandler

class vyos.KeyGen

• Resource for entity vyos::vpn::KeyGen

• Id attribute id

• Agent name device

• Handlers vyos.KeyGenHandler

316 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

Handlers

class vyos.VyosHandler

• Handler name sshconfig

• Handler for entity vyos::Config

class vyos.KeyGenHandler

• Handler name keygen

• Handler for entity vyos::vpn::KeyGen

class vyos.IpFactHandler

• Handler name IpFact

• Handler for entity vyos::IpFact

10.7.20 Module web

• License: Apache 2.0

• Version: 0.3.15

• Upstream project: https://github.com/inmanta/web.git

Entities

entity web::Alias

Parents: std::Entity

An alias (hostname) for a web application

attribute std::hoststring hostname

relation web::Application application [0:*]
other end: web::Application.name [1]

relation web::Application application_alias [0:*]
other end: web::Application.aliases [0:*]

relation web::Cluster cluster [0:1]
other end: web::Cluster.name [1]

relation web::Cluster cluster_alias [0:1]
other end: web::Cluster.aliases [0:*]

relation web::LoadBalancedApplication loadbalancer [0:1]
other end: web::LoadBalancedApplication.name [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity web::Application

Parents: std::Entity

This entity models a webapplication

attribute string document_root

10.7. Inmanta modules 317

https://github.com/inmanta/web.git

Inmanta Documentation, Release 2023.1.1

relation web::Alias name [1]
other end: web::Alias.application [0:*]

relation web::Alias aliases [0:*]
other end: web::Alias.application_alias [0:*]

relation web::ApplicationContainer container [1]
other end: web::ApplicationContainer.application [0:*]

relation web::LoadBalancedApplication lb_app [0:1]
other end: web::LoadBalancedApplication.app_instances [1:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity web::ApplicationContainer

Parents: ip::services::Server

A container that hosts webapplications

attribute string user

The group name of the group as which the process of this container runs

attribute string group

attribute number port=80

relation web::Application application [0:*]
other end: web::Application.container [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity web::Cluster

Parents: std::Entity

A webapplication that is hosted as a cluster

attribute number cluster_size

relation web::Alias name [1]
other end: web::Alias.cluster [0:1]

relation web::Alias aliases [0:*]
other end: web::Alias.cluster_alias [0:1]

relation web::LoadBalancedApplication loadbalancer [1:*]
other end: web::LoadBalancedApplication.web_cluster [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity web::HostedLoadBalancer

Parents: web::LoadBalancer, ip::services::Server

entity web::LoadBalancedApplication

Parents: std::Entity

attribute bool nameonly=true

relation web::Cluster web_cluster [0:*]
other end: web::Cluster.loadbalancer [1:*]

318 Chapter 10. Inmanta Reference

Inmanta Documentation, Release 2023.1.1

relation web::LoadBalancer loadbalancer [1:*]
other end: web::LoadBalancer.applications [0:*]

relation web::Application app_instances [1:*]
other end: web::Application.lb_app [0:1]

relation web::Alias name [1]
other end: web::Alias.loadbalancer [0:1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity web::LoadBalancer

Parents: ip::services::BaseServer

A loadbalancer for web applications

relation web::LoadBalancedApplication applications [0:*]
other end: web::LoadBalancedApplication.loadbalancer [1:*]

10.7.21 Module yaml

A module to help with handling yaml files

• License: ASL 2.0

• Version: 0.1.0

• This module requires compiler version 2019.3 or higher

• Upstream project: https://github.com/inmanta/yaml.git

Plugins

yaml.load(path: string)→ dict
Parse the yaml found in the file at ‘path’ into a dictionary

The path is according to the convention for std::source and std::file

yaml.loads(content: string)→ dict
Parse the yaml found in content into a dictionary

10.7.22 Module yum

• License: Apache 2.0

• Version: 0.7.3

• Upstream project: https://github.com/inmanta/yum.git

10.7. Inmanta modules 319

https://github.com/inmanta/yaml.git
https://github.com/inmanta/yum.git

Inmanta Documentation, Release 2023.1.1

Entities

entity yum::Repository

Parents: std::Entity

A yum repository.

Constraint: The attributes baseurl, mirrorlist and metalink cannot be null at the same time.

attribute string name

attribute bool gpgcheck=false

attribute bool enabled=true

attribute string? baseurl=null

attribute string? mirrorlist=null

attribute string? metalink=null

attribute string gpgkey=''

attribute number metadata_expire=7200

attribute bool skip_if_unavailable=false

relation std::Host host [1]
other end: std::Host.repos [0:*]

The following implementations are defined for this entity:

• yum::validateInput

• yum::redhatRepo

The following implements statements select implementations for this entity:

• yum::validateInput constraint true

• yum::redhatRepo constraint std::familyof(host.os,'redhat')

Implementations

implementation yum::redhatRepo

implementation yum::validateInput

320 Chapter 10. Inmanta Reference

CHAPTER

ELEVEN

TROUBLESHOOTING

This page describes typical failure scenario’s and provides a guideline on how to troubleshoot them.

11.1 A resources is stuck in the state available

When a resource is stuck in the available state, it usually means that the agent, which should deploy the resource,
is currently down or paused. Click on the version of the configuration model, shown in the versions tab of the
Inmanta dashboard, to get an overview of the different resources in the model. This overview shows the state of
each resource and the name of its agent. Filter on resources in the available state and check which resource are
ready to be deployed (i.e. a resource without dependencies or a resource for which all dependencies were deployed
successfully). The agent of that resource, is the agent that causes the problem. In the figure below, the epel-release
package should be ready to deploy on agent vm2

Next, go to the agents tab of the dashboard to verify the state of that agent.

An agent can be in one of the following states:

321

Inmanta Documentation, Release 2023.1.1

• Down

• Paused

• Up

Each of the following subsections describes what should be done when the agent is in each of the different states.

11.1.1 The agent is down

The Section Agent doesn’t come up provides information on how to troubleshoot the scenario where an agent that
shouldn’t be down is down.

11.1.2 The agent is paused

Unpause the agent by clicking the Unpause agent button in the agents tab of the dashboard.

11.1.3 The agent is up

When the agent is in the up state, it should be ready to deploy resources. Read the agent log to verify it
doesn’t contain error or warning messages that would explain why the agent is not deploying any resources.
For auto-started agents, three different log files exist. The log files are present in <config.log-dir>/
agent-<environment-id>.[log|out|err]. The environment ID can be found in the URL of the dashboard.
More information about the different log files can be found here. For manually started agents the log file is present
in /var/log/inmanta/agent.log. If the log file doesn’t provide any more information, trigger the agents to
execute a deployment by clicking on the Force Repair button in the versions tab of the dashboard, as shown in
the figure below:

When the agent receives the notification from the server, it writes the following log message in its log:

INFO inmanta.agent.agent Agent <agent-name> got a trigger to update in␣
↪→environment <environment ID>

If the notification from the server doesn’t appear in the log file of the agent after clicking the Force Repair
button, the problem is situated on the server side. Check if the server log contains any error messages or warning
that could explain the reason why the agent didn’t get a notification from the server. The server log file is situated
at <config.log-dir>/server.log.

322 Chapter 11. Troubleshooting

Inmanta Documentation, Release 2023.1.1

11.2 The deployment of a resource fails

When a resource cannot be deployed, it ends up in one of the following deployment states:

• failed: A resource ends up in the failed state when the handler of that resource raises an uncaught excep-
tion. Check the log of the resource to get more details about the issue.

• unavailable: A resource ends up in the unavailable state when no handler could be found to deploy that
resource. Check the log of the resource to get more details about the issue.

• undefined: A resource ends up in the undefined state when a fact, required by that resource didn’t yet
resolve to a value. Read Section Check which facts are not yet resolved to find out which fact is still unknown.

• skipped: When a resource is in the skipped state, it can mean two different things. Either the resource
cannot be deployed because one of its dependencies ended up the failed state or the handler itself raised a
SkipResource exception to indicate that the resource in not yet ready to be deployed. The latter case can
occur when a VM is still booting for example. Check the log of the resource to get more information about
actual root cause.

• skipped_for_undefined: The skipped_for_undefined state indicates that the resource cannot be de-
ployed because one of its dependencies cannot be deployed. Check the log of the resource to get information
about the actual dependency that cannot be deployed.

11.2.1 Read the logs of a resource

This section describes how to obtain the logs for a specific resource. In the versions tab of the dashboard, click on
the version of the configuration model being deployed to get a list of all the resource in that configuration model.
Next, click on the magnifier in front of a resource, as shown in the figure below, to get the logs for that specific
resource. The log messages for the different stages of the deployment are grouped together.

The magnifier in front of each log message can be used to get a more structured output for that specific log message.

In the figure below, the traceback of the exception is shown.

11.2.2 Check which facts are not yet resolved

To find out which fact of a certain resource is not yet resolved, click on the magnifier in front of the resource in the
undefined state, as shown in the figure below.

The list of attributes of that resource, will contain one attribute which is marked as undefined (See figure below).
This is the attribute that wasn’t resolved yet. Track the source of this attribute down within the configuration model
to find out why this attribute is undefined.

11.2. The deployment of a resource fails 323

Inmanta Documentation, Release 2023.1.1

324 Chapter 11. Troubleshooting

Inmanta Documentation, Release 2023.1.1

11.3 Agent doesn’t come up

This section explains how to troubleshoot the problem where an agent is in the down state while it should be up.
In the figure shown below, the agent vm1 is down.

Agents can be started in two different ways, either automatically by the inmanta server (auto-started agents) or
manually (manually-started) agents. More information about the configuration of both types of agent can be found
on this page. The Section Auto-started agents describes how to troubleshoot this issue for agents started by the
Inmanta server. The Section Manually-started agents describes how to troubleshoot this issue for agents that were
started manually.

11.3.1 Auto-started agents

An auto-started agent is only started when that agent is present in the autostart_agent_map environment setting.
Verify that requirement via the settings tab of the inmanta dashboard as shown in the figure below.

When the autostart_agent_map is configured correctly, but the agent is still not up, read the logs
of the auto-started agent . These logs can be found at the following location: <config.log-dir>/
agent-<environment-id>.[log|out|err]. The environment ID is present in the URL of the dashboard. More
information about the different log files can be found here. When reading those log files, pay specific attention to
error messages and warnings that could explain why the agent is marked as down. Also, ensure that the name of the
agent under consideration is added as an endpoint to the agent process. The log file should contain the following
message when a certain agent is added as an endpoint to the process:

11.3. Agent doesn’t come up 325

Inmanta Documentation, Release 2023.1.1

inmanta.agent.agent Adding endpoint <agent-name>

When the agent is not added as an endpoint, log an issue on https://github.com/inmanta/inmanta-core/issues.

An autostarted-agent connects to the Inmanta server via the address configured in the server.server-address
config option. If this option is set incorrectly, the agent will not be able to connect to the server.

11.3.2 Manually started agents

When a manually-started agent doesn’t come up, verify whether the agent process is still running via the following
command:

$ systemctl status inmanta-agent

If the agent process is down, start and enable it via the following command:

$ systemctl enable --now inmanta-agent

Also check the log file of the manually-started agent. This log file is located at /var/log/inmanta/agent.log.
The standard output and the standard error streams produced by the agent, can be obtained via journalctl:

$ journalctl -u inmanta-agent

11.3.3 Potential reasons why an agent doesn’t start

This section provides a list of potential reasons why an agent wouldn’t start:

• bind-address set incorrectly: The Inmanta server listens on all the interfaces configured via the server.
bind-address option. If the server doesn’t listen on an interface used by a remote agent, the agent will not
be able to connect to the server.

• Authentication issue: If the Inmanta server has been setup with authentication, a misconfiguration may deny
an agent access to the Inmanta API. For example, not configuring a token provider (issuer) with sign=true
in the auth_jwt_<ID> section of the Inmanta configuration file. Documentation on how to configure au-
thentication correctly can be found here.

• SSL problems: If the Inmanta server is configured to use SSL, the Agent should be configured to use SSL
as well (See the SSL-related configuration options in the server and agent_rest_transport section of
the Inmanta configuration reference)

• Network issue: Many network-related issue may exist which don’t allow the agent to establish a connection
with the Inmanta server. A firewall may blocks traffic between the Inmanta agent and the server, no network
route may exist towards the Inmanta server, etc.

11.4 No version appears after recompile trigger

After clicking the Recompile button of the dashboard, a new version of the configuration model should appear in
the list of versions. If this doesn’t happen, the compilation has failed. Click on the Compile Reports button, as
shown in the figure below, to get the compile report of the latest compilation. This report will give more information
about the exact problem.

Each step of the compile process is shown, together with the output produced by that step and the return code. Verify
that the timestamp of the compile report corresponds to the time the compilation was triggered in the dashboard.
If no compile report was generated or the compile report doesn’t show any errors, check the server logs as well.
By default the server log is present in <config.log-dir>/server.log.

326 Chapter 11. Troubleshooting

https://github.com/inmanta/inmanta-core/issues

Inmanta Documentation, Release 2023.1.1

11.5 Logs show “empty model” after export

This log message indicates that something went wrong during the compilation or the export of the model to the
server. To get more information about the problem, rerun the command with the -vvv and the -X options. The
-vvv option increases the log level of the command to the DEBUG level and the -X option shows stack traces and
errors.

$ inmanta -vvv export -X

11.6 Compilation fails

In rare situations, the compiler might fail with a List modified after freeze or an Optional variable
accessed that has no value error, even though the model is syntactically correct. The following sections
describe why this error occurs and what can be done to make the compilation succeed.

11.6.1 Reason for compilation failure

When the compiler runs, it cannot know upfront how many elements will be added to a relationship. At some stages
of the compilation process the compiler has to guess which relations are completely populated in order to be able to
continue the compilation process. Heuristics are being used to determine the correct order in which relationships
can be considered completely populated. In most situation these heuristics work well, but in rare situations the
compiler makes an incorrect decision and considers a relationship to be complete while it isn’t. In those situation
the compiler crashes with one of the following exception:

• List modified after freeze: This error occurs when a relationship with an upper arity larger than one
was considered complete too soon.

11.5. Logs show “empty model” after export 327

Inmanta Documentation, Release 2023.1.1

• Optional variable accessed that has no value: This error occurs when a [0:1] relationship was
considered complete too soon.

The following sections provide information on how this issue can be resolved.

11.6.2 Relationship precedence policy

Warning: The inmanta compiler is very good at determining in which order it should evaluate the orchestration
model. Unfortunately in very complex models it might not be able to do this. In that case you can give the
compiler some instruction by providing it with relationship precedence rules.

This is a very powerful tool because you can override all the intelligence in the compiler. This means that if
you provide the correct rule it will fix the compilation. If you provide a wrong rule it can make this even worse.
However, it can never make the orchestrator compile incorrect results.

The above-mentioned problem can be resolved by defining a relation precedence policy in the project.yml file of
an Inmanta project. This policy consists of a list of rules. Each rule defining the order in which two relationships
should be considered complete with respect to each other. By providing this policy, it’s possible to guide the
compiler in making the correct decisions that lead to a successful compilation.

Example: Consider the following project.yml file.

1 name: quickstart
2 modulepath: libs
3 downloadpath: libs
4 repo: https://github.com/inmanta/
5 description: A quickstart project that installs a drupal website.
6 relation_precedence_policy:
7 - "a::EntityA.relation before b::EntityB.other_relation"

The last two lines of this file define the relation precedence policy of the project. The policy contains one rule
saying that the relationship relation of entity a::EntityA should be considered completely populated before
the relation other_relation of entity b::EntityB can be considered complete.

Each rule in a relation precedence policy should have the following syntax:

<first-type>.<first-relation-name> before <then-type>.<then-relation-name>

11.6.3 Compose a relationship precedence policy

Depending on the complexity of your model, it might be difficult to determine the rule(s) that should be added to
the relation precedence policy to make the compile succeed. In this section we will provide some guidelines to
compose the correct set of rules.

When the compilation of a model fails with a List modified after freeze or an Optional variable
accessed that has no value error, the output from the compiler will contain information regarding which
relationship was frozen too soon.

For example, consider the following compiler output:

...
Exception explanation
=====================
The compiler could not figure out how to execute this model.

During compilation, the compiler has to decide when it expects a relation to have all␣
↪→its elements.

(continues on next page)

328 Chapter 11. Troubleshooting

Inmanta Documentation, Release 2023.1.1

(continued from previous page)

In this compiler run, it guessed that the relation 'finds' on the instance␣
↪→maze::ServiceA
(instantiated at /home/centos/maze_project/libs/maze/model/_init.cf:43) would be␣
↪→complete with the values [], but the
value maze::SubB (instantiated at /home/centos/maze_project/libs/maze/model/_init.
↪→cf:62) was added at
/home/centos/maze_project/libs/maze/model/_init.cf:75
...

In the above-mentioned example, the relationship maze::ServiceA.finds was incorrectly considered complete.
To find the other relation in the ordering conflict, compile the model once more with the log level set to DEBUG
by passing the -vvv option and grep for the log lines that contain the word freezing. The output will contains
a log line for each relationship that is considered complete. This way you get an overview regarding the order in
which the compiler considers the different relations to be complete.

$ inmanta -vvv compile|grep -i freezing
...
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::World (instantiated at /
↪→home/centos/maze_project/libs/maze/model/_init.cf:10) maze::World.services =␣
↪→[maze::ServiceA 7f8feb20f700, maze::ServiceA 7f8feb20faf0, maze::ServiceA␣
↪→7f8feb20fee0, maze::ServiceA 7f8feb1e7310, maze::ServiceA 7f8feb1e7700]
Could not set attribute `finds` on instance `maze::ServiceA
...

All the relationships frozen after the freeze of the maze::ServiceA.finds relationship are potentially causing
the compilation problem. In the above-mention example, there is only one, namely the maze::World.services
relationship.

As such the following rule should be added to the relation precedence policy to resolve this specific conflict:

maze::World.services before maze::ServiceA.finds

When you compile the model once more with the relation precedence policy in-place, the compilation can either
succeed or fail with another List modified after freeze or an Optional variable accessed that has
no value error. The latter case indicates that a second rule should be added to the relation precedence policy.

11.7 Debugging

Debugging the server is possible in case the rpdb package is installed. Installing the rpdb package to the virtual
environment used by Inmanta by default can be done the following way:

$ /opt/inmanta/bin/python3 -m pip install rpdb

Rpdb can be triggered by sending a TRAP signal to the inmanta server process.

11.7. Debugging 329

https://pypi.org/project/rpdb/

Inmanta Documentation, Release 2023.1.1

$ kill -5 <PID>

After receiving the signal, the process hangs, and it’s possible to attach a pdb debugger by connecting to 127.0.0.1,
on port 4444 (for example using telnet).

330 Chapter 11. Troubleshooting

CHAPTER

TWELVE

CHANGELOG

12.1 Release 2023.1.1 (2023-02-17)

12.1.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

12.1.2 Inmanta-core: release 8.2.0 (2023-02-09)

Improvements

• Support inmanta module release options -c, --patch, --minor, --major without --dev

12.1.3 inmanta-ui: release 4.0.1

This component has had no new releases since the last product version.

12.1.4 Web-console: release 1.12.2 (2023-02-17)

Bug fixes

• Do not show LSM related graphs when LSM it not loaded (Issue #4650)

12.1.5 Web-console: release 1.12.1 (2023-02-09)

No changelog entries.

12.2 Release 2023.1 (2023-02-06)

12.2.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

331

Inmanta Documentation, Release 2023.1.1

12.2.2 Inmanta-core: release 8.1.0 (2023-02-06)

New features

• Added inmanta module release command. (Issue inmanta/inmanta-core#5082)

• Added the /metrics API endpoint to retrieve aggregated metrics about an Inmanta environment from the
server. (Issue inmanta/inmanta-core#5129)

• experimental: Added a project option to install dependencies on other modules when loading code on the
agent

• Improve stability of incremental deploy for resources containing dicts (Issue #5306)

Improvements

• Remove resource.resource_version_id fields from the database and use resource id instead

• Improve error reporting when an index collision is detected. (Issue #5075)

• A proper inmanta warning is now displayed when an invalid escape sequence is detected in a regular string
or a multi-line string. (Issue #5091)

• Fix wrong docker login instructions

• improved partial compile documentation for LSM

• Improved error reporting when an optional list attribute (not relation) remains unset

• Improved exception handling during shutdown

• Remove auto-recompile-wait from the config file in the rpm (Issue #4332)

Upgrade notes

• The first recompile after this upgrade will always perform a full deploy (Issue #5306)

Deprecation notes

• The inmanta module commit command has been deprecated in favor of the inmanta module release
command.

• The do_clean_hard and postgres_get_custom_types functions and the PGRestore and
AsyncSingleton classes in respectively inmanta_tests.conftest and inmanta_tests.db.common
were moved to the inmanta.db.util module. The do_clean_hard function is available in the inmanta.
db.util module under the name clear_database. These functions and classes will be removed from
their original location in a future major release (>=ISO7). (Issue inmanta/inmanta-core#5383)

Bug fixes

• Fix issue where server-side compiles fail when the SSL configuration on the server doesn’t match the SSL
configuration defined in the .inmanta file of the project. (Issue inmanta/inmanta-core#4640)

• Fixed cycle detection in experimental relation precedence policy (Issue #5380)

• Fix handling of deploying state in incremental deploys (Issue #5434)

332 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

12.2.3 Inmanta-ui: release 4.0.1 (2023-02-06)

No changelog entries.

12.2.4 Web-console: release 1.12.0 (2023-02-06)

New features

• Create component and navigation for the Dashboard Page (Issue #4525)

• Create base components for Dashboard, endpoint QueryManager to acquire metrics and serve them to Dash-
board and finally components with given Manager (Issue #4527)

• Adjust routing to include Dashboard correctly, fix e2e accordingly to new flow of routes (Issue #4531)

• Add interpolation to charts when no data was aggregated, format dates from UTC to local, add rounding
(Issue #4579)

Improvements

• Adding automated e2e testing for the Service Catalog, for a basic-service instance. (Issue #4317)

• Adding automated e2e testing for the Service Catalog, for child-parent service instances. (Issue #4320)

• Adding automated e2e testing for the Service Catalog, for a Embedded Entity instance. (Issue #4321)

• Adding automated e2e testing for the Service Catalog - Catalog Update (Issue #4323)

• Adding automated e2e testing for the Service Details (Issue #4327)

• Adding automated e2e testing for the Service Catalog, for a desired state (Issue #4337)

• Adding Tooltips for halted and resume buttons in the sidebar. (Issue #4341)

• Adding automated e2e testing for the Compile Reports (Issue #4348)

Bug fixes

• Fix Service filtering when clicking on service relation (Issue #4099)

• Fix toolbar alignment issue. (Issue #4422)

• Fix form booleans issue (Issue #4438)

• Name of the agent is not properly escaped in pause agent request (Issue #4454)

• Fix resource logs issue (Issue #4480)

• Fix configuration update issue (Issue #4481)

• fixes to metrics (Issue #4590)

12.3 Release 2022.4 (2022-12-01)

12.3.1 General changes

New features

• Add support for RHEL 9 and derivatives. (Issue inmanta/inmanta-core#4973)

12.3. Release 2022.4 (2022-12-01) 333

Inmanta Documentation, Release 2023.1.1

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

12.3.2 Inmanta-core: release 8.0.0 (2022-11-30)

New features

• Added the inmanta-workon command (Issue #4376)

• Add the finalizer decorator. Functions decorated with it will be executed at the end of the compilation

• Constructors that appear as a right hand side in an assignment (or another constructor) now no longer require
explicit assignments for the inverse relation to the left hand side.

• Add support for extensions to register their environment settings via the
register_environment_settings method in the extension.py file of the extension. (Issue in-
manta/irt#1366)

Improvements

• Improve the logging of the pip commands by using a separated logger for those. Also add the content of the
requirements and constraints files to the logging. (Issue #4651)

• Add module and plugin deprecation mechanism (Issue #4908)

• Improve the error message when trying to build a moduleV2 with an invalid version name (Issue #5054)

• Refactor page view functionality

Deprecation notes

• Remove support for leaving nullable attribute unassigned, an exception will now be raised. You should
make sure optional variables are always assigned a value. This changes the behaviour of ‘is defined’ in Jinja
templates. You should now use ‘is not none’ instead (Issue #1888)

• The ‘dashboard’ section is no longer supported for configuration options. The ‘web-ui’ section should now
be used instead for configuration options related to web interfaces. (Issue inmanta/inmanta-ui#317)

• The Inmanta dashboard was removed. The URL of the Inmanta dashboard now redirects to the Inmanta
web-console which is the successor of the Inmanta dashboard. (Issue #4905)

• V1 modules are deprecated. Support for V1 modules will be removed in one of the next major releases (Issue
inmanta/inmanta-core#4941)

• Removed support to use a dictionary in the requires metadata field of a V1 module or an Inmanta project.
(Issue inmanta/inmanta-core#4974)

• The inmanta module update command and the -r option of the inmanta module list command were
removed. They are replaced by the inmanta project update and the inmanta project freeze com-
mand respectively. (Issue inmanta/inmanta-core#4975)

• Remove support for hyphens in identifiers. An exception will now be raised. (Issue #4976)

• The available-versions-to-keep option of the server configuration file is no longer supported. Please use the
AVAILABLE_VERSIONS_TO_KEEP environment setting instead. (Issue #4980)

• Remove support for default constructors (Issue #4984)

• The inmanta.server.services.environmentservice.register_setting method, used by the ex-
tensions to register environment settings, has been deprecated. The register_environment_settings
method in the extension.py of the extension has to be used instead. (Issue inmanta/irt#1366)

334 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

Bug fixes

• Fix issue where the progress information of the git clone command shows mixed log lines (Issue
inmanta/inmanta-core#4919)

• Fix issue with “inmanta module build” command on a v1 module if inmanta_plugins dir already exists (Issue
#4954)

• Fix bug where the stdout filehandler is not closed after streaming the output from pip into the logger.

• Fix bug where warnings messages were not shown to the user.

• Fix bug where the status endpoint can become non-responsive

• Fix issue where the documentation of the inmanta module freeze command incorrectly indicates that it
updates the project.yml file, while it updates the module.yml file.

• Fix an issue about the str function of the DatabaseOrder class which made it incompatible with python3.11

• Fix an issue about enum representation which made a test fail for python3.11

• Fixes an issue about optional fields without default value not being populated correctly in DAO

• Fix bug where a ResourceAction fails with an InvalidStateError when the agent is shutdown

• Fix bug where the endpoints compile_details, get_compile_reports and get_compile_queue
returned incorrect data for the fields exporter_plugin, notify_failed_compile and
failed_compile_message.

12.3.3 Inmanta-ui: release 4.0.0 (2022-11-30)

Deprecation notes

• The ‘web-console’ section is no longer supported for configuration options. The ‘web-ui’ section should
now be used instead for configuration options related to web interfaces. (Issue inmanta/inmanta-ui#317)

12.3.4 Web-console: release 1.11.3 (2022-11-30)

Improvements

• Allow to send filter values from more than one input at once with enter or button click - Resouces & Desired
State Details view

• An update banner will be displayed if your application happens to be outdated. (Issue #3879)

• Add an indication in the navigation sidebar when there are ongoing compilations. The indication will be
added to the “Compile Report” menu-item.

• add buttons for expanding/collapsing all nested attributes to speed up the process of going through services

• The create/edit Instance form now has a better way to allow the user to select multiple Inter Service Relations.
(Issue #4100)

• Updating React version to React 18. (Issue #4107)

• The link to the old dashboard has been removed from the sidebar. (Issue #4108)

• Improve the sidebar closing behaviour when on smaller screens. You can now click in the page content to
close the container. (Issue #4119)

• Add Hooks that check if user leaves unfinished Add/Edit Instance form and prompt for confirmation (Issue
#4125)

• When only one option available in select input, then this one is preselected instead of default placeholder
prompt (Issue #4127)

12.3. Release 2022.4 (2022-12-01) 335

Inmanta Documentation, Release 2023.1.1

• A button has been added to the Service Catalog overview to execute an update. (Issue #4159)

• move service details from dropdown to separate page (Issue #4160)

• add pagination on the bottom of the table to improve UX (Issue #4246)

• Move delete service button to the Service Catalog overview, in the kebab menu options. (Issue #4326)

• Fix service callbacks issues in display, in readabilty and form behaviour after adding callback (Issue #4332)

• Fix filter options being displayed under the DIFF comparator on some pages. (Issue #4338)

• Improve alignment of filter options on smaller screens. (Issue #4339)

Bug fixes

• Fix missing paramter in query when updating a service configuration. (Issue #4064)

• Fix the error thrown on create new instance. (Issue #4100)

• Make sure the Update button is also shown on an empty Catalog.

• Hotfix for the xml-formatter when the scenario occurs where the string to be formatted is preceded or ends
with whitspaces. (Issue #4144)

12.4 Release 2022.3 (2022-09-29)

12.4.1 General changes

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

Bug fixes

• Add a signal handler to the entrypoint of the Inmanta container to correctly handle the termination of the
container

12.4.2 Inmanta-core: release 7.1.0 (2022-09-29)

New features

• Add option to bytecompile all python source in a v2 module wheel (Issue inmanta/irt#1190)

• Replace Drupal model of quickstart with SR Linux. (Issue #4333)

• Added partial compile feature

336 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

Improvements

• When the AutostartedAgentManager starts a new agent process, it now uses a dynamic timeout on the time
to wait until all agents are active. The AutostartedAgentManager raises a timeout as soon as no new agent
has become active in the past five seconds. (Issue inmanta/inmanta-core#4398)

• Improved logging on the agent manager when restarting agents

• Performance improvements for the resource_did_dependency_change endpoint (Issue #4402)

• The put_partial endpoint and inmanta export --partial now dynamically allocate a new version.

• Add support for extras on Python dependencies (Issue inmanta/inmanta-core#4497)

• Improve logging on module installation. (Issue #4500)

• Reject v1tov2 module conversion when a setup.py is present

• Fix issue where the v1tov2 command removes the requirements.txt file (Issue #4684)

• Fix a bug in the typing of the new influxdb metrics (Issue #4688)

• Don’t set PYTHONPATH environment variable on venv activation: fixes editable install compatibility with
setuptools<64 (Issue #4713)

• Add argument to compilerservice to allow exporting with the specified exporter plugin

• Added options to compiler service to configure notification behavior (Issue #4803)

• Reduce compiler log level for iterations and cache log lines to debug

• For v1tov2 conversion, split tag from version and put it in tag_build field

• Improved editable v2 module compatibility with latest setuptools and PEP660 in edge case scenarios.

• Set the startup/shutdown order between the Inmanta server and the database in the docker-compose file

Upgrade notes

• It’s required to update-and-recompile on each Inmanta project on the server after an upgrade (Issue
inmanta/inmanta-core#4718)

Deprecation notes

• The internal upload_code endpoint has been removed, deprecated since core release 2018.2 (Issue in-
manta/irt#1190)

• The put_partial endpoint (previously marked experimental) no longer accepts a version argument.

Bug fixes

• Fix rare deadlock in the database locking mechanism when tasks are cancelled, mostly affects test environ-
ments. (Issue #4384)

• Fix issue that causes an agent restart storm for all agents on an agent process when an agent on that process
is paused. (Issue inmanta/inmanta-core#4398)

• make sure that the index present in PIP_INDEX_URL or PIP_EXTRA_INDEX_URL is not leaked to pip
when using install_from_index (Issue inmanta/inmanta-core#4723)

• Fix issue where the pip consistency check is too strict (Issue #4761)

• The compiler service now logs the requested time of a recompile using a consistent timezone

• Fixed minor backwards incompatibility of the resource action database schema and
resource_action_update endpoint

12.4. Release 2022.3 (2022-09-29) 337

Inmanta Documentation, Release 2023.1.1

• Fix bugs in the merge logic of a partial compile. 1) Ensure that the version numbers present in the new
version of the configuration model are set correctly. 2) Ensure that the resource states and unknowns, that
belongs to the partial model, are sent to the server and merged correctly with the old configuration model.

12.4.3 Inmanta-ui: release 3.0.2 (2022-09-29)

No changelog entries.

12.4.4 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

12.4.5 Web-console: release 1.11.2 (2022-09-29)

Improvements

• add delete button for desired state version with test coverage, bump test coverage for sibiling components
(Issue #3957)

• replace KeyCloakInstance as it is depraceted (Issue #4002)

Upgrade notes

• Improve test coverage for conditionals (Issue #4000)

Bug fixes

• Scroll into view when new lines are being added to the report while it is compiling. (Issue #3855)

• Fix the overflow disapearing outside the window for the facts table. (Issue #3909)

• Add error handling for uncaught errors. (Issue #3924)

• replace instance uuid with instance identity when possible in action modals(Delete and set State Action)

• bump dependencies versions to resolve vulnerabilities (Issue #4001)

• Fixed issue where web-console would crash when failing to format xml

Other notes

• The editorconfig file now ensures that the codebase stays LF, the package.json will contain Windows specific
commands for linting/prettier. Single quotes for paths are not supported by Windows. (Issue #3909)

• updated the jenkins scripts for tests to be slightly more performant (Issue #3924)

338 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

12.5 Release 2022.2.1 (2022-08-16)

12.5.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

12.5.2 inmanta-core: release 7.0.0

This component has had no new releases since the last product version.

12.5.3 inmanta-ui: release 3.0.1

This component has had no new releases since the last product version.

12.5.4 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

12.5.5 Web-console: release 1.11.1 (2022-08-16)

Bug fixes

• Fixed error on settings page resulting in blank page

• Fixed behavior of instance creation and update for services with inter-service relations

12.6 Release 2022.2 (2022-08-08)

12.6.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

12.6.2 Inmanta-core: release 7.0.0 (2022-08-05)

New features

• Change the relation deprecation warning to be more accurate. (Issue #2443)

• Add support for the elif keyword to the compiler

• Improved tracking of potential future relation assignments within conditional statements.

• Improved error reporting for invalid namespace access (Issue #2818)

• Expressions are now treated as statements (Issue #3367)

• Add environment setting to set the number of stored versions. (Issue #3505)

• Ensure processes forked by Inmanta commands load the same config folder as their parent process (Issue
#3765)

• Add notification service (Issue #3981)

• Create a notification when a git pull fails during compile (Issue #4021)

• Add ‘inmanta-cli environment recompile’ command (Issue #4052)

12.5. Release 2022.2.1 (2022-08-16) 339

Inmanta Documentation, Release 2023.1.1

• Added auto_full_compile environment option to schedule regular full compiles (Issue #4274)

• Add support to pass type precedence hints to the compiler (Issue #3098)

• Added support to create development builds of V2 modules (Issue inmanta/irt#1184)

• Added documentation for primitive type casts to the language reference

Improvements

• Improve batching of code loading in the agent (Issue #4217)

• inmanta module v1tov2 and inmanta module build will now merge setup.cfg and pyproject.toml (Issue
#4372)

• Add py.typed file to packages build using inmanta module build (Issue #4374)

• The compiler cache (.cfc) files are now stored in the .cfcache directory in the root of the inmanta project
instead of in the cfcache directory in the inmanta modules. (Issue inmanta/inmanta-core#4407)

• More precise cache invalidation for the compiler cache (Issue #4408)

• Add support to enable/disable strict dependency checking in the compiler and in the module tools using the
–strict-deps-check and –no-strict-deps-check options. (Issue #4516)

• Improve exception messages on version conflicts (Issue #4524)

• Improve documentation of agent configuration

• Make python -m inmanta work

• Add database connection metrics to the influxdb reporter

Upgrade notes

• The default log level of the inmanta commandline tool was changed from ERROR to WARNING (Issue
#3911)

• The compiler and the module tools now by default check all dependencies transitively for version conflicts.
When a version conflict is found, an error is raised. A fallback to the old behavior is possible by providing
the --no-strict-deps-check option. (Issue #4516)

• inmanta project install and inmanta project update now always take into account the
requirements.txt of the project to provide additional version constraints to pip (Issue #4410)

Deprecation notes

• Unicode characters are no longer escaped in multi-line strings. (Issue #2582)

• The available-versions-to-keep option in the server configuration file is now deprecated in favor of the envi-
ronment setting (Issue #3505)

• Writing a string over multiple lines is now only supported for strings within triple quotes. This was previously
allowed for strings within single quotes due to a bug.

• An exception is now raised when trying to interpolate a string in a dictionary key

• The auto-recompile-wait option in the server configuration is now deprecated in favor of the recom-
pile_backoff environment setting (Issue #4332)

340 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

Bug fixes

• The logger now correctly reports the endpoints that will be removed from a session

• Fixed an instance of nondeterministic behavior in the compiler

• Fix memory leak caused by lru-cache keeping strong references to cached items

• Optimize resource list query

• Fix installing extras of module dependencies (Issue #3443)

• Fix bug that fails the CRUDHandler when a changed attribute is of type set. (Issue #3470)

• Wrap any exception that occurs during resource export so that it is more useful to the end user (Issue #3787)

• Writing a string over multiple lines is now only supported for strings within triple quotes.

• An error message is now shown if a wrong repo path is used

• An exception is now raised when there is a mismatch between the python version of the compiler venv and
the python version of the active process (Issue #3829)

• Improve the compiler error message that is given when an index attribute is missing in the constructor call.
(Issue #3902)

• Fix bug where the user is suggested to run the inmanta module update command when the execution of
the same command failed. (Issue #3911)

• Fixed bug that makes the inmanta deploy command fail when the database and server sections of the
inmanta configuration files contain non-default values. (Issue #3927)

• Fix bug that makes every inmanta warning end with an empty line. (Issue #3951)

• Improve syntax error reporting when defining an attribute starting with a capital letter.

• Fix handling of ‘_’ in resource_logs and get_resource_events api endpoints (Issue #4043)

• Fix bug where inmanta project install and inmanta project update always invokes pip, even
when all dependencies are already met. (Issue #4055)

• Limit included namespace packages to inmanta_plugins for v1tov2 module conversion. (Issue #4130)

• Enforce inmanta package requirements so that modules can’t overwrite those. (Issue #4200)

• Make sure that the inmanta project install command doesn’t protect the inmanta-dev-dependencies
package (Issue #4249)

• Fix syntax error when calling “is defined” on dictionary lookup

• The set_setting endpoint now correctly returns a 400 status code when an invalid value is provided. (Issue
#4361)

• Fix bug where the setup.cfg file, generated by the v1tov2 command, contains a dependency to the module
itself when the module contains an import for a namespace in its own module. (Issue inmanta/inmanta-
core#4373)

• Fix bug on value lookup in an unknown dict and on lookup with an unknown key. (Issue #4475)

• Fix failing test case.

• Fix order of stages in compile report details (Issue inmanta/web-console#3082)

• Fixed incorrect top level module loading for nested imports when v2 module is present in venv but not in
explicit requires

• Fix performance impacting race condition in deploy handler method (Issue inmanta/lsm#433)

• Fix issue with get_resources_in_latest_version call not taking into account versions without resources (Issue
inmanta/inmanta-lsm#739)

• Fix issue where the deployment of resources takes a long time, due a high rate limiter backoff. (Issue #4084)

12.6. Release 2022.2 (2022-08-08) 341

Inmanta Documentation, Release 2023.1.1

• Fixed type cast behavior for null and unknown values

12.6.3 Inmanta-ui: release 3.0.1 (2022-08-05)

No changelog entries.

12.6.4 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

12.6.5 Web-console: release 1.11.0 (2022-08-05)

New features

• Add support for inter-service relations in the service inventory (Issue #3040)

12.7 Release 2022.1.1 (2022-04-19)

12.7.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

12.7.2 Inmanta-core: release 6.0.2 (2022-04-19)

Bug fixes

• Fix bug that crashes the agent when a cross-agent dependency doesn’t have any changes (Issue #4116)

• Constrained click dependency to known compatible range because of backwards incompatible minor

12.7.3 Inmanta-core: release 6.0.1 (2022-02-11)

Bug fixes

• Fix bug in incremental deploy where event processing can be delayed (Issue #3789)

12.7.4 inmanta-ui: release 3.0.0

This component has had no new releases since the last product version.

342 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

12.7.5 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

12.7.6 Web-console: release 1.10.0 (2022-04-12)

New features

• Add the Compliance Check page (Issue #2558)

• Add notification drawer (Issue #3056)

• Add notification center page (Issue #3067)

12.7.7 Web-console: release 1.9.1 (2022-02-11)

New features

• Add Desired State Compare page (Issue #2374)

12.8 Release 2022.1 (2022-02-03)

12.8.1 General changes

New features

• Added the web console as the default front-end, replacing the dashboard (Issue #65)

• Introduced the v2 module format. V2 modules offer better integration with the Python ecosystem with
regards to distribution, dependency resolution and plugin loading. For more information on v2 modules, see
how to add a v2 module source, use a v2 module in your project, and install v2 modules.

• Added support for Python 3.9

• Added deploy method to handlers for increased flexibility in responding to events (Issue inmanta/inmanta-
core#2940)

• Added raw strings (r-strings) to the inmanta language (https://docs.inmanta.com/community/latest/language.html#literals-
values)

• Added support for Jinja 3 to std module.

• Added terraform module. Allows to use native terraform providers with-
out having to use terraform directly by using the included model generator.
(https://docs.inmanta.com/community/latest/reference/modules/terraform.html)

• VSCode extension interacts with the Python extension to allow venv selection.

• Extended web console functionality and made it the default front-end.

12.8. Release 2022.1 (2022-02-03) 343

https://docs.inmanta.com/community/latest/model_developers/modules.html#understanding-modules
https://docs.inmanta.com/community/latest/model_developers/modules.html#installing-modules
https://docs.inmanta.com/community/latest/model_developers/developer_getting_started.html#v2-module-source
https://docs.inmanta.com/community/latest/model_developers/developer_getting_started.html#setting-up-a-module
https://docs.inmanta.com/community/latest/model_developers/modules.html#installing-modules

Inmanta Documentation, Release 2023.1.1

Upgrade notes

• Compiling a project no longer installs modules on the fly. Run inmanta project install to install
modules. For more details see setting up a project.

• The compiler venv (.env) is no longer used. The compiler uses the active venv.

• The supported PostgreSQL version is now 13

• The supported Python version is now 3.9

• This release requires RHEL 8

• Jinja templates are required to be compatible with Jinja 3.

• An update of the VSCode extension is required for compatibility with this release.

• Clear your browser cache after upgrading to remove the old redirection rule. If the cache is not cleared the
‘/’ route will keep redirecting to ‘/dashboard’.

• The compiler and agent venv’s with a Python version older than the Python version of the Inmanta server will
be moved to an .rpmsave directory at installation time. (Issue inmanta/inmanta-service-orchestrator#234)

• Ensure the database is backed up before executing an upgrade.

Deprecation notes

• inmanta module install no longer installs all modules for a project. This has moved to inmanta
project install.

• The inmanta dashboard is now deprecated in favor of the web console. It will be removed in a future major
release.

12.8.2 Inmanta-core: release 6.0.0 (2022-02-02)

New features

• Added resource_deploy_start endpoint (Issue #2928)

• Added resource_deploy_done endpoint (Issue #2931)

• Added helper method for reliable event processing (Issue #2941)

• Improved south bound integration documentation (Issue #2954)

• Compiler improvement: made is defined gradually executable

• Added resource_list endpoint (Issue #3045)

• Added resource_details endpoint (Issue #3046)

• Added support to build V2 modules into a Python package. (Issue #3047)

• Added resource_history endpoint (Issue #3048)

• Added the ability to package V1 modules as V2 modules (Issue #3049)

• Added inmanta module v1tov2 command. (Issue #3050)

• Added V2 package loader (Issue #3051)

• Updated inmanta module install to install v2 modules from source.

• Added the inmanta module add command. (Issue #3089)

• Added resource_logs endpoint (Issue #3109)

• Added endpoint to list compile reports (Issue #3131)

344 Chapter 12. Changelog

https://docs.inmanta.com/community/latest/model_developers/developer_getting_started.html#setting-up-a-project
https://jinja.palletsprojects.com/en/3.0.x/changes/#version-3-0-0

Inmanta Documentation, Release 2023.1.1

• Added endpoint to get compile details (Issue #3132)

• inmanta project update now updates modules’ Python dependencies to the latest compatible version.
The same goes for triggering an update and recompile from the dashboard. (Issue #3623)

• Enable the UI extension by default (Issue #3653)

• Added version diff api endpoint (Issue #3659)

• Added raw strings to the inmanta language.

• Restructured module developer guide

• added operational procedures documentation

• added instructions about passwordless sudo to remote agent setup

• Added documentation regarding modules V2. (Issue #3023)

• Port the agent to the new deploy handler method. (Issue #2940)

• Added support for PostgreSQL 13 (Issue #2893)

Upgrade notes

• On newly created environments, the environment setting purge_on_delete will be set to false by default
instead of true. This overrides any purge_on_delete settings on individual resources. You need to explicitly
set it to true to enable the old behavior again. (Issue #2958)

• inmanta compile no longer installs any modules. Run inmanta project install before compiling
the first time.

• “The compiler venv has been phased out. The compiler will now use the venv used to execute the inmanta
compile command.” (Issue #3096)

• Compiler no longer installs modules on the fly, inmanta project install needs to be run to install
required modules

• Clear your browser cache after upgrading to remove the old redirection rule. If the cache is not cleared the
‘/’ route will keep redirecting to ‘/dashboard’. (Issue #3497)

• Project.load() no longer installs Project dependencies. Pass install=True for the old behavior.

• NOTSET is no longer accepted as a log level by the agent’s context logger. It was not a valid log level before,
but it was accepted by the agent.

• After upgrading the Inmanta server, all virtual environments used by the compiler and the agents have to be
removed. Use the following procedure to achive this:

– Stop the Inmanta server

– Remove all /var/lib/inmanta/server/environments/<environment-id>/.env directories

– Remove all /var/lib/inmanta/<environment-id> directories

– Start the Inmanta server again

12.8. Release 2022.1 (2022-02-03) 345

Inmanta Documentation, Release 2023.1.1

Deprecation notes

• inmanta module install no longer installs all modules for a project. This has moved to inmanta
project install.

• The inmanta module list -r command has been deprecated in favor of inmanta project freeze

• inmanta modules update has been replaced by inmanta project update. The old command has been
deprecated and will be removed in a future release. (Issue #3623)

Bug fixes

• Fixed docstring-parser compatibility after non-backwards compatible changes and constrained dependency
to semi-safe range.

• Ensure that special characters in the resource action log are not escaped. (Issue inmanta/inmanta-lsm#699)

• Fixed agent cache behavior when cache_none is provided

• Fix dollar sign escaping issue in installation documentation

• Fix bug where the listeners of the environment clear action are not notified when files of that environment
cannot be deleted from the filesystem. (Issue #3637)

• The tests folder is no longer included into the sdist package

• Removed NOTSET loglevel from all API’s

12.8.3 inmanta-ui: release 3.0.0

This component has had no new releases since the last product version.

12.8.4 Inmanta-dashboard: release 3.8.1 (2022-01-25)

No changelog entries.

12.8.5 Inmanta-dashboard: release 3.8.0 (2021-10-18)

New features

• Extend proxy support (Issue #130)

12.8.6 web-console: release 1.9.0

This component has had no new releases since the last product version.

12.9 Release 2021.2.1 (2021-06-01)

12.9.1 Inmanta-core: release 5.1.1 (2021-06-01)

Bug fixes

• Add upperbound to docstring-parser dependency so that pip install does not fail

346 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

12.9.2 Inmanta-dashboard: release 3.7.0 (2021-06-01)

No changelog entries.

12.10 Release 2021.2 (2021-05-05)

12.10.1 Inmanta-core: release 5.1.0 (2021-05-05)

New features

• Mark the stable API using a decorator (Issue #2414)

• More strictly validate the schema of the project.yml and module.yml file (Issue #2723)

• Updated db schema update mechanism to track all installed versions (Issue #2724)

• Add partial support for collection type parameters for GET methods (Issue #2775)

• Add changelog section to the documentation (Issue inmanta/irt#417)

• Added developer getting started guide

• Added experimental caching support to the compiler

• Improved Inmanta install guide for Debian

• Extended stable API documentation (Issue inmanta/inmanta-lsm#408)

• Added built-in performance micro-benchmark, to help diagnose performance issues

• Added ability to do pip install inmanta-core[pytest-inmanta-extension]

Deprecation notes

• Deprecated yaml dictionary syntax for module requires

Bug fixes

• Correctly describe in the documentation how version constraints can be set on module dependencies in the
module.yml file (Issue #2723)

• Ensure that an error at agent startup time is properly logged. (Issue #2777)

• Fixed compiler issue on rescheduling of plugins breaking the cycle breaking (Issue #2787)

• Fixed compiler issue on cycle breaking (Issue #2811)

• Fixed typos in language.rst file

• Changed python versions in install doc

12.10. Release 2021.2 (2021-05-05) 347

Inmanta Documentation, Release 2023.1.1

Other notes

• To enable caching on the compiler, either set the config value compiler.cache in the .inmanta file or
pass the option --experimental-cache to inmanta compile

12.10.2 Inmanta-dashboard: release 3.7.0 (2021-05-05)

No changelog entries.

12.11 Release 2021.1 (2021-02-25)

12.11.1 inmanta-core: 5.0.0 (2021-02-25)

Bug fixes

• Fix broken order by (#2638)

• Report the Inmanta OSS product version correctly (#2622)

• Set PYTHONPATH so that all subprocesses also see packages in parent venv (#2650, #2747)

• Create virtual environments without pip and use the pip of the parent venv

• Correctly set [:n] as syntactic sugar for [0:n] instead of leaving lower unbound (#2689)

New features

• Add installation procedure for el8 to installation documentation

12.12 Release 2020.6 (2020-12-23)

12.12.1 inmanta-core: 4.0.0 (2020-12-23)

New features

• Add support to use a custom venv path in the Project class (#2466)

• Added more specific location information for attributes (#2481)

• Added plugin call anchors to support ctrl-clicking a plugin call (#1954)

• Added rpdb signal handler (#2170)

• Added pagination support on api calls for agent and agentproc (#2500)

• Added support to build RPMs for a python version different from Python3.6 (#1857)

• Added support for assigning null to relations with lower arity 0 (#2459)

• Added documentation on the core dashboard (inmanta/dashboard#63)

• Decouple the compiler version from the OSS product version (#2573)

• Show versions of all installed components when running inmanta --version (#2574)

348 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

Bug fixes

• Fix broken links in the documentation (#2495)

• Fixed bug in serialization of Resource with Unknowns in collections (#2603)

• Fixed documentation of install_mode

• Ensure all running compilations are stopped when the server is stopped (#2508)

• Cleanup old entries in the agentprocess and agentinstance database tables (#2499)

• Ensure the compiler service takes into account the environment variables set on the system (#2413)

• Fix --server_address option on inmanta export (#2514)

• Handle failure in an event handler consistently for local and non-local agents (#2509)

• Fix for cross agent dependencies responding to unavailable resources (#2501)

• Handle JSON serialization errors in handler log messages (#1875)

• Fixed too restrictive typing (and coercing) of AttributeStateChange (#2540)

• Export command should raise exception on failure (#2487)

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

Other notes

• The inmanta core package is renamed from inmanta to inmanta-core to allow for true semantic versioning
starting at 4.0.0. A new inmanta package is provided that includes inmanta-core and continues the
<year>.<minor>[.<patch>] version schema.

12.13 Release 2020.5 (2020-10-27)

12.13.1 New features

• Added support for environment markers as described in PEP 508 to module requirements parsing (#2359)

• Added design guide to the documentation

• Improved error message when plugin loading fails to include original exception and location (#2385)

• Improved duplicate attributes error message (#2386)

12.13.2 Bug fixes

• Fixed import loop when using inmanta.execute.proxy as entry point (#2341)

• Fixed import loop when using inmanta.resources as entry point (#2342)

• Clearing an environment with merged compile requests no longer fails (#2350)

• Fixed compiler bug (#2378)

• Fix “compile_data_json_file” referenced before assignment (#2361)

• Fix server-autorecompile-wait config option (#2262)

• Specify the supported values of the ‘format’ parameter of the OpenAPI endpoint explicitly (#2369)

12.13. Release 2020.5 (2020-10-27) 349

Inmanta Documentation, Release 2023.1.1

• Fix version cli argument conflict (#2358)

• Don’t remove resource independent parameters on version deletion (#2370)

• Enhance installation documentation (#2241, #2356, #2357)

• Ensure that a protected environment can’t be decommissioned (#2376)

• Don’t load all code on agent start (#2343)

• Allow empty body in else branch for if-else statement (#2375)

• Fixed export failure with null in dict (#2437)

• Fixed small documentation issues

• Only store single agent instance in database for each distinct instance to prevent database overflow when
agent rapidly and repeatadly dis- and reconnects (#2394)

12.14 Release 2020.4 (2020-09-08)

12.14.1 New features

• Added merging of similar compile requests to the compile queue (#2137)

• Export all handler’s / resource’s module’s plugin source files so helper functions can be used from sibling
modules (#2162, #2312)

• Added documentation on how a string is matched against a regex defined in a regex-based typedef (#2214)

• Added API to query ResourceActions

• Added support to query the resource action log of a resource via the CLI (#2253)

• Added conditional expression to the language with syntax condition ? x: y (#1987)

• Add support for inmanta-cli click plugins

• Added link to the PDF version of the documentation

• Added environment setting for agent_trigger_method (#2025)

• Expose compile data as exported by inmanta compile --export-compile-data via API
(inmanta/inmanta-telco#54, #2317)

• Added typedmethod decorator strict_typing parameter to allow Any types for those few cases where
it’s required (#2301)

• Added API method for halting all environment operations (#2228)

12.14.2 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

• Option inmanta compile --json is renamed to inmanta compile --export-compile-data

• DynamicProxy.__getattr__ now raises an AttributeError instead of a plain NotFoundException
when an attribute can not be found, for compatibility with Python’s builtin hasattr. This change is back-
wards compatible, though it is recommended to except on AttributeError over NotFoundException.
(#2991)

350 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

12.14.3 Bug fixes

• Restore support to pass mocking information to the compiler

• Disallow parameters mapped to a header to be passed via the body instead (#2151)

• Handle skipped and unavailable as failures when calculating increments (#2184)

• Constrain agent name to string values (#2172)

• Fix for allowing comments in the requirements.txt file of modules (#2206)

• Allow equality checks between types to support optional value overrides (#2243)

• Don’t add path params as query params to the url in the client (#2246)

• Allow Optional as return type for typedmethods (#2277)

• Made Dict- and SequenceProxy serializable to allow exporter to wrap dict and list attributes in other data
structures (#2121)

• Improved reporting of PluginException (#2304)

12.15 Release 2020.3 (2020-07-02)

12.15.1 New features

• Added cleanup mechanism of old compile reports (#2054)

• Added compiler.json option and --json compile flag to export structured compile data such as occurred
errors (#1206)

• Added troubleshooting documentation (#1211)

• Documentation on compiler API and JSON (#2060)

• Documentation on valid client types (#2015)

• Improved documentation on handler development (#1278)

• Added further documentation to inmanta-cli command (#2057)

• Documentation of config option types (#2072)

• Added method names as Operation Id to OpenApi definition (#2053)

• Added documentation of exceptions to the platform developers guide (#1210)

• Extended documentation of autostarted agent settings (#2040)

• Typing Improvements

• Redirect stdout and stderr to /var/log/inmanta/agent.{out,err} for agent service (#2091)

• Added resource name to log lines in agent log.

• Better reporting of json decoding errors on requests (#2107)

• Faster recovery of agent sessions

• Add compiler entrypoint to get types and scopes (#2114)

• Add support to push facts via the handler context (#593)

12.15. Release 2020.3 (2020-07-02) 351

Inmanta Documentation, Release 2023.1.1

12.15.2 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

• Updated Attribute.get_type() to return the full type instead of just the base type (inmanta/inmanta-sphinx#29)

• Overriding parent attribute type with the same base type but different modifiers (e.g. override number with
number[]) is no longer allowed. This was previously possible due to bug (#2132)

12.15.3 Bug fixes

• Various small issues (#2134)

• Fixed issue of autostarted agents not being restarted on environment setting change (#2049)

• Log primary for agent correctly in the database when pausing/unpausing agents (#2079)

• Cancel scheduled deploy operations of an agent when that agent is paused (#2077)

• Fix agent-names config type (#2071)

• Ensure the internal agent is always present in the autostart_agent_map of auto-started agents (#2101)

• Cancel scheduled ResourceActions when AgentInstance is stopped (#2106)

• Decoding of REST return value for content type html with utf-8 charset (#2074)

• Empty list option in config no longer interpreted as list of empty string (#2097)

• Correct closing of agentcache

• Agent cross environment communication bug (#2163)

• Fixed an issue where an argument missing from a request would result in a http-500 error instead of 400
(#2152)

• Ensure agent is in proper state after URI change (#2138)

• Removed warning about collecting requirements for project that has not been loaded completely on initial
compile (#2125)

12.16 v 2020.2 (2020-04-24) Changes in this release:

12.16.1 Breaking changes

• Non-boolean arguments to boolean operators are no longer allowed, this was previously possible due to bug
(#1808)

• Server will no longer start if the database schema is for a newer version (#1878)

• The environment setting autostart_agent_map should always contain an entry for the agent “internal” (#1839)

12.16.2 Deprecated

• Leaving a nullable attribute unassigned now produces a deprecation warning. Explicitly assign null instead.
(#1775)

• Default constructors (typedef MyType as SomeEntityType(some_field = “some_value”)). Use inheritance
instead. (#402)

• Old relation syntax (A aa [0:] – [0:] B bb) (#2000)

352 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

12.16.3 Fixed

• Various compiler error reporting improvements (#1810, #1920)

• Fixed cache leak in agent when deployments are canceled (#1883)

• Improved robustness of modules update (#1885)

• Removed environmental variables from agent report (#1891)

• Use asyncio subprocess instead of tornado subprocess (#1792)

• Added warning for incorrect database migration script names (#1912)

• Agent manager remains consistent when the database connection is lost (#1893)

• Ensure correct version is used in api docs (#1994)

• Fixed double assignment error resulting from combining constructor kwargs with default values (#2003)

• Fixed recursive unwrapping of dict return values from plugins (#2004)

• Resource action update is now performed in a single transaction, eliminating the possibility of inconsistent
state (#1944)

• Type.type_string is now defined as returning the representation of the type in the inmanta DSL (in-
manta/lsm#75)

12.16.4 Added

• Experimental data trace, root cause and graphic data flow visualization applications (#1820, #1831, #1821,
#1822)

• Warning when shadowing variable (#1366, #1918)

• Added support for compiler warnings (#1779, #1905, #1906)

• Added support for DISABLED flag for database migration scripts (#1913)

• Added v5 database migration script (#1914)

• Added support for declaring implement using parents together with normal implement declaration list
(#1971)

• Resource Action Log now includes timestamps (#1496)

• Added support to pause an agent (#1128)

• Added –no-tag option to module tool (#1939)

• Added base exception for plugins and corresponding documentation (#1205)

• Added tags to openapi definition (#1751)

• Added support to pause an agent (#1128, #1982)

• Plugins are now imported in the inmanta_plugins package to allow importing submodules (#507)

• Added event listener to Environment Service (#1996)

• Autostarted agents can load a new value for the autostart_agent_map setting without agent restart (#1839)

• Added protected environment option (#1997)

• Added warning when trying to override a built-in type with a typedef (#81)

• Added inmanta-cli documentation to the docs (#1992)

12.16. v 2020.2 (2020-04-24) Changes in this release: 353

Inmanta Documentation, Release 2023.1.1

12.17 v 2020.1 (2020-02-19) Changes in this release:

12.17.1 Fixed

• Added support for conditions as expressions and vice versa (#1815)

12.17.2 Breaking changes

• Entity instances are no longer allowed in list and dict attributes, this was previously possible due to bug
(#1435)

12.17.3 Fixed

• Fixed incorrect parsing of booleans as conditions (#1804)

• Added support for nullable types in plugins (#674)

• Inmanta type module cleanup and type coverage

• Various compiler error reporting improvements (#1584, #1341, #1600, #1292, #1652, #1221, #1707, #1480,
#1767, #1766, #1762, #1575)

• CRUDHandler bugfix, ensure update is not called on purged resources

• Changes in default values: AUTO_DEPLOY, PUSH_ON_AUTO_DEPLOY are enabled by default,
AGENT_TRIGGER_METHOD_ON_AUTO_DEPLOY is set to incremental deployment

• Fixed deadlock triggered by std::AgenConfigHandler (#1662)

• Removed the resourceversionid table from the database (#1627)

• Remote machines not being available or not having a python interpreter now results in a clearer error.

• Parse comments and urls correctly from the requirements.txt file of an Inmanta module (#1764)

12.17.4 Added

• Added support for dict lookup in conditions (#1573)

• Added support for type casts for primitive types (#1798)

• Added support for multiline string interpolations (#1568)

• Added int type to the language (#1568)

• Add get_environment_id to exporter (#1683)

• Added inmanta-cli environment save command (#1666)

• Added finalizer support to @cache annotation

• Added support to parse the docstring of an entity

• Added support for **dict as kwargs for constructor calls and index lookups (#620, #1702)

• Added support for kwargs in plugin calls, as named arguments as well as using **dict (#1143)

354 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

12.17.5 Removed

• Removed the inmanta module validate command. Use pytest-inmanta fixtures to test your modules instead.

• Removed Forms functionality (#1667)

12.18 v 2019.5 (2019-12-05) Changes in this release:

12.18.1 Fixed

• Compiler bugfix, ensure done nodes are correctly removed from zerowaiters

• Fixed memory leak in database layer

• Fixed lexing of strings ending in an escaped backslash (#1601)

• Fixed bug where module freeze results in empty module.yml (#1598)

• Fixed inconsistent behavior of export and export -j (#1595)

IMPORTANT CHANGES:

• Added environment variables for config, env variables overwrite all other forms of config (#1507)

v 2019.4 (2019-10-30) Changes in this release:

• Various bugfixes (#1367,#1398,#736, #1454)

• Added if statement (#1325)

• Added CORS Access-Control-Allow-Origin header configuration (#1306)

• Added –version option (#1291)

• Added retry to moduletool update, to allow updating of corrupt projects (#177)

• RPM-based installations on Fedora are not supported anymore

• Added option to configure asyncpg pool (#1304)

• Split out the main service into many smaller services (#1388)

• Use python3 from the core OS in Dockerfile

• Introduce v2 protocol and implement project and environment api in v2 (#1412)

• Improve agent documentation (#1389)

• Improve language reference documentation (#1419)

• Change autostart_agent_deploy_splay_time from 600 to 10 (#1447)

• Introduce the bind-address and bind-port config option (#1442)

• Switch to sequential version numbers instead of timestamps (#1011)

• Fixed memory leak in TaskHandler

• Don’t install packages inherited from the parent virtualenv

• Added logging to CRUD methods of handler and a diff method with context

• HTTP errors are logged at DEBUG level only (#1282)

• Verify hashes when serving a file (#532)

• Mark resource as failed when code loading fails (#1520)

• Print extra env variables in init log and only store those in database (#1482)

• Add feature manager for enabling and disabling orchestrator features (#1530)

12.18. v 2019.5 (2019-12-05) Changes in this release: 355

Inmanta Documentation, Release 2023.1.1

• Add get_environment_id to plugin context (#1331)

• Log server bind address and bind port on startup (#1475)

• Fix warning about transport config (#1203)

• Add setting to environment to disable purge on delete (#1546)

IMPORTANT CHANGES:

• Older compiler versions are no longer supported with this server

• The Inmanta server now listens on 127.0.0.1:8888 by default, while this was 0.0.0.0:8888 in previous ver-
sions. This behavior is configurable with the bind-address config option.

DEPRECATIONS:

• The server_rest_transport.port config option is deprecated in favor of the server.bind-port op-
tion.

v 2019.3 (2019-09-05) Changes in this release:

• Various bugfixes (#1148, #1157, #1163, #1167, #1188)

• Abort server startup if the database can not be reached (#1153)

• Use native coroutines everywhere (async def)

• Updated dockerfile and docker-compose to use postgres and centos

• Added extensions mechanism (#565, #1185)

• Add /serverstatus api call to get version info, loaded slices and extensions (#1184)

• Support to set environment variables on the Inmanta server and its agents

• Split of server recompile into separate server slice (#1183)

• Add API to inspect compiler service queue (#1252)

• Define explicit path in protocol methods

• Added support for schema management for multiple slices in the same database (#1207)

• Marked pypi package as typed

• Create pytest-inmanta-extensions package for extensions testing

• Added support for /etc/inmanta/inmanta.d style configuration files (#183)

• Increased the iteration limit to 10000. This value is controlled with INMANTA_MAX_ITERATIONS en-
vironment variable.

• Added support for custom resource deserialization by adding the ‘populate’ method

• Improve compiler scaling by using more efficient data structures

• Added the –export-plugin option to the export command (#1277)

• Only one of set_created, set_updated or set_purged may be called now from a handler

• Remove facts when the resource is no longer present in any version (#1027)

• Successful exports without resources or unknowns will now be exported

• Export plugins will not run when the compile has failed

• Documentation updates and improvements (#1209)

DEPRECATIONS:

• The files /etc/inmanta/agent.cfg and /etc/inmanta/server.cfg are not used anymore. More information
about the available configuration files can be found in the documentation pages under Administrator
Documentation -> Configuration files.

v 2019.2 (2019-04-30) Changes in this release:

356 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

• Various bugfixes (#1046, #968, #1045)

• Migration from mongodb to postgres (#1023, #1024, #1025, #1030)

• Added metering using pyformance

• Added influxdb reporter for protocol endpoint metrics

• Remove the configuration option agent-run-at-start (#1055)

• Add project id and environment id as optional parameters to API call (#1001)

• Fixed an issue which cleared the environment on remote python 2 interpreters

• Improve deploy command resilience and added option to work with dashboard

• Added API endpoint to trigger agents deploy (#1052)

• Documentation updates and improvements (#905)

v 2019.1 (2019-03-06) Changes in this release:

• Various bugfixes and performance enhancements (#873, #772, #958, #959, #955)

• Dependency updates

• Introduce incremental deploy (#791, #794, #793, #792, #932, #795)

• Introduce deploying resource state (#931)

• Introduce request_timeout option for transport settings

• Add support to run the compiler on windows

• Add exception explainer to compiler for ‘modified after freeze’ (#876)

• Improve log format, added replace file name with logger name

• Split out logs, stdout and stderr in autostarted agents (#824, #234)

• Add logging of resource actions on the server and purging of resource actions in the database (#533)

• Improve agent logging

• Replace virtualenv by python standard venv (#783)

• Update to Tornado 5, moving from tornado ioloop to the standard python async framework (#765)

• Use urllib client for fetching jwks public keys

• Remove all io_loop references and only use current ioloop (#847)

• Remove environment directory from server when environment is removed (#838)

• Catch various silent test failures

• Extend mypy type annotations

• Port unit tests to pytest-asyncio and fix deprecation warnings (#743)

• Raise exception on bad export to make inmanta export fail with exit status > 0

• Refactor protocol

• Improve lazy execution for attributes

• Update autogenerated config file for agents with correct server hostname (#892)

DEPRECATIONS:

• Minimal python version is now python 3.6

• Removal of snapshot and restore functionality from the server (#789)

• Removed the non-version api (#526)

12.18. v 2019.5 (2019-12-05) Changes in this release: 357

Inmanta Documentation, Release 2023.1.1

• The config option agent-interval, agent-splay, autostart_agent_interval and autostart_splay are depre-
cated in favour of agent-deploy-interval, agent-deploy-splay-time, autostart_agent_deploy_interval and au-
tostart_agent_deploy_splay_time respectively. The deprecated options will be removed in release 2019.2

v 2018.3 (2018-12-07) Changes in this release:

• Various bugfixes and performance enhancements

• Dependency updates

• Added improved error reporting to CLI (#814)

• Fixed missing re-raise on pip install (#810)

• Add pytest plugins (#786)

• Extra test cases for the data module + two bugfixes (#805)

• Fix deprecation warnings (#785)

• Reorganized test case in more modules to reduce the number of merge conflicts (#764)

• Prevent purge_on_delete due to failed compile (#780)

• Add mypy to tox and improve typing annotations (no enforcement yet) (#763)

• Removed incorrect uninitialize of subprocess signal handler (#778, #777)

• Fix modules do command (#760)

• Changed process_events so that it is called even when processing a skip. (#761)

• Track all locations where an instance has been created. (fixes #747)

• Add start to the index for the get_log query (#758)

• Improved reporting of nested exceptions (#746)

• Added compiler check on index attributes so an index on a nullable attribute now raises a compiler error.
(#745)

• Added support for lazy attribute execution in constructors (#729)

• Big update to module and project version freeze. See documentation for more details (#106)

• Added argument to @plugin to allow unknown objects as arguments (#754)

• Fix for deploy of undefined resource (#627)

• Improved handling ofr dryrun failures (#631)

• Correctly store and report empty facts (#731)

• Allow get facts from undeployed or undefined resources (#726)

• Minor changes for ide alpha release (#607)

• Added uniqueness check to indices (#715)

• Bugfixes in handling of optional attributes (#724)

• Transport cleanup (added bootloader, split off session management) (#564)

• Reserved keywords in resources (#645)

• Fix a bug in option definition

• Use own mongobox implementation that works with mongo >= 4

• Fixed reporting on undefined list attributes (#657)

• Improved list freeze for gradual execution (#643)

• Fixed bug in bounds check (#671)

• Improved error reporting on bad assignment (#670)

358 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

• Improved error reporting on missing type (#672)

• Added in operator for dicts (#673)

v 2018.2 (2018-07-30) Changes in this release:

• Various bugfixes and performance enhancements

• Dependency updates

• The internal storage format for code is optimized. This introduces API and schema changes. This release
supports both storage versions. The old version will be removed in the next release.

• Support formatter in repo url

• Make export of complete model configurable

• Use id of loopvar instead of hash to support iteration over list returned by plugins

• Fix error in default args for list attribute (#633)

• Add multi level map lookup (#622 and #632)

• Improved deploy, make deploy sync

• Added improved error message for lower bound violations on relations (#610)

• Fixes for empty optionals (#609)

• Added improved logging to context handler (#602)

• Added fix for string representation (#552)

• Added support for single quotes (#589)

• Fix in operator in typedefs (#596)

• Fixed line numbers on MLS (#601)

• Added += operator for assignment to lists (#587)

• Add a synchronous protocol client

• Fix error message for wrong type in ctor

• Improve index error reporting

• Fix validate on modules with no commited version

• Set purged=false on clone in CRUDHandler (#582)

• Add gzip encoding support to protocol (#576)

• added anchormap functions to compiler

• Improved error reporting on for loops (#553)

v 2018.1 (2018-02-09) Changes in this release:

• Various bugfixes and performance enhancements

• Dependency updates

• Ubuntu 14.04 mongo (2.4) is no longer supported. Version 2.6 or higher is required.

• The inmanta API endpoint is now versioned and available under /api/v1. The old API methods still work,
but are deprecated and will be removed in the next release.

• Added support for escapes in regex (#540)

• Added per env config for agent_interval (#542): This adds an per environment setting that controls the agent
interval for the agents started by the server.

• Removed implicit string to number conversion (#539)

• Fix dockerfile (#538)

12.18. v 2019.5 (2019-12-05) Changes in this release: 359

Inmanta Documentation, Release 2023.1.1

• Fixed execnet resource leak (#534)

• Solution for resource leak issue in agent (#518): Numerous stability fixes for the agent related to resource
leaks and races

• Remove compile reports on env clean

• Refactor report API: The report list no longer contains the output of the processes. This reduces the size of
the response.

• Fix recompile triggered from a form change

• Add missing mongo indexes to improve performance

• Remove catchlog from tox run

• Create a post method for notify: only the post method allows to pass metadata

• Fix trigger metadata (#520): Add compile metadata to each version. Fixes #519 and add delete with re-
source_id for parameters

• Add representation for null value

v 2017.4 (2017-11-27) Changes in this release:

• Various bugfixes and performance enhancements

• Dependency updates

• added keyword parents, and implemented implementation inheritance (#504)

• set_param recompile parameter

• Raise an exception when duplicate resources are exported (#513)

• Added fix for index issue (#512)

• Allow to configure server compile per environment

• Add remove parameter API call

• Attributes and lists now accept trailing comma (#502)

• Added check for attribute redefinition within one entity (#503)

• Parse bool values in the rest api

• Fix bug in dryrun reporting with auth enabled

v 2017.3 (2017-10-27) Changes in this release:

• Various bugfixes and performance enhancements

• Dependency updates

• Add relation annotations to the relation attribute and resolve it for exporters to use

• Documentation improvements

• Add an undefined resource state to the server (#489) Previously all unknown handling was done in the server.
This resulted in strange reporting as the number of managed resource could go up and down. Now, an
additional resource state “undefined” is introduced. This state is handled similar to skipped during deploys.
Undefined resources are undeployable.

• Undeployable resources are now already marked as finished at the moment a version is released or a dryrun
is requested. Resources that depend on resources in an undeployable state will be skipped on the server as
well.

• Sort index attributes: This patch ensure that std::File(host, path) and std::File(path, host) are the same in-
dexes.

• Improved modules list ouput: rename columns and added a column to indicate matching rows

• Improve attribute check. fixes (#487)

360 Chapter 12. Changelog

Inmanta Documentation, Release 2023.1.1

• Fix index issues related with inheritance (#488)

• When a resource is purged, its facts will be removed. (#3)

• Add location to type not found exception in relation (#475. #294)

• Add JWT authz and limitation to env and client type (#473)

• Added fix for function execution in constraints (#470)

• Each agent instance now has its own threadpool to execute handlers. (#461)

• Allow agent instances to operate independently (#483)

• Improved error reporting on parser errors (#468, #466)

• Fixed selection of lazy arguments (#465)

v 2017.2 (2017-08-28) Changes in this release:

• Various bugfixes and performance enhancements

• Dependency updates

• Preserve env variables when using sudo in the agent

• Prune all versions instead of only the ones that have not been released.

• Use python 2.6 compatible syntax for the remote io in the agent

• Gradual execution for for-loops and constructors

• Stop agents and expire session on clear environment

• Improve purge_on_delete semantics

• New autostart mechanism (#437)

• Add settings mechanism to environment. More settings will become environment specific in later releases.

• Do not create index in background to prevent race conditions

• Add support for exception to the json serializer

• Invert requires for purged resources (purge_on_delete)

• Add autodeploy_splay option

• Remove ruaml yaml dependency (#292)

• Handle modified_count is None for mongodb < 2.6

• Add python3.6 support

• Add nulable types

• Various documentation updates

• Added monitor command to inmanta-cli (#418)

• Generate inmanta entrypoint with setuptools

• Update quickstart to use centos

• Improve event mechanism (#416)

• Added auto newline at end of file (#413)

• Improved type annotations for plugins and improved object unwrapping (#412)

• Inline index lookup syntax (#411)

• Added cycle detection (#401)

• Fixed handling of newlines in MLS lexer mode (#392)

• Added docstring to relations, typedef, implementation and implement (#386)

12.18. v 2019.5 (2019-12-05) Changes in this release: 361

Inmanta Documentation, Release 2023.1.1

• Fix agent-map propagation from deploy

v 2017.1 (2017-03-29) New release with many improvements and bug fixes. Most noteable features include:

• Port CLI tool to click and improve it. This removes cliff and other openstack deps from core

• Complete rewrite of the database layer removing the dependency on motorengine and improve scalability.

• Cleanup of many API calls and made them more consistent

• Improved handler protocol and logging to the server.

v 2016.6 (2017-01-08) Mainly a bugfix and stabilisation release. No new features.

v 2016.5 (2016-11-28) New release with upgraded server-agent protocol

• Upgraded server agent protocol

• New relation syntax

v 2016.4 (2016-09-05) New relase of the core platform

• Various compiler improvements

• Add list types

• Cleanup of is defined syntax in the DSL and templates

• Many additional test cases

• Various bugfixes

v 2016.3 (2016-08-18) New release. Way to late due to kids and vacation.

• Added SSL support

• Added auth to server

• Add JIT loading of modules

• Various bug fixes

v 2016.2.3 (2016-05-30)

• Fix memory leak in server

v 2016.2.2 (2016-05-25)

• Remove urllib3 dependency to ease packaging on el7

v 2016.2.1 (2016-05-04)

• Various bugfixes related to new ODM and async IO

v 2016.2 (2016-05-02)

• First bi-monthly release of Inmanta

• New compiler that speeds up compilation an order of magnitude

• All RPC is now async on the tornado IOLoop

• New async ODM for MongoDB

• Increased test coverage

362 Chapter 12. Changelog

CHAPTER

THIRTEEN

PDF VERSION

Download: inmanta.pdf

363

Inmanta Documentation, Release 2023.1.1

364 Chapter 13. PDF version

PYTHON MODULE INDEX

i
inmanta.model, 91
inmanta.protocol.methods, 203
inmanta.protocol.methods_v2, 213

365

Inmanta Documentation, Release 2023.1.1

366 Python Module Index

INDEX

Symbols
_diff() (inmanta.agent.handler.ResourceHandler

method), 182
--action

inmanta-cli-action-log-list command
line option, 143

--action-id
inmanta-cli-action-log-show-messages

command line option, 144
--agent

inmanta-cli-agent-pause command line
option, 144

inmanta-cli-agent-unpause command line
option, 145

inmanta-cli-token-create command line
option, 152

--all
inmanta-cli-agent-pause command line

option, 144
inmanta-cli-agent-unpause command line

option, 145
--api

inmanta-cli-token-create command line
option, 152

--branch
inmanta-cli-environment-create command

line option, 145
inmanta-cli-environment-modify command

line option, 146
--compiler

inmanta-cli-token-create command line
option, 152

--environment
inmanta-cli-action-log-list command

line option, 143
inmanta-cli-action-log-show-messages

command line option, 144
inmanta-cli-agent-list command line

option, 144
inmanta-cli-agent-pause command line

option, 144
inmanta-cli-agent-unpause command line

option, 145
inmanta-cli-environment-setting-delete

command line option, 148
inmanta-cli-environment-setting-get

command line option, 148
inmanta-cli-environment-setting-list

command line option, 148
inmanta-cli-environment-setting-set

command line option, 148
inmanta-cli-monitor command line

option, 149
inmanta-cli-param-get command line

option, 150
inmanta-cli-param-list command line

option, 150
inmanta-cli-param-set command line

option, 150
inmanta-cli-token-create command line

option, 152
inmanta-cli-version-list command line

option, 153
inmanta-cli-version-release command

line option, 153
inmanta-cli-version-report command

line option, 154
--format

inmanta-cli-environment-show command
line option, 149

--full
inmanta-cli-version-release command

line option, 153
--host

inmanta-cli command line option, 143
--key

inmanta-cli-environment-setting-delete
command line option, 148

inmanta-cli-environment-setting-get
command line option, 148

inmanta-cli-environment-setting-set
command line option, 148

--name
inmanta-cli-environment-create command

line option, 145
inmanta-cli-environment-modify command

line option, 146
inmanta-cli-param-get command line

option, 150
inmanta-cli-param-set command line

option, 150
inmanta-cli-project-create command

367

Inmanta Documentation, Release 2023.1.1

line option, 151
inmanta-cli-project-modify command

line option, 151
--port

inmanta-cli command line option, 143
--project

inmanta-cli-environment-create command
line option, 145

--push
inmanta-cli-version-release command

line option, 153
--repo-url

inmanta-cli-environment-create command
line option, 145

inmanta-cli-environment-modify command
line option, 146

--resource
inmanta-cli-param-get command line

option, 150
--rvid

inmanta-cli-action-log-list command
line option, 143

inmanta-cli-action-log-show-messages
command line option, 144

--save
inmanta-cli-environment-create command

line option, 145
--update

inmanta-cli-environment-recompile
command line option, 147

--value
inmanta-cli-environment-setting-set

command line option, 148
inmanta-cli-param-set command line

option, 150
--version

inmanta-cli-version-report command
line option, 154

-b
inmanta-cli-environment-create command

line option, 145
inmanta-cli-environment-modify command

line option, 146
-e

inmanta-cli-action-log-list command
line option, 143

inmanta-cli-action-log-show-messages
command line option, 144

inmanta-cli-agent-list command line
option, 144

inmanta-cli-agent-pause command line
option, 144

inmanta-cli-agent-unpause command line
option, 145

inmanta-cli-environment-setting-delete
command line option, 148

inmanta-cli-environment-setting-get
command line option, 148

inmanta-cli-environment-setting-list
command line option, 148

inmanta-cli-environment-setting-set
command line option, 148

inmanta-cli-monitor command line
option, 149

inmanta-cli-param-get command line
option, 150

inmanta-cli-param-list command line
option, 150

inmanta-cli-param-set command line
option, 150

inmanta-cli-token-create command line
option, 152

inmanta-cli-version-list command line
option, 153

inmanta-cli-version-release command
line option, 153

inmanta-cli-version-report command
line option, 154

-i
inmanta-cli-version-report command

line option, 154
-k

inmanta-cli-environment-setting-delete
command line option, 148

inmanta-cli-environment-setting-get
command line option, 148

inmanta-cli-environment-setting-set
command line option, 148

-l
inmanta-cli-version-report command

line option, 154
-n

inmanta-cli-environment-create command
line option, 145

inmanta-cli-environment-modify command
line option, 146

inmanta-cli-project-create command
line option, 151

inmanta-cli-project-modify command
line option, 151

-o
inmanta-cli-environment-setting-set

command line option, 148
-p

inmanta-cli-environment-create command
line option, 145

inmanta-cli-version-release command
line option, 153

-r
inmanta-cli-environment-create command

line option, 145
inmanta-cli-environment-modify command

line option, 146
-s

inmanta-cli-environment-create command
line option, 145

368 Index

Inmanta Documentation, Release 2023.1.1

-u
inmanta-cli-environment-recompile

command line option, 147

A
add_change() (inmanta.agent.handler.HandlerContext

method), 180
add_changes() (inmanta.agent.handler.HandlerContext

method), 180
add_function() (inmanta.plugins.PluginMeta class

method), 178
agent, 127
agent_action() (in module in-

manta.protocol.methods_v2), 213
all_agents_action() (in module in-

manta.protocol.methods_v2), 213
ApplicationContext (class in in-

manta.server.extensions), 230
apt.AptPackage (built-in class), 232
apt::Repository, 232
apt::Repository.base_url, 232
apt::Repository.host, 232
apt::Repository.name, 232
apt::Repository.release, 232
apt::Repository.repo, 232
apt::Repository.trusted, 232
apt::simpleRepo, 232
Attribute (class in inmanta.ast.attribute), 192
Attribute (class in inmanta.model), 91
available() (inmanta.agent.handler.CRUDHandler

method), 185
available() (inmanta.agent.handler.ResourceHandler

method), 182
aws.ElasticSearch (built-in class), 240
aws.ElasticSearchHandler (built-in class), 241
aws.ELB (built-in class), 239
aws.ELBHandler (built-in class), 241
aws.elbid()

built-in function, 239
aws.get_api_id()

built-in function, 239
aws.InternetGateway (built-in class), 239
aws.InternetGatewayHandler (built-in class), 241
aws.RDS (built-in class), 240
aws.RDSHandler (built-in class), 241
aws.Route (built-in class), 239
aws.RouteHandler (built-in class), 241
aws.SecurityGroup (built-in class), 239
aws.SecurityGroupHandler (built-in class), 241
aws.Subnet (built-in class), 240
aws.SubnetHandler (built-in class), 241
aws.VirtualMachine (built-in class), 240
aws.VirtualMachineHandler (built-in class), 241
aws.Volume (built-in class), 240
aws.VolumeHandler (built-in class), 241
aws.VPC (built-in class), 240
aws.VPCHandler (built-in class), 241
aws::agentConfig, 239

aws::analytics::ElasticSearch, 238
aws::analytics::ElasticSearch.access_policies,

238
aws::analytics::ElasticSearch.automated_snapshot_start_hour,

238
aws::analytics::ElasticSearch.dedicated_master_count,

238
aws::analytics::ElasticSearch.dedicated_master_enabled,

238
aws::analytics::ElasticSearch.dedicated_master_type,

238
aws::analytics::ElasticSearch.domain_name,

238
aws::analytics::ElasticSearch.ebs_enabled,

238
aws::analytics::ElasticSearch.elasticsearch_version,

238
aws::analytics::ElasticSearch.instance_count,

238
aws::analytics::ElasticSearch.instance_type,

238
aws::analytics::ElasticSearch.volume_size,

238
aws::analytics::ElasticSearch.volume_type,

238
aws::analytics::ElasticSearch.zone_awareness_enabled,

238
aws::awsHost, 239
aws::AWSResource, 233
aws::AWSResource.provider, 233
aws::database::RDS, 238
aws::database::RDS.allocated_storage, 238
aws::database::RDS.engine, 238
aws::database::RDS.engine_version, 238
aws::database::RDS.flavor, 238
aws::database::RDS.master_user_name, 238
aws::database::RDS.master_user_password,

238
aws::database::RDS.name, 238
aws::database::RDS.port, 239
aws::database::RDS.public, 239
aws::database::RDS.subnet_group, 239
aws::database::RDS.tags, 239
aws::direction, 233
aws::ELB, 233
aws::ELB.dest_port, 233
aws::ELB.instances, 233
aws::ELB.listen_port, 233
aws::ELB.name, 233
aws::ELB.protocol, 233
aws::ELB.security_group, 233
aws::GroupRule, 233
aws::GroupRule.remote_group, 233
aws::Host, 233
aws::Host.install_agent, 233
aws::Host.private_ip, 233
aws::Host.provider, 233
aws::Host.public_ip, 233

Index 369

Inmanta Documentation, Release 2023.1.1

aws::Host.public_key, 233
aws::Host.security_groups, 234
aws::Host.subnet, 234
aws::Host.vm, 233
aws::instance_tenancy, 233
aws::InternetGateway, 234
aws::InternetGateway.name, 234
aws::InternetGateway.vpc, 234
aws::IPrule, 234
aws::IPrule.remote_prefix, 234
aws::Provider, 234
aws::Provider.access_key, 234
aws::Provider.auto_agent, 234
aws::Provider.availability_zone, 234
aws::Provider.name, 234
aws::Provider.region, 234
aws::Provider.secret_key, 234
aws::req, 239
aws::Route, 234
aws::Route.destination, 234
aws::Route.nexthop, 235
aws::Route.vpc, 235
aws::SecurityGroup, 235
aws::SecurityGroup.description, 235
aws::SecurityGroup.manage_all, 235
aws::SecurityGroup.name, 235
aws::SecurityGroup.retries, 235
aws::SecurityGroup.rules, 235
aws::SecurityGroup.vpc, 235
aws::SecurityGroup.wait, 235
aws::SecurityRule, 235
aws::SecurityRule.direction, 235
aws::SecurityRule.group, 235
aws::SecurityRule.ip_protocol, 235
aws::SecurityRule.port, 235
aws::SecurityRule.port_max, 235
aws::SecurityRule.port_min, 235
aws::Subnet, 235
aws::Subnet.availability_zone, 236
aws::Subnet.cidr_block, 236
aws::Subnet.map_public_ip_on_launch, 236
aws::Subnet.name, 235
aws::Subnet.vpc, 236
aws::userData, 239
aws::VirtualMachine, 237
aws::VirtualMachine.name, 237
aws::VirtualMachine.public_key, 237
aws::VirtualMachine.security_groups, 237
aws::VirtualMachine.subnet, 237
aws::VirtualMachine.tags, 237
aws::VirtualMachine.volumes, 237
aws::VMAttributes, 236
aws::VMAttributes.ebs_optimized, 236
aws::VMAttributes.flavor, 236
aws::VMAttributes.ignore_extra_volumes, 236
aws::VMAttributes.ignore_wrong_image, 236
aws::VMAttributes.image, 236
aws::VMAttributes.install_agent, 236

aws::VMAttributes.root_volume_size, 236
aws::VMAttributes.root_volume_type, 236
aws::VMAttributes.source_dest_check, 236
aws::VMAttributes.subnet_id, 236
aws::VMAttributes.user_data, 236
aws::Volume, 237
aws::Volume.attachmentpoint, 237
aws::Volume.availability_zone, 237
aws::Volume.encrypted, 237
aws::Volume.name, 237
aws::Volume.size, 237
aws::Volume.tags, 238
aws::Volume.vm, 238
aws::Volume.volume_type, 238
aws::VPC, 236
aws::VPC.cidr_block, 236
aws::VPC.enableDnsHostnames, 237
aws::VPC.enableDnsSupport, 237
aws::VPC.instance_tenancy, 236
aws::VPC.internet_gateway, 237
aws::VPC.name, 236
aws::VPC.routes, 237
aws::VPC.subnets, 237

B
BadRequest (class in inmanta.protocol.exceptions), 89
BaseDocument (class in inmanta.data), 198
BaseHttpException (class in in-

manta.protocol.exceptions), 89
BaseModel (class in inmanta.data.model), 201
BaseModel.Config (class in inmanta.data.model),

201
Bool (class in inmanta.ast.type), 196
built-in function

aws.elbid(), 239
aws.get_api_id(), 239
exec.in_shell(), 244
ip.add(), 250
ip.cidr_to_network(), 250
ip.concat(), 250
ip.hostname(), 250
ip.ipindex(), 250
ip.ipnet(), 250
ip.is_valid_cidr(), 251
ip.is_valid_cidr_v10(), 251
ip.is_valid_cidr_v6(), 251
ip.is_valid_ip(), 251
ip.is_valid_ip_v10(), 251
ip.is_valid_ip_v6(), 251
ip.is_valid_netmask(), 251
ip.net_to_nm(), 251
ip.netmask(), 251
ip.network(), 251
openstack.find_flavor(), 266
openstack.find_image(), 266
ssh.get_private_key(), 278
ssh.get_public_key(), 278
ssh.get_putty_key(), 278

370 Index

Inmanta Documentation, Release 2023.1.1

std.add_to_ip(), 289
std.assert(), 289
std.at(), 289
std.attr(), 289
std.capitalize(), 289
std.contains(), 289
std.count(), 289
std.dict_get(), 289
std.environment(), 289
std.environment_name(), 289
std.environment_server(), 289
std.equals(), 289
std.familyof(), 289
std.file(), 289
std.filter(), 289
std.flatten(), 289
std.generate_password(), 289
std.get_env(), 290
std.get_env_int(), 290
std.getattr(), 290
std.getfact(), 290
std.hostname(), 290
std.inlineif(), 290
std.invert(), 290
std.ipindex(), 290
std.is_base64_encoded(), 290
std.is_instance(), 290
std.is_unknown(), 290
std.isset(), 290
std.item(), 290
std.key_sort(), 290
std.length(), 290
std.list_files(), 290
std.lower(), 290
std.netmask(), 290
std.network_address(), 291
std.objid(), 291
std.password(), 291
std.prefixlen(), 291
std.prefixlength_to_netmask(), 291
std.print(), 291
std.replace(), 291
std.select(), 291
std.sequence(), 291
std.server_ca(), 291
std.server_port(), 291
std.server_ssl(), 291
std.server_token(), 291
std.source(), 291
std.split(), 291
std.template(), 291
std.timestamp(), 292
std.to_number(), 292
std.type(), 292
std.unique(), 292
std.unique_file(), 292
std.upper(), 292
std.validate_type(), 292

terraform.deprecated_config_block(),
298

terraform.dict_hash(), 298
terraform.extract_state(), 298
terraform.get_resource_attribute(), 298
terraform.get_resource_attribute_ref(),

299
terraform.safe_resource_state(), 299
terraform.serialize_config(), 299
terraform.sorted_list(), 299
yaml.load(), 319
yaml.loads(), 319

C
cache() (in module inmanta.agent.handler), 180
calculate_diff() (in-

manta.agent.handler.CRUDHandler
method), 185

can_reload() (inmanta.agent.handler.CRUDHandler
method), 185

can_reload() (inmanta.agent.handler.ResourceHandler
method), 182

cast() (inmanta.ast.type.Primitive method), 196
category (inmanta.ast.export.Error attribute), 230
character (inmanta.ast.export.Position attribute), 231
check_facts() (inmanta.agent.handler.CRUDHandler

method), 185
check_facts() (inmanta.agent.handler.ResourceHandler

method), 182
check_resource() (in-

manta.agent.handler.CRUDHandler
method), 186

check_resource() (in-
manta.agent.handler.ResourceHandler
method), 182

chmod() (inmanta.agent.io.local.LocalIO method),
189

chown() (inmanta.agent.io.local.LocalIO method),
189

clear() (inmanta.plugins.PluginMeta class method),
178

clear_database() (in module inmanta.db.util), 202
clear_environment() (in module in-

manta.protocol.methods), 203
clone() (inmanta.resources.Resource method), 179
close() (inmanta.agent.handler.CRUDHandler

method), 186
close() (inmanta.agent.handler.ResourceHandler

method), 183
close() (inmanta.agent.io.local.LocalIO method),

189
code (inmanta.protocol.common.Result attribute), 198
ColumnNotFound (class in inmanta.data.schema), 90
Compile (class in inmanta.data), 198
compile_details() (in module in-

manta.protocol.methods_v2), 213
CompileData (class in inmanta.data.model), 230
CompilerException (class in inmanta.ast), 177

Index 371

Inmanta Documentation, Release 2023.1.1

configuration model, 127
ConfigurationModel (class in inmanta.data), 199
Conflict (class in inmanta.protocol.exceptions), 90
ConstraintType (class in inmanta.ast.type), 197
Context (class in inmanta.plugins), 177
create_environment() (in module in-

manta.protocol.methods), 203
create_project() (in module in-

manta.protocol.methods), 203
create_resource() (in-

manta.agent.handler.CRUDHandler
method), 186

create_token() (in module in-
manta.protocol.methods), 203

CRITICAL (inmanta.const.LogLevel attribute), 176
critical() (inmanta.agent.handler.HandlerContext

method), 181
cron::Cronjob, 242
cron::cronjob, 242
cron::Cronjob.command, 242
cron::Cronjob.env_vars, 242
cron::Cronjob.host, 242
cron::Cronjob.name, 242
cron::Cronjob.schedule, 242
cron::Cronjob.user, 242
cron::cronjob_name, 242
CRUDHandler (class in inmanta.agent.handler), 185

D
DEBUG (inmanta.const.LogLevel attribute), 176
debug() (inmanta.agent.handler.HandlerContext

method), 181
decomission_environment() (in module in-

manta.protocol.methods), 203
delete_environment() (in module in-

manta.protocol.methods), 203
delete_param() (in module in-

manta.protocol.methods), 204
delete_project() (in module in-

manta.protocol.methods), 204
delete_resource() (in-

manta.agent.handler.CRUDHandler
method), 186

delete_setting() (in module in-
manta.protocol.methods), 204

delete_version() (in module in-
manta.protocol.methods), 204

dependency_manager() (in module inmanta.export),
192

deploy (inmanta.const.ResourceAction attribute), 176
deploy() (in module inmanta.protocol.methods), 204
deploy() (inmanta.agent.handler.CRUDHandler

method), 186
deploy() (inmanta.agent.handler.ResourceHandler

method), 183
desired state, 127
Dict (class in inmanta.ast.type), 197
diff() (in module inmanta.protocol.methods), 204

DirectValue (class in inmanta.model), 91
do_changes() (inmanta.agent.handler.CRUDHandler

method), 186
do_changes() (inmanta.agent.handler.ResourceHandler

method), 183
do_dryrun() (in module inmanta.protocol.methods),

204
do_reload() (inmanta.agent.handler.CRUDHandler

method), 186
do_reload() (inmanta.agent.handler.ResourceHandler

method), 183
dryrun (inmanta.const.ResourceAction attribute), 177
dryrun_list() (in module in-

manta.protocol.methods), 204
dryrun_report() (in module in-

manta.protocol.methods), 205
dryrun_request() (in module in-

manta.protocol.methods), 205
dryrun_trigger() (in module in-

manta.protocol.methods_v2), 213
dryrun_update() (in module in-

manta.protocol.methods), 205
DSL, 127
DynamicProxy (class in inmanta.execute.proxy), 202

E
end (inmanta.ast.export.Range attribute), 231
entity, 127
Entity (class in inmanta.model), 92
ENVIRONMENT

inmanta-cli-environment-delete command
line option, 146

inmanta-cli-environment-modify command
line option, 146

inmanta-cli-environment-recompile
command line option, 147

inmanta-cli-environment-save command
line option, 147

inmanta-cli-environment-show command
line option, 149

environment, 127
Environment (class in inmanta.data), 200
environment_clear() (in module in-

manta.protocol.methods_v2), 214
environment_create() (in module in-

manta.protocol.methods_v2), 214
environment_create_token() (in module in-

manta.protocol.methods_v2), 214
environment_decommission() (in module in-

manta.protocol.methods_v2), 214
environment_delete() (in module in-

manta.protocol.methods_v2), 215
environment_get() (in module in-

manta.protocol.methods_v2), 215
environment_list() (in module in-

manta.protocol.methods_v2), 215
environment_modify() (in module in-

manta.protocol.methods_v2), 215

372 Index

Inmanta Documentation, Release 2023.1.1

environment_setting_delete() (in module in-
manta.protocol.methods_v2), 215

environment_setting_get() (in module in-
manta.protocol.methods_v2), 216

environment_settings_list() (in module in-
manta.protocol.methods_v2), 216

environment_settings_set() (in module in-
manta.protocol.methods_v2), 216

Error (class in inmanta.ast.export), 230
ERROR (inmanta.const.LogLevel attribute), 176
error() (inmanta.agent.handler.HandlerContext

method), 181
ErrorCategory (class in inmanta.ast.export), 231
errors (inmanta.data.model.CompileData attribute),

230
exception() (inmanta.agent.handler.HandlerContext

method), 181
exec.in_shell()

built-in function, 244
exec.PosixRun (built-in class), 244
exec.Run (built-in class), 244
exec::execHost, 244
exec::Run, 243
exec::Run.command, 243
exec::Run.creates, 243
exec::Run.cwd, 243
exec::Run.environment, 243
exec::Run.host, 244
exec::Run.onlyif, 243
exec::Run.path, 243
exec::Run.reload, 243
exec::Run.reload_only, 243
exec::Run.returns, 243
exec::Run.skip_on_fail, 244
exec::Run.timeout, 244
exec::Run.unless, 244
execute() (inmanta.agent.handler.CRUDHandler

method), 187
execute() (inmanta.agent.handler.ResourceHandler

method), 183
ExplicitPluginException (class in inmanta.ast),

177
ExternalException (class in inmanta.ast), 177

F
facts, 127
facts() (inmanta.agent.handler.CRUDHandler

method), 187
facts() (inmanta.agent.handler.ResourceHandler

method), 183
fields_updated() (in-

manta.agent.handler.HandlerContext
method), 181

file_exists() (inmanta.agent.io.local.LocalIO
method), 189

file_stat() (inmanta.agent.io.local.LocalIO
method), 189

Forbidden (class in inmanta.protocol.exceptions), 89

from_path() (inmanta.module.Module class method),
193

from_path() (inmanta.module.ModuleLike class
method), 193

from_path() (inmanta.module.ModuleV1 class
method), 193

from_path() (inmanta.module.ModuleV2 class
method), 193

G
get() (inmanta.module.Project class method), 194
get_agent_process() (in module in-

manta.protocol.methods), 205
get_agent_process_details() (in module in-

manta.protocol.methods_v2), 216
get_agents() (in module in-

manta.protocol.methods_v2), 216
get_all_facts() (in module in-

manta.protocol.methods_v2), 217
get_api_docs() (in module in-

manta.protocol.methods_v2), 217
get_base_type() (inmanta.ast.type.Type method),

196
get_by_id() (inmanta.data.BaseDocument class

method), 198
get_client() (inmanta.agent.handler.CRUDHandler

method), 187
get_client() (inmanta.agent.handler.ResourceHandler

method), 184
get_client() (inmanta.plugins.Context method), 177
get_code() (in module inmanta.protocol.methods),

205
get_compile_data() (in module in-

manta.protocol.methods_v2), 217
get_compile_queue() (in module in-

manta.protocol.methods), 205
get_compile_reports() (in module in-

manta.protocol.methods_v2), 217
get_compiler() (inmanta.plugins.Context method),

177
get_data_dir() (inmanta.plugins.Context method),

177
get_depended_by() (in-

manta.server.protocol.ServerSlice method),
82

get_dependencies() (in-
manta.server.protocol.ServerSlice method),
82

get_diff_of_versions() (in module in-
manta.protocol.methods_v2), 218

get_dryrun_diff() (in module in-
manta.protocol.methods_v2), 219

get_environment() (in module in-
manta.protocol.methods), 205

get_environment_id() (inmanta.plugins.Context
method), 177

get_environment_metrics() (in module in-
manta.protocol.methods_v2), 219

Index 373

Inmanta Documentation, Release 2023.1.1

get_fact() (in module in-
manta.protocol.methods_v2), 219

get_facts() (in module in-
manta.protocol.methods_v2), 220

get_file() (in module inmanta.protocol.methods),
206

get_file() (inmanta.agent.handler.CRUDHandler
method), 187

get_file() (inmanta.agent.handler.ResourceHandler
method), 184

get_functions() (inmanta.plugins.PluginMeta class
method), 178

get_installed_module() (in-
manta.module.ModuleSource method),
193

get_list() (inmanta.data.BaseDocument class
method), 198

get_logs_for_version() (in-
manta.data.ResourceAction class method),
201

get_notification() (in module in-
manta.protocol.methods_v2), 220

get_param() (in module inmanta.protocol.methods),
206

get_parameter() (in module in-
manta.protocol.methods), 206

get_parameters() (in module in-
manta.protocol.methods_v2), 220

get_plugin_files() (inmanta.module.Module
method), 193

get_project() (in module in-
manta.protocol.methods), 206

get_queue_scheduler() (inmanta.plugins.Context
method), 177

get_report() (in module inmanta.protocol.methods),
206

get_reports() (in module in-
manta.protocol.methods), 206

get_resolver() (inmanta.plugins.Context method),
177

get_resource() (in module in-
manta.protocol.methods), 206

get_resource_actions() (in module in-
manta.protocol.methods_v2), 221

get_resource_events() (in module in-
manta.protocol.methods_v2), 221

get_resources_for_agent() (in module in-
manta.protocol.methods), 207

get_resources_for_version() (in-
manta.data.Resource class method), 201

get_resources_in_version() (in module in-
manta.protocol.methods_v2), 222

get_server_status() (in module in-
manta.protocol.methods), 207

get_setting() (in module in-
manta.protocol.methods), 207

get_source_code() (in module in-
manta.protocol.methods_v2), 222

get_state() (in module inmanta.protocol.methods),
207

get_status() (in module inmanta.protocol.methods),
207

get_substitute_by_id() (inmanta.data.Compile
class method), 199

get_sync_client() (inmanta.plugins.Context
method), 177

get_type() (inmanta.ast.attribute.Attribute method),
192

get_type() (inmanta.plugins.Context method), 178
get_version() (in module in-

manta.protocol.methods), 207
get_versions() (inmanta.data.ConfigurationModel

class method), 200
getfact (inmanta.const.ResourceAction attribute),

177
graph::ClassDiagram, 245
graph::ClassDiagram.header, 245
graph::ClassDiagram.moduleexpression, 245
graph::ClassDiagram.name, 245
graph::Graph, 245
graph::Graph.config, 245
graph::Graph.name, 245

H
halt_environment() (in module in-

manta.protocol.methods_v2), 222
handle (class in inmanta.protocol.decorators), 87
handler, 127
HandlerContext (class in inmanta.agent.handler),

180
hash_file() (inmanta.agent.io.local.LocalIO

method), 189
heartbeat() (in module inmanta.protocol.methods),

207
heartbeat_reply() (in module in-

manta.protocol.methods), 208

I
Id (class in inmanta.resources), 179
ignore_env() (in module inmanta.protocol.methods),

208
IgnoreResourceException (class in in-

manta.resources), 179
INFO (inmanta.const.LogLevel attribute), 176
info() (inmanta.agent.handler.HandlerContext

method), 181
infrastructure, 127
infrastructure-as-code, 127
init_env() (inmanta.env.VirtualEnv method), 195
inmanta.data.TBaseDocument (built-in variable),

198
inmanta.model

module, 91
inmanta.protocol.methods

module, 203
inmanta.protocol.methods_v2

374 Index

Inmanta Documentation, Release 2023.1.1

module, 213
inmanta-cli command line option

--host, 143
--port, 143

inmanta-cli-action-log-list command line
option

--action, 143
--environment, 143
--rvid, 143
-e, 143

inmanta-cli-action-log-show-messages
command line option

--action-id, 144
--environment, 144
--rvid, 144
-e, 144

inmanta-cli-agent-list command line option
--environment, 144
-e, 144

inmanta-cli-agent-pause command line
option

--agent, 144
--all, 144
--environment, 144
-e, 144

inmanta-cli-agent-unpause command line
option

--agent, 145
--all, 145
--environment, 145
-e, 145

inmanta-cli-environment-create command
line option

--branch, 145
--name, 145
--project, 145
--repo-url, 145
--save, 145
-b, 145
-n, 145
-p, 145
-r, 145
-s, 145

inmanta-cli-environment-delete command
line option

ENVIRONMENT, 146
inmanta-cli-environment-modify command

line option
--branch, 146
--name, 146
--repo-url, 146
-b, 146
-n, 146
-r, 146
ENVIRONMENT, 146

inmanta-cli-environment-recompile command
line option

--update, 147

-u, 147
ENVIRONMENT, 147

inmanta-cli-environment-save command line
option

ENVIRONMENT, 147
inmanta-cli-environment-setting-delete

command line option
--environment, 148
--key, 148
-e, 148
-k, 148

inmanta-cli-environment-setting-get
command line option

--environment, 148
--key, 148
-e, 148
-k, 148

inmanta-cli-environment-setting-list
command line option

--environment, 148
-e, 148

inmanta-cli-environment-setting-set
command line option

--environment, 148
--key, 148
--value, 148
-e, 148
-k, 148
-o, 148

inmanta-cli-environment-show command line
option

--format, 149
ENVIRONMENT, 149

inmanta-cli-monitor command line option
--environment, 149
-e, 149

inmanta-cli-param-get command line option
--environment, 150
--name, 150
--resource, 150
-e, 150

inmanta-cli-param-list command line option
--environment, 150
-e, 150

inmanta-cli-param-set command line option
--environment, 150
--name, 150
--value, 150
-e, 150

inmanta-cli-project-create command line
option

--name, 151
-n, 151

inmanta-cli-project-delete command line
option

PROJECT, 151
inmanta-cli-project-modify command line

option

Index 375

Inmanta Documentation, Release 2023.1.1

--name, 151
-n, 151
PROJECT, 152

inmanta-cli-project-show command line
option

PROJECT, 152
inmanta-cli-token-create command line

option
--agent, 152
--api, 152
--compiler, 152
--environment, 152
-e, 152

inmanta-cli-version-list command line
option

--environment, 153
-e, 153

inmanta-cli-version-release command line
option

--environment, 153
--full, 153
--push, 153
-e, 153
-p, 153
VERSION, 153

inmanta-cli-version-report command line
option

--environment, 154
--version, 154
-e, 154
-i, 154
-l, 154

InmantaBootloader (class in in-
manta.server.bootloader), 230

install_modules() (inmanta.module.Project
method), 194

INSTALL_OPTS (in module inmanta.module), 192
InstallMode (class in inmanta.module), 192
instance, 128
Integer (class in inmanta.ast.type), 196
InvalidMetadata (class in inmanta.module), 193
InvalidModuleException (class in in-

manta.module), 193
ip.add()

built-in function, 250
ip.cidr_to_network()

built-in function, 250
ip.concat()

built-in function, 250
ip.hostname()

built-in function, 250
ip.ipindex()

built-in function, 250
ip.ipnet()

built-in function, 250
ip.is_valid_cidr()

built-in function, 251
ip.is_valid_cidr_v10()

built-in function, 251
ip.is_valid_cidr_v6()

built-in function, 251
ip.is_valid_ip()

built-in function, 251
ip.is_valid_ip_v10()

built-in function, 251
ip.is_valid_ip_v6()

built-in function, 251
ip.is_valid_netmask()

built-in function, 251
ip.net_to_nm()

built-in function, 251
ip.netmask()

built-in function, 251
ip.network()

built-in function, 251
ip::Address, 246
ip::agentConfig, 250
ip::Alias, 246
ip::Alias.alias, 247
ip::Alias.dhcp, 247
ip::Alias.netmask, 246
ip::Alias.server, 247
ip::cidr, 246
ip::cidr_v10, 246
ip::cidr_v6, 246
ip::DstService, 247
ip::Host, 247
ip::Host.clients, 247
ip::Host.ip, 247
ip::Host.remote_agent, 247
ip::Host.remote_port, 247
ip::Host.remote_user, 247
ip::Host.servers, 247
ip::IP, 247
ip::ip, 246
ip::IP.v4, 247
ip::ip_v10, 246
ip::ip_v6, 246
ip::mask, 246
ip::Network, 247
ip::Network.dhcp, 248
ip::Network.name, 247
ip::Network.netmask, 247
ip::Network.network, 247
ip::Port, 248
ip::port, 246
ip::Port.high, 248
ip::PortRange, 248
ip::PortRange.high, 248
ip::PortRange.low, 248
ip::protocol, 246
ip::Service, 248
ip::Service.dst_range, 248
ip::Service.listening_servers, 248
ip::Service.proto, 248
ip::Service.src_range, 248

376 Index

Inmanta Documentation, Release 2023.1.1

ip::services::BaseClient, 248
ip::services::BaseClient.servers, 248
ip::services::BaseServer, 248
ip::services::BaseServer.clients, 248
ip::services::BaseServer.services, 248
ip::services::Client, 248
ip::services::Client.host, 249
ip::services::Server, 249
ip::services::Server.host, 249
ip::services::Server.ips, 249
ip::services::VirtualClient, 249
ip::services::VirtualClient.name, 249
ip::services::VirtualHost, 249
ip::services::VirtualHost.hostname, 249
ip::services::VirtualIp, 249
ip::services::VirtualIp.address, 249
ip::services::VirtualNetwork, 249
ip::services::VirtualNetwork.netmask, 249
ip::services::VirtualNetwork.network, 249
ip::services::VirtualRange, 249
ip::services::VirtualRange.from, 249
ip::services::VirtualRange.to, 250
ip::services::VirtualScope, 250
ip::services::VirtualScope.side, 250
ip::services::VirtualServer, 250
ip::services::VirtualServer.name, 250
ip::services::VirtualSide, 250
ip::services::VirtualSide.scope, 250
is_compiling() (in module in-

manta.protocol.methods), 208
is_dry_run() (inmanta.agent.handler.HandlerContext

method), 181
is_editable() (inmanta.module.ModuleV2 method),

193
is_primitive() (inmanta.ast.type.Type method), 196
is_remote() (inmanta.agent.io.local.LocalIO

method), 190
is_symlink() (inmanta.agent.io.local.LocalIO

method), 190

L
line (inmanta.ast.export.Position attribute), 231
List (class in inmanta.ast.type), 197
list_agent_processes() (in module in-

manta.protocol.methods), 208
list_agents() (in module in-

manta.protocol.methods), 208
list_changes() (in-

manta.agent.handler.CRUDHandler
method), 187

list_changes() (in-
manta.agent.handler.ResourceHandler
method), 184

list_desired_state_versions() (in module in-
manta.protocol.methods_v2), 223

list_dryruns() (in module in-
manta.protocol.methods_v2), 223

list_environments() (in module in-
manta.protocol.methods), 209

list_notifications() (in module in-
manta.protocol.methods_v2), 223

list_params() (in module in-
manta.protocol.methods), 209

list_projects() (in module in-
manta.protocol.methods), 209

list_settings() (in module in-
manta.protocol.methods), 209

list_versions() (in module in-
manta.protocol.methods), 209

Literal (class in inmanta.ast.type), 197
LiteralDict (class in inmanta.ast.type), 197
LiteralList (class in inmanta.ast.type), 197
load() (inmanta.module.Project method), 194
LocalIO (class in inmanta.agent.io.local), 189
Location (class in inmanta.ast.export), 231
Location (class in inmanta.model), 92
location (inmanta.ast.export.Error attribute), 230
LogLevel (class in inmanta.const), 176

M
main.cf, 128
ManagedResource (class in inmanta.resources), 179
master (inmanta.module.InstallMode attribute), 192
message (inmanta.ast.export.Error attribute), 230
metadata (inmanta.module.ModuleLike property), 193
method() (inmanta.protocol.decorators method), 86
mkdir() (inmanta.agent.io.local.LocalIO method),

190
mock_process_env() (in module inmanta.env), 195
modify_environment() (in module in-

manta.protocol.methods), 209
modify_project() (in module in-

manta.protocol.methods), 209
module, 128

inmanta.model, 91
inmanta.protocol.methods, 203
inmanta.protocol.methods_v2, 213

Module (class in inmanta.module), 193
ModuleLike (class in inmanta.module), 193
ModuleMetadata (class in inmanta.module), 175
ModuleName (in module inmanta.module), 193
ModuleRepoInfo (class in inmanta.module), 174
ModuleRepoType (class in inmanta.module), 174
ModuleSource (class in inmanta.module), 193
ModuleV1 (class in inmanta.module), 193
ModuleV2 (class in inmanta.module), 193
ModuleV2Source (class in inmanta.module), 194
mysql::Database, 251
mysql::Database.collation, 252
mysql::Database.encoding, 252
mysql::Database.name, 251
mysql::Database.password, 252
mysql::Database.server, 252
mysql::Database.user, 252
mysql::dBDependsOnServer, 253

Index 377

Inmanta Documentation, Release 2023.1.1

mysql::DBMS, 251
mysql::DBMS.databases, 251
mysql::DBMS.hostref, 251
mysql::DBMS.port, 251
mysql::ManagedMysql, 252
mysql::ManagedMysql.agenthost, 252
mysql::ManagedMysql.password, 252
mysql::ManagedMysql.user, 252
mysql::manageManaged, 253
mysql::mysqlMariaDB, 253
mysql::mysqlRedhat, 253
mysql::ports, 253
mysql::removeAnonUsers, 253
mysql::Server, 252
mysql::Server._svc, 252
mysql::Server.remove_anon_users, 252
mysql::ubuntuMysql, 253

N
name (inmanta.ast.variables.Reference attribute), 195
net::Interface, 253
net::Interface.host, 253
net::Interface.mac, 253
net::Interface.mtu, 253
net::Interface.name, 253
net::Interface.vlan, 253
net::mac_addr, 253
net::vlan_id, 253
NotFound (class in inmanta.protocol.exceptions), 89
notify_change() (in module in-

manta.protocol.methods), 209
notify_change_get() (in module in-

manta.protocol.methods), 210
NullableType (class in inmanta.ast.type), 196
Number (class in inmanta.ast.type), 196

O
openstack.EndPoint (built-in class), 267
openstack.EndpointHandler (built-in class), 270
openstack.find_flavor()

built-in function, 266
openstack.find_image()

built-in function, 266
openstack.Flavor (built-in class), 267
openstack.FlavorHandler (built-in class), 269
openstack.FloatingIP (built-in class), 267
openstack.FloatingIPHandler (built-in class), 270
openstack.HostPort (built-in class), 267
openstack.HostPortHandler (built-in class), 270
openstack.Image (built-in class), 267
openstack.ImageHandler (built-in class), 269
openstack.Network (built-in class), 267
openstack.NetworkHandler (built-in class), 269
openstack.Project (built-in class), 268
openstack.ProjectHandler (built-in class), 270
openstack.Role (built-in class), 268
openstack.RoleHandler (built-in class), 270
openstack.Router (built-in class), 268

openstack.RouterHandler (built-in class), 270
openstack.RouterPort (built-in class), 268
openstack.RouterPortHandler (built-in class), 270
openstack.SecurityGroup (built-in class), 268
openstack.SecurityGroupHandler (built-in class),

270
openstack.Service (built-in class), 268
openstack.ServiceHandler (built-in class), 270
openstack.Subnet (built-in class), 269
openstack.SubnetHandler (built-in class), 270
openstack.User (built-in class), 269
openstack.UserHandler (built-in class), 270
openstack.VirtualMachine (built-in class), 269
openstack.VirtualMachineHandler (built-in

class), 269
openstack::AddressPair, 254
openstack::AddressPair.address, 254
openstack::AddressPair.mac, 254
openstack::admin_state, 254
openstack::agentConfig, 266
openstack::container_format, 254
openstack::direction, 254
openstack::disk_format, 254
openstack::EndPoint, 255
openstack::endPoint, 266
openstack::EndPoint.admin_url, 255
openstack::EndPoint.internal_url, 255
openstack::EndPoint.provider, 255
openstack::EndPoint.public_url, 255
openstack::EndPoint.region, 255
openstack::EndPoint.service, 255
openstack::EndPoint.service_id, 255
openstack::eth0Port, 266
openstack::fipAddr, 266
openstack::fipName, 266
openstack::Flavor, 255
openstack::Flavor.disk, 255
openstack::Flavor.ephemeral, 255
openstack::Flavor.extra_specs, 255
openstack::Flavor.flavor_id, 255
openstack::Flavor.is_public, 255
openstack::Flavor.name, 255
openstack::Flavor.provider, 256
openstack::Flavor.ram, 255
openstack::Flavor.rxtx_factor, 255
openstack::Flavor.swap, 255
openstack::Flavor.vcpus, 255
openstack::FloatingIP, 256
openstack::FloatingIP.address, 256
openstack::FloatingIP.external_network, 256
openstack::FloatingIP.force_ip, 256
openstack::FloatingIP.name, 256
openstack::FloatingIP.port, 256
openstack::FloatingIP.project, 256
openstack::FloatingIP.provider, 256
openstack::GroupRule, 256
openstack::GroupRule.remote_group, 256
openstack::Host, 256

378 Index

Inmanta Documentation, Release 2023.1.1

openstack::Host.key_pair, 256
openstack::Host.project, 257
openstack::Host.provider, 257
openstack::Host.purge_on_delete, 256
openstack::Host.purged, 256
openstack::Host.security_groups, 257
openstack::Host.subnet, 256
openstack::Host.vm, 256
openstack::HostPort, 257
openstack::HostPort.dhcp, 257
openstack::HostPort.floating_ips, 257
openstack::HostPort.name, 257
openstack::HostPort.port_index, 257
openstack::HostPort.portsecurity, 257
openstack::HostPort.retries, 257
openstack::HostPort.subnet, 257
openstack::HostPort.vm, 257
openstack::HostPort.wait, 257
openstack::Image, 258
openstack::Image.container_format, 258
openstack::Image.disk_format, 258
openstack::Image.image_id, 258
openstack::Image.metadata, 258
openstack::Image.name, 258
openstack::Image.protected, 258
openstack::Image.provider, 258
openstack::Image.purge_on_delete, 258
openstack::Image.skip_on_deploy, 258
openstack::Image.uri, 258
openstack::Image.visibility, 258
openstack::IPrule, 257
openstack::IPrule.remote_prefix, 257
openstack::Network, 258
openstack::Network.external, 258
openstack::Network.floating_ips, 259
openstack::Network.name, 258
openstack::Network.network_type, 258
openstack::Network.physical_network, 258
openstack::Network.project, 259
openstack::Network.provider, 259
openstack::Network.routers, 259
openstack::Network.segmentation_id, 258
openstack::Network.shared, 258
openstack::Network.subnets, 259
openstack::Network.vlan_transparent, 258
openstack::OpenStackResource, 259
openstack::OpenStackResource.send_event,

259
openstack::openstackVM, 266
openstack::Port, 259
openstack::Port.address, 259
openstack::Port.allowed_address_pairs, 259
openstack::Port.project, 259
openstack::Port.provider, 259
openstack::Project, 259
openstack::Project.description, 259
openstack::Project.enabled, 259
openstack::Project.floating_ips, 260

openstack::Project.name, 259
openstack::Project.networks, 259
openstack::Project.ports, 260
openstack::Project.provider, 259
openstack::Project.roles, 259
openstack::Project.routers, 260
openstack::Project.security_groups, 260
openstack::Project.subnets, 260
openstack::Provider, 260
openstack::Provider.admin_url, 260
openstack::Provider.auto_agent, 260
openstack::Provider.connection_url, 260
openstack::Provider.endpoints, 260
openstack::Provider.flavors, 261
openstack::Provider.floating_ips, 261
openstack::Provider.images, 261
openstack::Provider.name, 260
openstack::Provider.networks, 260
openstack::Provider.password, 260
openstack::Provider.ports, 260
openstack::Provider.projects, 260
openstack::Provider.roles, 260
openstack::Provider.routers, 261
openstack::Provider.security_groups, 261
openstack::Provider.services, 260
openstack::Provider.subnets, 261
openstack::Provider.tenant, 260
openstack::Provider.token, 260
openstack::Provider.username, 260
openstack::Provider.users, 260
openstack::Provider.verify_cert, 260
openstack::Provider.virtual_machines, 261
openstack::providerRequire, 266
openstack::Role, 261
openstack::Role.project, 261
openstack::Role.provider, 261
openstack::Role.role, 261
openstack::Role.role_id, 261
openstack::Role.user, 261
openstack::roleImpl, 266
openstack::Route, 261
openstack::Route.destination, 261
openstack::Route.nexthop, 262
openstack::Route.router, 262
openstack::Router, 262
openstack::Router.admin_state, 262
openstack::Router.distributed, 262
openstack::Router.ext_gateway, 262
openstack::Router.ha, 262
openstack::Router.name, 262
openstack::Router.ports, 262
openstack::Router.project, 262
openstack::Router.provider, 262
openstack::Router.routes, 262
openstack::Router.subnets, 262
openstack::RouterPort, 262
openstack::RouterPort.name, 262
openstack::RouterPort.router, 262

Index 379

Inmanta Documentation, Release 2023.1.1

openstack::RouterPort.subnet, 262
openstack::SecurityGroup, 262
openstack::SecurityGroup.description, 262
openstack::SecurityGroup.manage_all, 263
openstack::SecurityGroup.name, 263
openstack::SecurityGroup.project, 263
openstack::SecurityGroup.provider, 263
openstack::SecurityGroup.remote_group_rules,

263
openstack::SecurityGroup.retries, 263
openstack::SecurityGroup.rules, 263
openstack::SecurityGroup.virtual_machines,

263
openstack::SecurityGroup.wait, 263
openstack::SecurityRule, 263
openstack::SecurityRule.direction, 263
openstack::SecurityRule.group, 263
openstack::SecurityRule.ip_protocol, 263
openstack::SecurityRule.port, 263
openstack::SecurityRule.port_max, 263
openstack::SecurityRule.port_min, 263
openstack::Service, 263
openstack::Service.description, 263
openstack::Service.endpoint, 264
openstack::Service.name, 263
openstack::Service.provider, 263
openstack::Service.type, 263
openstack::sg, 266
openstack::Subnet, 264
openstack::Subnet.allocation_end, 264
openstack::Subnet.allocation_start, 264
openstack::Subnet.dhcp, 264
openstack::Subnet.disable_gateway_ip, 264
openstack::Subnet.dns_servers, 264
openstack::Subnet.gateway_ip, 264
openstack::Subnet.host_ports, 264
openstack::Subnet.name, 264
openstack::Subnet.network, 264
openstack::Subnet.network_address, 264
openstack::Subnet.project, 264
openstack::Subnet.provider, 264
openstack::Subnet.router, 264
openstack::Subnet.routers, 264
openstack::User, 264
openstack::User.email, 264
openstack::User.enabled, 265
openstack::User.name, 264
openstack::User.password, 265
openstack::User.provider, 265
openstack::User.roles, 265
openstack::userData, 266
openstack::VirtualMachine, 265
openstack::VirtualMachine.eth0_port, 265
openstack::VirtualMachine.host, 266
openstack::VirtualMachine.key_pair, 265
openstack::VirtualMachine.name, 265
openstack::VirtualMachine.ports, 265
openstack::VirtualMachine.project, 265

openstack::VirtualMachine.provider, 265
openstack::VirtualMachine.security_groups,

265
openstack::visibility, 254
openstack::VMAttributes, 265
openstack::VMAttributes.config_drive, 265
openstack::VMAttributes.flavor, 265
openstack::VMAttributes.image, 265
openstack::VMAttributes.install_agent, 265
openstack::VMAttributes.metadata, 265
openstack::VMAttributes.personality, 265
openstack::VMAttributes.user_data, 265
orchestration, 128
other (inmanta.const.ResourceAction attribute), 177

P
parse_id() (inmanta.resources.Id class method), 179
parser (inmanta.ast.export.ErrorCategory attribute),

231
ParserException (class in inmanta.parser), 177
Path (in module inmanta.module), 194
PGRestore (class in inmanta.db.util), 201
platform::UserdataBootstrap, 271
platform::userdataBootstrap, 271
platform::UserdataBootstrap.vm, 271
platform::UserdataVM, 271
platform::UserdataVM.user_data, 271
plugin, 128
plugin (inmanta.ast.export.ErrorCategory attribute),

231
plugin() (in module inmanta.plugins), 178
PluginException (class in inmanta.plugins), 178
PluginMeta (class in inmanta.plugins), 178
PluginModuleFinder (class in inmanta.loader), 194
Position (class in inmanta.ast.export), 231
post() (inmanta.agent.handler.CRUDHandler

method), 187
post() (inmanta.agent.handler.ResourceHandler

method), 184
postgresql.resources.Database (built-in class),

274
postgresql.resources.DatabaseProvider (built-

in class), 275
postgresql.resources.ReplicationSlot (built-

in class), 274
postgresql.resources.ReplicationSlotProvider

(built-in class), 275
postgresql.resources.User (built-in class), 274
postgresql.resources.UserProvider (built-in

class), 275
postgresql::Database, 272
postgresql::Database.db_name, 272
postgresql::Database.owner, 272
postgresql::Database.server, 272
postgresql::db_requires, 274
postgresql::ha::Master, 273
postgresql::ha::Master.replication_slot,

273

380 Index

Inmanta Documentation, Release 2023.1.1

postgresql::ha::Master.replication_slot_name,
273

postgresql::ha::Master.replication_user,
273

postgresql::ha::Master.replication_user_password,
273

postgresql::ha::Master.standby, 273
postgresql::ha::Master.synchronous_commit,

273
postgresql::ha::Master.synchronous_standby_names,

273
postgresql::ha::postgresqlMaster, 274
postgresql::ha::postgresqlStandby, 274
postgresql::ha::ReplicationSlot, 273
postgresql::ha::ReplicationSlot.server, 273
postgresql::ha::Standby, 274
postgresql::ha::Standby.master, 274
postgresql::install, 274
postgresql::install_tools, 274
postgresql::PostgresqlServer, 272
postgresql::postgresqlServer, 274
postgresql::PostgresqlServer._packages, 272
postgresql::PostgresqlServer.databases, 272
postgresql::PostgresqlServer.log_min_duration_statement,

272
postgresql::PostgresqlServer.managed, 272
postgresql::PostgresqlServer.pg_stat_statements,

272
postgresql::PostgresqlServer.users, 272
postgresql::PostgresqlTools, 272
postgresql::PostgresqlTools.host, 272
postgresql::User, 273
postgresql::User.databases, 273
postgresql::User.from, 273
postgresql::User.password, 273
postgresql::User.server, 273
postgresql::User.username, 273
postgresql::user_requires, 274
postgresql::username_t, 272
pre() (inmanta.agent.handler.CRUDHandler method),

188
pre() (inmanta.agent.handler.ResourceHandler

method), 184
prerelease (inmanta.module.InstallMode attribute),

192
prestart() (inmanta.server.protocol.ServerSlice

method), 82
prestop() (inmanta.server.protocol.ServerSlice

method), 82
Primitive (class in inmanta.ast.type), 196
PROJECT

inmanta-cli-project-delete command
line option, 151

inmanta-cli-project-modify command
line option, 152

inmanta-cli-project-show command line
option, 152

project, 128

Project (class in inmanta.module), 194
project_create() (in module in-

manta.protocol.methods_v2), 224
project_delete() (in module in-

manta.protocol.methods_v2), 224
project_get() (in module in-

manta.protocol.methods_v2), 224
project_list() (in module in-

manta.protocol.methods_v2), 224
project_modify() (in module in-

manta.protocol.methods_v2), 224
ProjectMetadata (class in inmanta.module), 173
ProjectNotFoundException (class in in-

manta.module), 195
promote_desired_state_version() (in module in-

manta.protocol.methods_v2), 224
provider() (in module inmanta.agent.handler), 180
pull (inmanta.const.ResourceAction attribute), 177
PurgeableResource (class in inmanta.resources),

179
push (inmanta.const.ResourceAction attribute), 177
put() (inmanta.agent.io.local.LocalIO method), 190
put_partial() (in module in-

manta.protocol.methods_v2), 225
put_version() (in module in-

manta.protocol.methods), 210

R
Range (class in inmanta.ast.export), 231
range (inmanta.ast.export.Location attribute), 231
read() (inmanta.agent.io.local.LocalIO method), 190
read_binary() (inmanta.agent.io.local.LocalIO

method), 190
read_resource() (in-

manta.agent.handler.CRUDHandler
method), 188

readlink() (inmanta.agent.io.local.LocalIO method),
190

Reference (class in inmanta.ast.variables), 195
ReferenceValue (class in inmanta.model), 92
relation, 128
Relation (class in inmanta.model), 92
RelationAttribute (class in inmanta.ast.attribute),

192
release (inmanta.module.InstallMode attribute), 192
release_version() (in module in-

manta.protocol.methods), 210
remove() (inmanta.agent.io.local.LocalIO method),

191
Report (class in inmanta.data), 200
reserve_version() (in module in-

manta.protocol.methods_v2), 225
reset() (inmanta.loader.PluginModuleFinder class

method), 194
resource, 128
Resource (class in inmanta.data), 200
Resource (class in inmanta.resources), 179
resource handler, 128

Index 381

Inmanta Documentation, Release 2023.1.1

resource() (in module inmanta.resources), 179
resource_action_update() (in module in-

manta.protocol.methods), 210
resource_deploy_done() (in module in-

manta.protocol.methods_v2), 225
resource_deploy_start() (in module in-

manta.protocol.methods_v2), 226
resource_details() (in module in-

manta.protocol.methods_v2), 226
resource_did_dependency_change() (in module

inmanta.protocol.methods_v2), 226
resource_event() (in module in-

manta.protocol.methods), 211
resource_history() (in module in-

manta.protocol.methods_v2), 226
resource_list() (in module in-

manta.protocol.methods_v2), 227
resource_logs() (in module in-

manta.protocol.methods_v2), 228
resource_str() (inmanta.resources.Id method), 179
ResourceAction (class in inmanta.const), 176
ResourceAction (class in inmanta.data), 201
ResourceHandler (class in inmanta.agent.handler),

182
ResourceIdStr (in module inmanta.data.model), 201
ResourcePurged (class in inmanta.agent.handler),

180
ResourceVersionIdStr (in module in-

manta.data.model), 201
rest.RESTCall (built-in class), 276
rest.RESTHandler (built-in class), 276
rest::RESTCall, 275
rest::RESTCall.agent, 276
rest::RESTCall.auth_password, 276
rest::RESTCall.auth_user, 276
rest::RESTCall.body, 275
rest::RESTCall.form_encoded, 275
rest::RESTCall.headers, 275
rest::RESTCall.method, 275
rest::RESTCall.return_codes, 276
rest::RESTCall.skip_on_fail, 276
rest::RESTCall.ssl_verify, 275
rest::RESTCall.url, 275
rest::RESTCall.url_id, 275
rest::RESTCall.validate_return, 276
rest::restCallID, 276
Result (class in inmanta.protocol.common), 198
result (inmanta.protocol.common.Result property),

198
resume_environment() (in module in-

manta.protocol.methods_v2), 229
return_value() (in-

manta.execute.proxy.DynamicProxy class
method), 202

rmdir() (inmanta.agent.io.local.LocalIO method),
191

run() (inmanta.agent.io.local.LocalIO method), 191
run_sync() (inmanta.agent.handler.CRUDHandler

method), 188
run_sync() (inmanta.agent.handler.ResourceHandler

method), 184
run_sync() (inmanta.plugins.Context method), 178
runtime (inmanta.ast.export.ErrorCategory attribute),

231
RuntimeException (class in inmanta.ast), 177

S
ServerError (class in inmanta.protocol.exceptions),

90
ServerSlice (class in inmanta.server.protocol), 82
set() (inmanta.module.Project class method), 195
set_cache() (inmanta.agent.handler.CRUDHandler

method), 188
set_cache() (inmanta.agent.handler.ResourceHandler

method), 184
set_fact() (inmanta.agent.handler.HandlerContext

method), 181
set_param() (in module inmanta.protocol.methods),

211
set_parameters() (in module in-

manta.protocol.methods), 212
set_setting() (in module in-

manta.protocol.methods), 212
set_state() (in module inmanta.protocol.methods),

212
set_status() (inmanta.agent.handler.HandlerContext

method), 181
ShutdownInProgress (class in in-

manta.protocol.exceptions), 90
SkipResource (class in inmanta.agent.handler), 180
ssh.get_private_key()

built-in function, 278
ssh.get_public_key()

built-in function, 278
ssh.get_putty_key()

built-in function, 278
ssh::Key, 277
ssh::Key.command, 277
ssh::Key.name, 277
ssh::Key.options, 277
ssh::Key.public_key, 277
ssh::Key.ssh_users, 277
ssh::Server, 277
ssh::sshServer, 278
ssh::SSHUser, 277
ssh::sshUser, 278
ssh::SSHUser.group, 277
ssh::SSHUser.home_dir, 277
ssh::SSHUser.host, 277
ssh::SSHUser.ssh_keys, 277
ssh::SSHUser.user, 277
start (inmanta.ast.export.Range attribute), 231
start() (inmanta.server.protocol.ServerSlice

method), 82
stat_file() (in module inmanta.protocol.methods),

212

382 Index

Inmanta Documentation, Release 2023.1.1

stat_file() (inmanta.agent.handler.CRUDHandler
method), 188

stat_file() (inmanta.agent.handler.ResourceHandler
method), 184

stat_files() (in module inmanta.protocol.methods),
212

std.add_to_ip()
built-in function, 289

std.assert()
built-in function, 289

std.at()
built-in function, 289

std.attr()
built-in function, 289

std.capitalize()
built-in function, 289

std.contains()
built-in function, 289

std.count()
built-in function, 289

std.dict_get()
built-in function, 289

std.environment()
built-in function, 289

std.environment_name()
built-in function, 289

std.environment_server()
built-in function, 289

std.equals()
built-in function, 289

std.familyof()
built-in function, 289

std.file()
built-in function, 289

std.filter()
built-in function, 289

std.flatten()
built-in function, 289

std.generate_password()
built-in function, 289

std.get_env()
built-in function, 290

std.get_env_int()
built-in function, 290

std.getattr()
built-in function, 290

std.getfact()
built-in function, 290

std.hostname()
built-in function, 290

std.inlineif()
built-in function, 290

std.invert()
built-in function, 290

std.ipindex()
built-in function, 290

std.is_base64_encoded()
built-in function, 290

std.is_instance()
built-in function, 290

std.is_unknown()
built-in function, 290

std.isset()
built-in function, 290

std.item()
built-in function, 290

std.key_sort()
built-in function, 290

std.length()
built-in function, 290

std.list_files()
built-in function, 290

std.lower()
built-in function, 290

std.netmask()
built-in function, 290

std.network_address()
built-in function, 291

std.objid()
built-in function, 291

std.password()
built-in function, 291

std.prefixlen()
built-in function, 291

std.prefixlength_to_netmask()
built-in function, 291

std.print()
built-in function, 291

std.replace()
built-in function, 291

std.resources.AgentConfig (built-in class), 292
std.resources.AgentConfigHandler (built-in

class), 294
std.resources.Directory (built-in class), 292
std.resources.DirectoryHandler (built-in class),

294
std.resources.File (built-in class), 293
std.resources.Package (built-in class), 293
std.resources.PosixFileProvider (built-in

class), 294
std.resources.Service (built-in class), 293
std.resources.ServiceService (built-in class),

294
std.resources.Symlink (built-in class), 293
std.resources.SymlinkProvider (built-in class),

294
std.resources.SystemdService (built-in class),

294
std.resources.YumPackage (built-in class), 294
std.select()

built-in function, 291
std.sequence()

built-in function, 291
std.server_ca()

built-in function, 291
std.server_port()

Index 383

Inmanta Documentation, Release 2023.1.1

built-in function, 291
std.server_ssl()

built-in function, 291
std.server_token()

built-in function, 291
std.source()

built-in function, 291
std.split()

built-in function, 291
std.template()

built-in function, 291
std.timestamp()

built-in function, 292
std.to_number()

built-in function, 292
std.type()

built-in function, 292
std.unique()

built-in function, 292
std.unique_file()

built-in function, 292
std.upper()

built-in function, 292
std.validate_type()

built-in function, 292
std::AgentConfig, 281
std::AgentConfig.agent, 281
std::AgentConfig.agentname, 281
std::AgentConfig.autostart, 281
std::AgentConfig.uri, 281
std::alfanum, 278
std::any_http_url, 278
std::any_url, 278
std::ascii_word, 278
std::base64, 278
std::config_agent, 278
std::ConfigFile, 281
std::ConfigFile.group, 281
std::ConfigFile.mode, 281
std::ConfigFile.owner, 281
std::Content, 281
std::Content.sorting_key, 281
std::Content.value, 282
std::date, 279
std::datetime, 279
std::DefaultDirectory, 282
std::DefaultDirectory.group, 282
std::DefaultDirectory.mode, 282
std::DefaultDirectory.owner, 282
std::Directory, 282
std::Directory.group, 282
std::Directory.host, 282
std::Directory.mode, 282
std::Directory.owner, 282
std::Directory.path, 282
std::Directory.purge_on_delete, 282
std::dirHost, 288
std::email_str, 279

std::Entity, 282
std::Entity.provides, 282
std::Entity.requires, 282
std::File, 282
std::File.content, 283
std::File.content_seperator, 283
std::File.group, 283
std::File.host, 283
std::File.mode, 283
std::File.owner, 283
std::File.path, 283
std::File.prefix_content, 283
std::File.purge_on_delete, 283
std::File.send_event, 283
std::File.suffix_content, 283
std::fileHost, 288
std::Host, 283
std::Host.directories, 283
std::Host.files, 283
std::Host.host_config, 284
std::Host.host_groups, 284
std::Host.os, 283
std::Host.packages, 283
std::Host.repository, 283
std::Host.services, 283
std::Host.symlinks, 283
std::HostConfig, 284
std::HostConfig.host, 284
std::hostDefaults, 288
std::HostGroup, 284
std::HostGroup.hosts, 284
std::HostGroup.name, 284
std::hoststring, 279
std::http_url, 279
std::ipv4_address, 279
std::ipv4_interface, 279
std::ipv4_network, 279
std::ipv6_address, 279
std::ipv6_interface, 279
std::ipv6_network, 279
std::ipv_any_address, 279
std::ipv_any_interface, 280
std::ipv_any_network, 280
std::ManagedDevice, 284
std::ManagedDevice.name, 284
std::ManagedResource, 284
std::ManagedResource.managed, 284
std::MutableBool, 284
std::MutableBool.value, 285
std::MutableNumber, 285
std::MutableNumber.value, 285
std::MutableString, 285
std::MutableString.value, 286
std::name_email, 280
std::negative_float, 280
std::negative_int, 280
std::non_empty_string, 280
std::none, 288

384 Index

Inmanta Documentation, Release 2023.1.1

std::OS, 286
std::OS.family, 286
std::OS.member, 286
std::OS.name, 286
std::OS.python_cmd, 286
std::OS.version, 286
std::Package, 286
std::Package.host, 286
std::Package.name, 286
std::Package.state, 286
std::package_state, 280
std::Packages, 286
std::Packages.host, 287
std::Packages.name, 286
std::Packages.state, 287
std::pkgHost, 288
std::pkgs, 289
std::positive_float, 280
std::positive_int, 280
std::printable_ascii, 280
std::PurgeableResource, 287
std::PurgeableResource.purge_on_delete, 287
std::PurgeableResource.purged, 287
std::Reload, 287
std::reload, 289
std::Reload.reload, 287
std::Reload.send_event, 287
std::Resource, 287
std::Resource.send_event, 287
std::ResourceSet, 287
std::ResourceSet.name, 287
std::ResourceSet.resources, 287
std::Service, 288
std::Service.host, 288
std::Service.name, 288
std::Service.onboot, 288
std::Service.state, 288
std::service_state, 280
std::serviceHost, 289
std::symHost, 289
std::Symlink, 288
std::Symlink.host, 288
std::Symlink.purge_on_delete, 288
std::Symlink.send_event, 288
std::Symlink.source, 288
std::Symlink.target, 288
std::time, 280
std::uuid, 281
stop() (inmanta.server.protocol.ServerSlice method),

82
store (inmanta.const.ResourceAction attribute), 177
String (class in inmanta.ast.type), 196
symlink() (inmanta.agent.io.local.LocalIO method),

191

T
TableNotFound (class in inmanta.data.schema), 90
terraform.deprecated_config_block()

built-in function, 298
terraform.dict_hash()

built-in function, 298
terraform.extract_state()

built-in function, 298
terraform.get_resource_attribute()

built-in function, 298
terraform.get_resource_attribute_ref()

built-in function, 299
terraform.safe_resource_state()

built-in function, 299
terraform.serialize_config()

built-in function, 299
terraform.sorted_list()

built-in function, 299
terraform.terraform_resource.TerraformResource

(built-in class), 299
terraform.terraform_resource.TerraformResourceHandler

(built-in class), 299
terraform::agentConfig, 298
terraform::config::Block, 296
terraform::config::Block._config, 297
terraform::config::Block._state, 297
terraform::config::Block.attributes, 296
terraform::config::Block.children, 297
terraform::config::Block.deprecated, 296
terraform::config::Block.key, 297
terraform::config::Block.name, 296
terraform::config::Block.nesting_mode, 297
terraform::config::Block.parent, 297
terraform::config::build_state, 298
terraform::config::deprecation_warning, 298
terraform::config::generate_key, 298
terraform::config::nesting_mode_t, 295
terraform::config::serialize, 298
terraform::Provider, 295
terraform::Provider.agent_config, 295
terraform::Provider.alias, 295
terraform::Provider.auto_agent, 295
terraform::Provider.config, 295
terraform::Provider.manual_config, 295
terraform::Provider.namespace, 295
terraform::Provider.root_config, 295
terraform::Provider.type, 295
terraform::Provider.version, 295
terraform::providerBlockConfig, 298
terraform::providerManualConfig, 298
terraform::Resource, 296
terraform::Resource.config, 296
terraform::Resource.manual_config, 296
terraform::Resource.name, 296
terraform::Resource.provider, 296
terraform::Resource.purge_on_delete, 296
terraform::Resource.root_config, 296
terraform::Resource.terraform_id, 296
terraform::Resource.type, 296
terraform::resourceBlockConfig, 298
terraform::resourceManualConfig, 298

Index 385

Inmanta Documentation, Release 2023.1.1

to_dict() (inmanta.model.Attribute method), 91
to_dict() (inmanta.model.DirectValue method), 92
to_dict() (inmanta.model.Entity method), 92
to_dict() (inmanta.model.Location method), 92
to_dict() (inmanta.model.ReferenceValue method),

92
to_dict() (inmanta.model.Relation method), 93
to_dto() (inmanta.data.Compile method), 199
to_int (inmanta.const.LogLevel property), 176
TRACE (inmanta.const.LogLevel attribute), 176
trigger() (in module inmanta.protocol.methods), 212
trigger_agent() (in module in-

manta.protocol.methods), 212
Type (class in inmanta.ast.type), 196
type (inmanta.ast.attribute.Attribute property), 192
type (inmanta.ast.export.Error attribute), 230
type_string() (inmanta.ast.type.Type method), 196
TypedDict (class in inmanta.ast.type), 197
TypedList (class in inmanta.ast.type), 197
TYPES (in module inmanta.ast.type), 197

U
ubuntu.UbuntuService (built-in class), 300
UnauthorizedException (class in in-

manta.protocol.exceptions), 89
Union (class in inmanta.ast.type), 196
unknown, 129
Unknown (class in inmanta.execute.util), 179
unload() (inmanta.module.Module method), 193
unload_inmanta_plugins() (in module in-

manta.loader), 194
unwrap() (inmanta.execute.proxy.DynamicProxy class

method), 202
update_agent_map() (in module in-

manta.protocol.methods_v2), 229
update_changes() (in-

manta.agent.handler.HandlerContext
method), 181

update_notification() (in module in-
manta.protocol.methods_v2), 229

update_resource() (in-
manta.agent.handler.CRUDHandler
method), 188

upload_code_batched() (in module in-
manta.protocol.methods), 212

upload_file() (in module in-
manta.protocol.methods), 213

upload_file() (inmanta.agent.handler.CRUDHandler
method), 188

upload_file() (inmanta.agent.handler.ResourceHandler
method), 185

uri (inmanta.ast.export.Location attribute), 231
use_enum_values (in-

manta.data.model.BaseModel.Config at-
tribute), 201

use_virtual_env() (inmanta.env.VirtualEnv
method), 195

user::execGroup, 301

user::execUser, 301
user::Group, 300
user::Group.host, 300
user::Group.name, 300
user::Group.system, 300
user::User, 300
user::User.group, 300
user::User.groups, 300
user::User.homedir, 300
user::User.host, 300
user::User.name, 300
user::User.shell, 300
user::User.system, 300

V
validate() (inmanta.ast.attribute.Attribute method),

192
validate() (inmanta.ast.type.Type method), 196
Value (class in inmanta.model), 93
VERSION

inmanta-cli-version-release command
line option, 153

versioned_resource_details() (in module in-
manta.protocol.methods_v2), 229

VirtualEnv (class in inmanta.env), 195
vyos.Config (built-in class), 316
vyos.IpFact (built-in class), 316
vyos.IpFactHandler (built-in class), 317
vyos.KeyGen (built-in class), 316
vyos.KeyGenHandler (built-in class), 317
vyos.VyosHandler (built-in class), 317
vyos::abrtype_t, 301
vyos::Address, 303
vyos::Address.ip, 303
vyos::area, 301
vyos::BaseHost, 303
vyos::BaseHost.credential, 303
vyos::BaseHost.password, 303
vyos::BaseHost.port, 303
vyos::BaseHost.skip_on_connect_error, 303
vyos::BaseHost.user, 303
vyos::BaseInterface, 303
vyos::BaseInterface.address, 304
vyos::BaseInterface.addresses, 304
vyos::BaseInterface.bridge_group, 304
vyos::BaseInterface.dhcp, 304
vyos::BaseInterface.name, 303
vyos::BaseInterface.policy_route, 304
vyos::BaseInterface.traffic_policy_in, 304
vyos::BaseInterface.traffic_policy_out, 304
vyos::Bridge, 304
vyos::bridge, 315
vyos::Bridge.members, 304
vyos::Bridge.type, 304
vyos::commonConfig, 315
vyos::Config, 304
vyos::Config.credential, 305
vyos::Config.device, 304

386 Index

Inmanta Documentation, Release 2023.1.1

vyos::Config.facts, 304
vyos::Config.ignore_keys, 304
vyos::Config.keys_only, 304
vyos::Config.never_delete, 304
vyos::Config.node, 304
vyos::Config.save, 304
vyos::Config.send_event, 304
vyos::Config.skip_on_connect_error, 305
vyos::ConfigItem, 305
vyos::ConfigItem.config, 305
vyos::ConfigItem.extra, 305
vyos::ConfigNode, 305
vyos::ConfigNode.config, 305
vyos::ConfigNode.host, 305
vyos::ConfigNode.node_name, 305
vyos::ConfigNode.purge_on_delete, 305
vyos::ConfigNode.purged, 305
vyos::Credential, 305
vyos::Credential.address, 305
vyos::Credential.password, 305
vyos::Credential.port, 305
vyos::Credential.user, 305
vyos::DhcpServer, 305
vyos::dhcpServer, 315
vyos::DhcpServer.default_router, 305
vyos::DhcpServer.dns_servers, 305
vyos::DhcpServer.name, 305
vyos::DhcpServer.range_end, 305
vyos::DhcpServer.range_start, 305
vyos::DhcpServer.subnet, 305
vyos::duplex, 301
vyos::ExtraConfig, 306
vyos::ExtraConfig.parent, 306
vyos::extraconfig_depends, 315
vyos::firewall::action_t, 302
vyos::firewall::AddressGroup, 310
vyos::firewall::addressGroup, 316
vyos::firewall::AddressGroup.addresses, 310
vyos::firewall::Group, 311
vyos::firewall::Group.group_type, 311
vyos::firewall::Group.name, 311
vyos::firewall::NetworkGroup, 311
vyos::firewall::networkGroup, 316
vyos::firewall::NetworkGroup.networks, 311
vyos::firewall::PortGroup, 311
vyos::firewall::portGroup, 316
vyos::firewall::PortGroup.ports, 311
vyos::firewall::protocol_t, 302
vyos::firewall::Rule, 311
vyos::firewall::Rule.action, 311
vyos::firewall::Rule.destination, 311
vyos::firewall::Rule.id, 311
vyos::firewall::Rule.protocol, 311
vyos::firewall::Rule.ruleset, 311
vyos::firewall::Rule.source, 311
vyos::firewall::RuleSet, 311
vyos::firewall::ruleSet, 316
vyos::firewall::RuleSet.default_action, 311

vyos::firewall::RuleSet.name, 311
vyos::firewall::RuleSet.rules, 312
vyos::Host, 306
vyos::Hostname, 306
vyos::hostname, 315
vyos::Hostname.name, 306
vyos::iface, 315
vyos::ifacePolicyRoute, 315
vyos::Interface, 306
vyos::Interface.duplex, 306
vyos::Interface.inbound_ruleset, 306
vyos::Interface.local_ruleset, 306
vyos::Interface.never_delete, 306
vyos::Interface.outbound_ruleset, 306
vyos::Interface.speed, 306
vyos::IpFact, 306
vyos::IpFact.credential, 307
vyos::IpFact.device, 307
vyos::IpFact.host, 307
vyos::IpFact.id, 307
vyos::IpFact.interface, 307
vyos::Loopback, 307
vyos::loopback, 315
vyos::Loopback.address, 307
vyos::masq, 315
vyos::Masquerade, 307
vyos::Masquerade.outbound_interface, 307
vyos::Masquerade.rule, 307
vyos::Masquerade.source_address, 307
vyos::openstackext::openstackConfig, 316
vyos::openstackext::OpenstackHost, 312
vyos::openstackext::OpenstackHost.floatingIP,

312
vyos::openstackext::withFip, 316
vyos::Ospf, 307
vyos::ospf, 315
vyos::Ospf.abrtype, 307
vyos::Ospf.area, 307
vyos::Ospf.network, 307
vyos::Ospf.passive_interface_excludes, 307
vyos::Ospf.passive_interfaces, 307
vyos::Ospf.redistributes, 307
vyos::Ospf.router_id, 307
vyos::ospf_metric_t, 301
vyos::ospf_metric_type_t, 301
vyos::OspfRedistribute, 308
vyos::OspfRedistribute.metric, 308
vyos::OspfRedistribute.metric_type, 308
vyos::OspfRedistribute.ospf, 308
vyos::OspfRedistribute.route_map, 308
vyos::OspfRedistribute.type, 308
vyos::PolicyRoute, 308
vyos::policyRoute, 315
vyos::PolicyRoute.name, 308
vyos::PolicyRoute.rules, 308
vyos::PolicyRouteRule, 308
vyos::policyRouteRule, 315
vyos::PolicyRouteRule.description, 308

Index 387

Inmanta Documentation, Release 2023.1.1

vyos::PolicyRouteRule.id, 308
vyos::PolicyRouteRule.match_destination_address,

308
vyos::PolicyRouteRule.match_destination_port,

309
vyos::PolicyRouteRule.match_protocol, 309
vyos::PolicyRouteRule.match_source_address,

308
vyos::PolicyRouteRule.match_source_port,

308
vyos::PolicyRouteRule.policy, 309
vyos::PolicyRouteRule.table, 308
vyos::redistribute_t, 301
vyos::RouteMap, 309
vyos::routeMap, 315
vyos::RouteMap.description, 309
vyos::RouteMap.name, 309
vyos::RouteMap.rules, 309
vyos::routemap::Match, 312
vyos::routemap::Match.interface, 312
vyos::routemap::rm_action_t, 302
vyos::routemap::Rule, 312
vyos::routemap::Rule.action, 312
vyos::routemap::Rule.id, 312
vyos::routemap::Rule.match, 312
vyos::Shaper, 309
vyos::shaper, 315
vyos::Shaper.bandwidth, 309
vyos::Shaper.default_bandwidth, 309
vyos::Shaper.default_ceiling, 309
vyos::Shaper.default_queue_type, 309
vyos::Shaper.interfaces_in, 309
vyos::Shaper.interfaces_out, 309
vyos::Shaper.name, 309
vyos::speed, 301
vyos::StaticRoute, 309
vyos::StaticRoute.destination, 309
vyos::StaticRoute.next_hop, 309
vyos::StaticRoute.table, 310
vyos::staticRouteDefault, 315
vyos::staticRouteTable, 315
vyos::Tunnel, 310
vyos::tunnel, 315
vyos::Tunnel.description, 310
vyos::Tunnel.encapsulation, 310
vyos::Tunnel.key, 310
vyos::Tunnel.local_ip, 310
vyos::Tunnel.mtu, 310
vyos::Tunnel.remote_ip, 310
vyos::tunnel_encap_t, 302
vyos::tunnel_key_t, 302
vyos::tunnel_mtu_t, 302
vyos::Vif, 310
vyos::vif, 315
vyos::Vif.name, 310
vyos::Vif.parent, 310
vyos::Vif.type, 310
vyos::Vif.vlan, 310

vyos::vlan_id, 302
vyos::vpn::auth_mode_t, 302
vyos::vpn::Authentication, 312
vyos::vpn::Authentication.id, 312
vyos::vpn::Authentication.mode, 312
vyos::vpn::Authentication.pre_shared_key,

312
vyos::vpn::Authentication.remote_id, 312
vyos::vpn::Authentication.rsa_key_name, 312
vyos::vpn::conn_type_t, 302
vyos::vpn::dh_group_t, 302
vyos::vpn::encryption_t, 302
vyos::vpn::esp_mode_t, 302
vyos::vpn::ESPGroup, 313
vyos::vpn::espGroup, 316
vyos::vpn::ESPGroup.compression, 313
vyos::vpn::ESPGroup.lifetime, 313
vyos::vpn::ESPGroup.mode, 313
vyos::vpn::ESPGroup.name, 313
vyos::vpn::ESPGroup.pfs, 313
vyos::vpn::ESPGroup.proposals, 313
vyos::vpn::ESPProposal, 313
vyos::vpn::ESPProposal.encryption, 313
vyos::vpn::ESPProposal.hash, 313
vyos::vpn::ESPProposal.id, 313
vyos::vpn::hash_t, 303
vyos::vpn::IKEGroup, 313
vyos::vpn::ikeGroup, 316
vyos::vpn::IKEGroup.key_exchange, 313
vyos::vpn::IKEGroup.lifetime, 313
vyos::vpn::IKEGroup.name, 313
vyos::vpn::IKEGroup.proposals, 313
vyos::vpn::IKEProposal, 313
vyos::vpn::IKEProposal.dh_group, 313
vyos::vpn::IKEProposal.encryption, 313
vyos::vpn::IKEProposal.hash, 314
vyos::vpn::IKEProposal.id, 313
vyos::vpn::IPSECOptions, 314
vyos::vpn::ipsecOptions, 316
vyos::vpn::IPSECOptions.allowed_nat_networks,

314
vyos::vpn::IPSECOptions.ipsec_interfaces,

314
vyos::vpn::IPSECOptions.log_modes, 314
vyos::vpn::IPSECOptions.nat_traversal, 314
vyos::vpn::kex_t, 303
vyos::vpn::KeyGen, 314
vyos::vpn::KeyGen.credential, 314
vyos::vpn::KeyGen.device, 314
vyos::vpn::KeyGen.host, 314
vyos::vpn::KeyGen.id, 314
vyos::vpn::local_address_t, 303
vyos::vpn::RSAKey, 314
vyos::vpn::rsaKey, 316
vyos::vpn::RSAKey.name, 314
vyos::vpn::RSAKey.rsa_key, 314
vyos::vpn::SiteToSite, 314
vyos::vpn::siteToSite, 316

388 Index

Inmanta Documentation, Release 2023.1.1

vyos::vpn::SiteToSite.authentication, 314
vyos::vpn::SiteToSite.connection_type, 314
vyos::vpn::SiteToSite.default_esp_group,

315
vyos::vpn::SiteToSite.ike_group, 314
vyos::vpn::SiteToSite.local_address, 314
vyos::vpn::SiteToSite.peer, 314
vyos::vpn::SiteToSite.tunnels, 315
vyos::vpn::Tunnel, 315
vyos::vpn::Tunnel.id, 315
vyos::vpn::Tunnel.local_prefix, 315
vyos::vpn::Tunnel.remote_prefix, 315
vyos::vpn::wireup, 316
vyos::vyosConfig, 315
vyos::wireup_ipfact, 316

W
WARNING (inmanta.const.LogLevel attribute), 176
warning() (inmanta.agent.handler.HandlerContext

method), 182
web::Alias, 317
web::Alias.application, 317
web::Alias.application_alias, 317
web::Alias.cluster, 317
web::Alias.cluster_alias, 317
web::Alias.hostname, 317
web::Alias.loadbalancer, 317
web::Application, 317
web::Application.aliases, 318
web::Application.container, 318
web::Application.document_root, 317
web::Application.lb_app, 318
web::Application.name, 317
web::ApplicationContainer, 318
web::ApplicationContainer.application, 318
web::ApplicationContainer.group, 318
web::ApplicationContainer.port, 318
web::ApplicationContainer.user, 318
web::Cluster, 318
web::Cluster.aliases, 318
web::Cluster.cluster_size, 318
web::Cluster.loadbalancer, 318
web::Cluster.name, 318
web::HostedLoadBalancer, 318
web::LoadBalancedApplication, 318
web::LoadBalancedApplication.app_instances,

319
web::LoadBalancedApplication.loadbalancer,

318
web::LoadBalancedApplication.name, 319
web::LoadBalancedApplication.nameonly, 318
web::LoadBalancedApplication.web_cluster,

318
web::LoadBalancer, 319
web::LoadBalancer.applications, 319
with_base_type() (inmanta.ast.type.Type method),

196

Y
yaml.load()

built-in function, 319
yaml.loads()

built-in function, 319
yum::redhatRepo, 320
yum::Repository, 320
yum::Repository.baseurl, 320
yum::Repository.enabled, 320
yum::Repository.gpgcheck, 320
yum::Repository.gpgkey, 320
yum::Repository.host, 320
yum::Repository.metadata_expire, 320
yum::Repository.metalink, 320
yum::Repository.mirrorlist, 320
yum::Repository.name, 320
yum::Repository.skip_if_unavailable, 320
yum::validateInput, 320

Index 389

	Quickstart
	Prerequisites
	Setting up the LAB
	Connecting to the containers
	Create an Inmanta project and an environment
	Configuring SR Linux
	SR Linux interface configuration
	SR Linux OSPF configuration
	Deploy the configuration model
	Verifying the configuration
	Resetting the LAB environment
	Reusing existing modules
	Update the configuration model
	Modify or Create your own modules
	Module layout

	Next steps

	Installation
	Install Inmanta
	Install the software
	Optional step 1: Setup SSL and authentication
	Step 2: Install PostgreSQL 13
	Step 3: Setup a PostgreSQL database for the Inmanta server
	Step 4: Set the database connection details
	Step 5: Set the server address
	Step 6: Configure ssh of the inmanta user
	Step 7: Configure the server bind address
	Step 8: Start the Inmanta server
	Optional Step 9: Setup influxdb for collection of performance metrics
	Optional Step 10: Configure logging

	Configure server

	Install Inmanta with Docker
	Pull the image
	Start the server with docker-compose
	Overwrite default server configuration
	Starting the ssh server
	Waiting for the database
	Setting environment variables
	Changing inmanta user/group id
	Log rotation

	Configure agents
	Auto-started agents
	Configuring auto-started agents via environment settings
	Configuring the autostart_agent_map via the std::AgentConfig entity
	Special Requirements for remote std::File, std::Package, std::Service and exec::Run

	Manually-started agents
	Requirements
	Step 1: Installing the required Inmanta packages
	Step 2: Configuring the manually-started agent
	Step 3: Starting the manually-started agent

	Architecture
	Usage modes
	All in one
	Push to server
	Autonomous server

	Agent modes
	Resource deployment
	Repair
	Deploy changes
	Push changes

	Language Reference
	Modules
	Variables
	Literals values
	Primitive types
	Conditions
	Function calls / Plugins
	Entities
	Relations
	Instantiation
	Refinements
	Indexes and queries
	For loop
	If statement
	Conditional expressions
	Transformations
	String interpolation
	Templates

	Plug-ins

	Model developer documentation
	Developer Getting Started Guide
	Install VS Code and Inmanta extension
	Setting up Python virtual environments
	Setting up a project
	Working on a New Project
	Working on an Existing Project

	Set project sources
	V1 module source
	V2 module source

	Setting up a module
	Working on a New Module
	Working on an Existing Module

	Running Test

	Project creation guide
	Create a new source project
	The main file

	Module creation guide
	Create a new source module

	Understanding Modules
	V2 module format
	The setup.cfg metadata file
	The pyproject.toml file
	The MANIFEST.in file

	V1 module format
	Module metadata

	Convert a module from V1 to V2 format
	Inmanta module template
	Extending Inmanta

	Installing modules
	Setting up the dev environment
	v1 modules
	v2 modules

	Working on the dev environment
	Module installation on the server

	Releasing and distributing modules
	V2 modules
	Distributing V2 modules

	V1 modules
	Development Versions
	Release Versions
	Distributing V1 modules
	Git repository distribution format

	V2 package distribution format

	Freezing a project

	Developing Plugins
	Adding new plugins
	Deprecate plugins

	Finalizers
	Adding new finalizers

	Developing South Bound Integrations
	Overview
	Resource
	Handler
	Built-in Handler utilities
	Logging
	Caching

	Test plugins
	Install the pytest-inmanta package
	Writing a test case

	Understanding Projects
	Model debugging
	Enabling the data trace
	Interpreting the data trace
	Root cause analysis
	Usage example
	Graphic visualization

	Model Design Guidelines
	Overview
	Keep close to the API
	Prefer modeling relations as relations

	Partial compiles
	Resource sets
	Partial compiles
	Constraints and rules
	Exporting a partial model to the server
	Limitations

	Modeling guidelines
	Service instance uniqueness
	Ownership
	Ownership through indexes
	Ownership through allocation

	Testing

	Platform developer documentation
	Creating a new server extension
	The package layout of a server extension
	Adding server slices to the extension
	Enable the extension
	The Inmanta extension template

	Database Schema Management
	New schema version definition
	Executing schema updates
	Testing database migrations

	Define API endpoints
	API Method
	API Handle

	Documentation writing
	Inmanta code documentation
	Modules
	Python core

	Sphinx tooling
	Install inmanta sphinx extension
	sphinxcontrib.inmanta.config
	sphinxcontrib.inmanta.dsl
	sphinx-inmanta-api

	Exceptions
	HTTP Exceptions
	Database Schema Related Exceptions

	Features
	Model Export Format
	Type Export Format
	Platform Developers Guide
	Dependencies
	Versioning
	Running tests

	Administrator documentation
	Operational Procedures
	Project Release for Production
	Context
	Procedure

	Upgrade of service model on the orchestrator
	Context
	Pre-Upgrade steps
	Upgrade procedure
	Post Upgrade procedure
	Upgrade abort/revert

	Deployment of a new service model to the orchestrator
	Context
	Procedure
	Extra careful deploy procedure

	Issue templates
	Project Release for Production
	Upgrade of service model on the orchestrator

	Diagnosing problems
	Configuration
	Inmanta server and Inmanta agent
	Inmanta CLI tool

	HA setup
	Setup a HA PostgreSQL cluster
	Prerequisites
	Configure the master node
	Configure the standby node

	Failover PostgreSQL
	Promote a standby node to the new master node
	Add a standby node to a newly promoted master node

	Failover an Inmanta server
	Failover an Inmanta server to the warm standby PostgreSQL instance
	Start a new orchestrator on warm standby PostgreSQL instance

	Setting up authentication
	SSL: server side
	SSL: agents and compiler
	Authentication
	Setup server auth
	JWT auth configuration

	External authentication providers
	Keycloak configuration
	Step 1: Optionally create a new realm
	Step 2: Add a new client to keycloak
	Step 3: Configure inmanta server

	Environment variables
	Supplying environment variables to the Inmanta server
	Supplying environment variables to an agent

	Logging
	Overview different log files
	Server log
	Resource action logs
	Agent logs

	Configure logging
	Configuration options in Inmanta config file
	Change log levels server log
	Log level manually started agent
	Log level auto-started agents
	Resource action logs
	Log level server-side compiles
	Log level on CLI

	Performance Metering
	Configuration summary
	Setup guide
	Reported Metrics
	API performance metrics
	Other Metrics

	Reverse proxy and Web Application Firewall
	Setup a reverse proxy
	Web Application Firewall

	Inmanta Web Console
	Browser support
	Proxy
	Examples

	Frequently asked questions
	How do I use Inmanta with a http/https proxy?
	I get a click related error/exception when I run inmanta-cli.
	The model does not compile and exits with “could not complete model”.

	Glossary
	Inmanta Reference
	Command Reference
	inmanta
	Named Arguments
	Sub-commands
	server
	agent
	compile
	Named Arguments

	list-commands
	help
	Positional Arguments

	modules (module)
	Named Arguments
	subcommand
	Sub-commands
	add
	Positional Arguments
	Named Arguments
	list
	do
	Positional Arguments
	install
	Positional Arguments
	Named Arguments
	status
	push
	verify
	commit
	Named Arguments
	create
	Positional Arguments
	Named Arguments
	freeze
	Named Arguments
	build
	Positional Arguments
	Named Arguments
	v1tov2
	release
	Named Arguments

	project
	subcommand
	Sub-commands
	freeze
	Named Arguments
	init
	Named Arguments
	install
	Named Arguments
	update
	Named Arguments

	deploy
	Named Arguments

	export
	Named Arguments

	inmanta-cli
	inmanta-cli
	action-log
	list
	show-messages

	agent
	list
	pause
	unpause

	environment
	create
	delete
	list
	modify
	recompile
	save
	setting
	delete
	get
	list
	set
	show

	monitor
	param
	get
	list
	set

	project
	create
	delete
	list
	modify
	show

	token
	bootstrap
	create

	version
	list
	release
	report

	Configuration Reference
	agent_rest_transport
	client_rest_transport
	cmdline_rest_transport
	compiler
	compiler_rest_transport
	config
	database
	deploy
	influxdb
	server
	server_rest_transport
	unknown_handler
	web-ui

	Environment Settings Reference
	Compiler Configuration Reference
	project.yml
	Module metadata files
	module.yml
	setup.cfg

	Programmatic API reference
	Constants
	Compiler exceptions
	Plugins
	Resources
	Handlers
	Export
	Attributes
	Modules
	Project
	Python Environment
	Variables
	Typing
	Protocol
	Data
	Domain conversion
	Rest API
	Server

	Inmanta Compile Data Reference
	Inmanta modules
	Module apt
	Entities
	Implementations
	Handlers

	Module aws
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module cron
	Typedefs
	Entities
	Implementations

	Module exec
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module graph
	Entities

	Module ip
	Typedefs
	Entities
	Implementations
	Plugins

	Module mysql
	Entities
	Implementations

	Module net
	Typedefs
	Entities

	Module openstack
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module platform
	Entities
	Implementations

	Module postgresql
	Typedefs
	Entities
	Implementations
	Resources
	Handlers

	Module redhat
	Module rest
	Entities
	Implementations
	Resources
	Handlers

	Module ssh
	Entities
	Implementations
	Plugins

	Module std
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module terraform
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module ubuntu
	Handlers

	Module user
	Entities
	Implementations

	Module vyos
	Typedefs
	Entities
	Implementations
	Resources
	Handlers

	Module web
	Entities

	Module yaml
	Plugins

	Module yum
	Entities
	Implementations

	Troubleshooting
	A resources is stuck in the state available
	The agent is down
	The agent is paused
	The agent is up

	The deployment of a resource fails
	Read the logs of a resource
	Check which facts are not yet resolved

	Agent doesn’t come up
	Auto-started agents
	Manually started agents
	Potential reasons why an agent doesn’t start

	No version appears after recompile trigger
	Logs show “empty model” after export
	Compilation fails
	Reason for compilation failure
	Relationship precedence policy
	Compose a relationship precedence policy

	Debugging

	Changelog
	Release 2023.1.1 (2023-02-17)
	Upgrade notes
	Inmanta-core: release 8.2.0 (2023-02-09)
	Improvements

	inmanta-ui: release 4.0.1
	Web-console: release 1.12.2 (2023-02-17)
	Bug fixes

	Web-console: release 1.12.1 (2023-02-09)

	Release 2023.1 (2023-02-06)
	Upgrade notes
	Inmanta-core: release 8.1.0 (2023-02-06)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-ui: release 4.0.1 (2023-02-06)
	Web-console: release 1.12.0 (2023-02-06)
	New features
	Improvements
	Bug fixes

	Release 2022.4 (2022-12-01)
	General changes
	New features
	Upgrade notes

	Inmanta-core: release 8.0.0 (2022-11-30)
	New features
	Improvements
	Deprecation notes
	Bug fixes

	Inmanta-ui: release 4.0.0 (2022-11-30)
	Deprecation notes

	Web-console: release 1.11.3 (2022-11-30)
	Improvements
	Bug fixes

	Release 2022.3 (2022-09-29)
	General changes
	Upgrade notes
	Bug fixes

	Inmanta-core: release 7.1.0 (2022-09-29)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-ui: release 3.0.2 (2022-09-29)
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.11.2 (2022-09-29)
	Improvements
	Upgrade notes
	Bug fixes
	Other notes

	Release 2022.2.1 (2022-08-16)
	Upgrade notes
	inmanta-core: release 7.0.0
	inmanta-ui: release 3.0.1
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.11.1 (2022-08-16)
	Bug fixes

	Release 2022.2 (2022-08-08)
	Upgrade notes
	Inmanta-core: release 7.0.0 (2022-08-05)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-ui: release 3.0.1 (2022-08-05)
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.11.0 (2022-08-05)
	New features

	Release 2022.1.1 (2022-04-19)
	Upgrade notes
	Inmanta-core: release 6.0.2 (2022-04-19)
	Bug fixes

	Inmanta-core: release 6.0.1 (2022-02-11)
	Bug fixes

	inmanta-ui: release 3.0.0
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.10.0 (2022-04-12)
	New features

	Web-console: release 1.9.1 (2022-02-11)
	New features

	Release 2022.1 (2022-02-03)
	General changes
	New features
	Upgrade notes
	Deprecation notes

	Inmanta-core: release 6.0.0 (2022-02-02)
	New features
	Upgrade notes
	Deprecation notes
	Bug fixes

	inmanta-ui: release 3.0.0
	Inmanta-dashboard: release 3.8.1 (2022-01-25)
	Inmanta-dashboard: release 3.8.0 (2021-10-18)
	New features

	web-console: release 1.9.0

	Release 2021.2.1 (2021-06-01)
	Inmanta-core: release 5.1.1 (2021-06-01)
	Bug fixes

	Inmanta-dashboard: release 3.7.0 (2021-06-01)

	Release 2021.2 (2021-05-05)
	Inmanta-core: release 5.1.0 (2021-05-05)
	New features
	Deprecation notes
	Bug fixes
	Other notes

	Inmanta-dashboard: release 3.7.0 (2021-05-05)

	Release 2021.1 (2021-02-25)
	inmanta-core: 5.0.0 (2021-02-25)
	Bug fixes
	New features

	Release 2020.6 (2020-12-23)
	inmanta-core: 4.0.0 (2020-12-23)
	New features
	Bug fixes
	Upgrade notes
	Other notes

	Release 2020.5 (2020-10-27)
	New features
	Bug fixes

	Release 2020.4 (2020-09-08)
	New features
	Upgrade notes
	Bug fixes

	Release 2020.3 (2020-07-02)
	New features
	Upgrade notes
	Bug fixes

	v 2020.2 (2020-04-24) Changes in this release:
	Breaking changes
	Deprecated
	Fixed
	Added

	v 2020.1 (2020-02-19) Changes in this release:
	Fixed
	Breaking changes
	Fixed
	Added
	Removed

	v 2019.5 (2019-12-05) Changes in this release:
	Fixed

	PDF version
	Python Module Index
	Index

