Inmanta Documentation
Release 1.7.0

Inmanta NV

May 17, 2022

CONTENTS:

1 Introduction 1
1.1 PrerequiSites e e e e 1
1.2 Supported Features and Platforms oL 0oL 3
1.3 InmantaConnectLab e e e e e 4
L4 INVENLOTY . . . o o v i o e 15
L5 Testing . . . o o o e e e e e e e e e e e 19
1.6 Configuration and Customization L e 27
1.7 EXtension e e e e e e e e e e e e e e e e e e 32
1.8 Frequently Asked Questions (FAQ) e 34
2 Additional resources 37
3 PDF version 39

CHAPTER
ONE

INTRODUCTION

Inmanta connect provides a means to seamlessly employ MEF standards covering Carrier Ethernet services. Carrier
Ethernet is a service provided by ISPs to customers who want to extend their local networks over long (MAN and WAN)
geographical locations.

The Carrier Ethernet service comes in three flavors:
e Ethernet Virtual Private Line or E-Line: aservice connecting two customer Ethernet ports over a WAN.

e Ethernet Virtual Private LAN or E-LAN: a multi-point service connecting a set of customer endpoints,
giving the appearance to the customer of a bridged Ethernet network connecting the sites.

e Ethernet Virtual Private Tree or E-Tree: a multi-point service connecting one or more roots and a set
of leaves, but preventing inter-leaf communication.

More information regarding the Carrier Ethernet standards defined by MEF can be found here.

1.1 Prerequisites

This section provides the required information about the connect module, ultimately enabling you to interact with
customers more efficiently and to propose a solution respectively.

Who this guide is intended for:
* Pre-sales Engineers
* Developers/Deployment Engineers

* Development Managers

1.1.1 Planning

There certain factors that you should consider when approaching a customer:
1. Number and location of their sites (campus, data center)
2. Number of networking gears (routers, multi-layer switches, firewalls, etc.) that they manage
3. Vendor and OS version of their network equipment
4. Features and technologies that they utilize for instance:
* Epipe
¢ L3VPN
* LDP

https://wiki.mef.net/display/CESG/MEF+Standards#MEFStandards-CarrierEthernetServicesStandards

Inmanta Documentation, Release 1.7.0

e etc...
5. inventory system in use:
 Kind/brand
* Quality of data in the inventory system
* Does it support APT calls? If so:

— How is the quality of the API?

— How is the response time of the API?

— The slower the response, the more time it takes to develop/automate
¢ Could Inmanta run it in a LAB environment?
* Size of the data model
¢ Interaction mode with the inventory:

— transaction support

— planning mode

- etc...

1.1.2 Development

In general each developer will receive a virtual lab to develop and test on. Upon committing code, tests on that commit
will run on our CI/CD solution. The CI server has one or more virtual lab instances of its own, for on-commit and
nightly builds. If the LABs have components that can not be virtualized or are too expensive to have many, we share
LABs, but that increases the cost of making the tests.

The figure below depicts our development workflow:

Under certain circumstances, we use physical LABs for our testing and development.

In order to set up a development environment, you need to follow these steps:
1. Check out our developer getting started guide

2. Set up a base project using this guide

2 Chapter 1. Introduction

https://docs.inmanta.com/community/dev/model_developers/developer_getting_started.html
https://docs.inmanta.com/community/dev/model_developers/developer_getting_started.html#setting-up-a-project

Inmanta Documentation, Release 1.7.0

3. Check out our supported platforms and features
4. Set up a test LAB using this guide

5. Develop or test the current module

6. Run tests using this guide

In case you could not find the answer to your question, please check out our FAQ page.

1.2 Supported Features and Platforms

Inmanta Connect supports the following platforms:

* Nokia SR-OS 20.10 or later through netconf/yang. This means that a recent version of SR-OS is required and
MD-CLI has to be enabled.

¢ Juniper MX R18 or later through netconf/yang in rfc-compliant mode.
* Cisco XR 7.3 or later on ASR 9k through netconf/yang

We test our products against multiple vendors and versions. For specific versions and devices please contact sales or
support for more details.

We are constantly developing new features and are adding more vendors to our arsenal. The table below depicts our
current supported features and platforms:

Features Cisco Juniper | Nokia
Customization

Configuration based

Template based

Network backend

LDP *

EVPN * g

EVPN - Multihoming Planned | Planned

Services

Point-to-point EVC * * *
Multipoint EVC Planned | * *
L3VPN Planned | Planned | Planned
Layer 1 connections Planned | Planned | Planned

Testing and development

Full test suite * * *
Containerized lab *

1.2. Supported Features and Platforms 3

Inmanta Documentation, Release 1.7.0

1.3 Inmanta Connect Lab

Table of Contents

1.3.1 Virtual Lab Setup

Summary

This guide describes the required steps to set up a lab using Containerlab. Containerlab enables us to quickly create a
variety of topologies with support for different vendors using docker containers and experiment with Inmanta Connect
module.

In this guide, we use a simple topology containing:
* 2 routers (or 4 if testing multihoming) from our supported vendors
¢ 4 clients (NFV-Test-API)

 Inmanta service orchestrator to test services which we deploy to the routers.

Set Up A Virtual Machine

1. Using the hypervisor of your choice, spin up a CentOS machine with either of the below specs:

System Requirements CPU Cores | RAM (GB) | Disk Space (GB)
Minimum (only applicable for Nokia) | 4 16 20
Recommended 4 32 35

2. Take note of the VM’s IP address.
3. Once the VM is up, install git and docker:

e Install git:

sudo yum update
sudo yum install git

¢ Install docker:

sudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/
—.docker-ce.repo

sudo dnf install docker-ce docker-ce-cli containerd.io

sudo systemctl enable --now docker

4. Check docker status:

sudo systemctl status docker

The output should look like this:

$ sudo systemctl status docker

docker.service - Docker Application Container Engine

Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor preset:.
—disabled)

(continues on next page)

4 Chapter 1. Introduction

https://docs.inmanta.com/connect/dev/supportedfeaturesplatforms.html

Inmanta Documentation, Release 1.7.0

(continued from previous page)

Active: active (running) since Fri 2021-06-04 10:56:34 UTC; 3 days ago
Docs: https://docs.docker.com

5. Add your user to docker group:

sudo usermod -aG docker $USER

Install Containerlab

1. Before installing Containerlab we need to update and reboot the VM:

sudo yum update
sudo reboot

2. Install Containerlab:

sudo yum-config-manager --add-repo=https://yum.fury.io/netdevops/ && \
echo "gpgcheck=0" | sudo tee -a /etc/yum.repos.d/yum.fury.io_netdevops_.repo

sudo yum install containerlab

This is a short and starch-free version of Containerlab setup. For more information, you can visit its official
docs:

¢ Installation
* Quick Start

Warning Due to some breaking changes in Containerlab 0. 15, Connect LAB with version >= 0.3.0
only works with clab version >= 0.15. If you want to use a Containerlab older than 0.15 you will
need to install one of the earlier versions of Connect LAB.

You can check which version of Containerlab you have installed using the clab version command.

Download And Setup Images

The specific steps to download and setup the images of each vendor could be viewed in the following pages:
Cisco LAB Setup

Cisco Image

Please follow the steps here to set up a functioning virtual Cisco XRv router.

From now on, we will expect this image to be tagged as containerlab/vr-xrv:6.3.1:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
containerlab/vr-xrv 6.3.1 e006d956bb22 30 seconds ago 911MB

1.3. Inmanta Connect Lab 5

https://containerlab.srlinux.dev
https://containerlab.srlinux.dev/install/
https://containerlab.srlinux.dev/quickstart/
https://github.com/srl-labs/containerlab/blob/v0.15.0/docs/rn/0.15.md#release-015
https://github.com/inmanta/containerlab-vms#build-containers

Inmanta Documentation, Release 1.7.0

Cisco Base Configuration

At the time of this writing, Containerlab is not able to automatically place a base configuration for Cisco routers and
this step has to be done manually:

* Head to connect-1lab/labs/config/cisco directory.
* Using this section, connect to routers and paste the contents of for instance east.cfg file in router-east.

Based on the desired topology, you need to paste a specific configuration to its respective router.

Juniper LAB Setup
Juniper Image

Please follow the steps here to set up a functioning virtual Juniper router.

From now on, we will expect this image to be tagged as vrnetlab/vr-vmx:18.3R1.9:

$ docker images

REPOSITORY TAG IMAGE ID CREATED o
- SIZE

vrnetlab/vr-vmx 18.3R1.9 91e0035e6f3b 8 weeks ago .
— 4.75GB

Juniper Base Configuration

At the time of this writing, Containerlab is not able to automatically place a base configuration for Juniper routers
and this step has to be done manually:

* Head to connect-lab/labs/config/juniper directory.
 Using this section, connect to routers and paste the contents of for instance east.cfg file in in router-east.

Based on the desired topology, you need to paste a specific configuration to its respective router.

Nokia LAB Setup
Nokia Image And License

Please follow the steps here to set up a functioning virtual Nokia router.

From now on, we will expect this image to be tagged vrnetlab/vr-sros:20.10.R1.

$ docker images

REPOSITORY TAG IMAGE ID CREATED =
. SIZE
vrnetlab/vr-sros 20.10.R1 5835fa2lael5 About an hour,.,
—-ago 992MB

Nokia routers need to have a license to function. Please visit here for more information.

clab deploy command for routers should be run from the directory that contains the license file. In this case
connect-lab/labs.

6 Chapter 1. Introduction

https://containerlab.srlinux.dev/manual/kinds/vr-vmx/
https://containerlab.srlinux.dev/manual/kinds/vr-sros/
https://containerlab.srlinux.dev/manual/nodes/#license

Inmanta Documentation, Release 1.7.0

Get The Connect LAB Resources

The Connect LAB project, containing the configuration files and clab topology files, can be downloaded from Inmanta
packages repository:

DEFAULT_VERSION="1.0.5"
read -rp "Enter the version you want to install (defaults to $DEFAULT_VERSION): "_
—VERSION \
&& if [[$VERSION == ""]1]; then VERSION=$DEFAULT_VERSION; echo "No version provided,.
—defaulting to $VERSION"; £i \
&& read -rsp "Enter your private token here: " TOKEN \
&& echo "" \
&& curl -1s0 --fail https://packages.inmanta.com/$TOKEN/connect/raw/versions/$VERSION/
—.connect-1lab-$VERSION.tar.gz \
[T C\
echo "FAILED to get package" \
&& cat connect-lab-$VERSION.tar.gz \
&& echo "" \
&& exit 1\
)\
&& tar -zxf connect-lab-$VERSION.tar.gz \
&& echo "All done! The lab project is available under connect-lab-$VERSION/ directory"

Currently the connect-1ab version that is used for this guide is 1.0.5.

The project structure is as follows:

connect-lab/

— docs
|

L repair-a-lab.md

— labs
— config
— cisco-evc-2R
— east.cfg
L— west.cfg
— cisco-evc-4R
— east.cfg
— north.cfg
— south.cfg
L— west.cfg
— juniper-evc-2R
— east.cfg
L— west.cfg
— juniper-evc-4R
— east.cfg
— north.cfg
— south.cfg
L— west.cfg
— nfv-test-api
L— config.yaml
— nokia-evc-2R
|: east.cfg
west.cfg
L— nokia-evc-4R

(continues on next page)

1.3. Inmanta Connect Lab 7

Inmanta Documentation, Release 1.7.0

(continued from previous page)

east.cfg
north.cfg
south.cfg
west.cfg
— docker-orchestrator

agent

L— env

server

env
license.cfg
server.cfg

— cisco-evc-2R.clab.yml

— cisco-evc-4R.clab.yml

—— cisco-evc.clab.yml -> cisco-evc-2R.clab.yml
— juniper-evc-2R.clab.yml

— juniper-evc-4R.clab.yml

— juniper-evc.clab.yml -> juniper-evc-2R.clab.yml
— nokia-evc-2R.clab.yml

— nokia-evc-4R.clab.yml

— nokia-evc.clab.yml -> nokia-evc-2R.clab.yml
— 2R.svg

— 4R.svg

— CHANGELOG.md

L — README.md

Inmanta Service Orchestrator

Please contact us to get the required service orchestrator image and license.
Upon acquiring the image, there are a few prerequisites that has to be fulfilled before continuing:
* Copy the license to connect-lab/labs/docker-orchestrator/server.

e Copy the public key of the SSH key that you will use to run tests against the lab to connect-lab/labs/
docker-orchestrator/server/authorized_keys.

* Check the config file of the server: connect-lab/labs/docker-orchestrator/server/server.cfg

Verify the downloaded image by checking Docker images:

$ docker images

REPOSITORY TAG IMAGE ID .,
. CREATED SIZE

docker.cloudsmith.io/inmanta/containers/service-orchestrator 4 o
-»5139265d16e3 7 days ago 1.28GB

8 Chapter 1. Introduction

https://inmanta.com/company/contact/

Inmanta Documentation, Release 1.7.0

Starting the LAB

The topology consists of two routers; or four in case of multihoming, four clients, Inmanta service orchestrator and a
DB for the orchestrator. Inmanta service orchestrator uses the management network to connect to the routers and the
orchestrator DB.

Before you proceed, check that all the required images are present:

$ docker images

REPOSITORY TAG IMAGE ID =
—CREATED SIZE

docker.cloudsmith.io/inmanta/containers/service-orchestrator 4 5139265d16e3 ..
-7 days ago 1.28GB

vrnetlab/vr-sros 20.10.R1 0£f03483e5c4 .

6 weeks ago 994VMB

Inside connect-1lab/labs directory there are a bunch of yaml files starting with the name of a vendor; for instance,
cisco-evc.clab.yml. Deploying the aforementioned yaml file will yield the topology with 2 routers as depicted
below.

Connection Map With 2 Routers

Name Interface | Name Interface
router-west | ethl router-east ethl
router-west | eth2 subscriber-north-west | ethl
router-west | eth3 subscriber-south-west | ethl
router-east | eth2 subscriber-north-east | ethl
router-east | eth3 subscriber-south-east | ethl

1.3. Inmanta Connect Lab 9

Inmanta Documentation, Release 1.7.0

Topology With 2 Routers

thl
thl

ethl 192.16E.0.D/31 ethl 192.16E.0.1/31

K%

thl
thl

ethD 172.2
Viewer docs not support full SWG 1.1

The rest of this document is based on cisco-evc.clab.yml deployment.

On the other hand, a 4 router topology can be set up by deploying the files that have 4R in their name. As an example
for cisco-evc-4R.clab.yml the result is depicted as below.

10 Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

Connection Map With 4 Routers

Name Interface | Name Interface
router-north | ethl router-south ethl
router-north | eth2 subscriber-north-west | eth2
router-north | eth3 subscriber-north-east | eth2
router-north | eth4 router-west eth4
router-north | eth5 router-east eth5
router-west | ethl router-east ethl
router-west eth2 subscriber-north-west | ethl
router-west | eth3 subscriber-south-west | ethl
router-west eth5 router-south eth5
router-east eth2 subscriber-north-east | ethl
router-east eth3 subscriber-south-east | ethl
router-east eth4 router-south eth4
router-south | eth2 subscriber-south-west | eth2
router-south | eth3 subscriber-south-west | eth2

1.3. Inmanta Connect Lab 11

Inmanta Documentation, Release 1.7.0

Topology With 4 Routers

Viewdrthhes ndt’ fupford FulES VG 1.1
NOTE:
* In this configuration Inmanta service orchestrator uses port 2222 of the VM for remote access.

* Router’s initial configuration files are in the connect-lab/labs/config/ directory. Currently non-Nokia
routers require a manual copy and paste of their configuration in order to function. The procedure has been
elaborated for each vendor in this section.

To run the LAB for the first time:

cd connect-lab/docs/
sudo clab deploy --topo cisco-evc.clab.yml

To re-run the LAB after making modifications:

sudo clab deploy --topo cisco-evc.clab.yml --reconfigure

To delete the LAB:

12 Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

sudo clab destroy --topo cisco-evc.clab.yml

After a few minutes, the router containers should be shown as healthy. In our example we use Nokia routers:

$ docker ps

CONTAINER ID IMAGE COMMAND

—STATUS PORTS

. NAMES

9472bfdf566e vrnetlab/vr-sros:20.10.R1 "/launch.py --trace ..."

—Up 4 minutes (healthy) 80/tcp, 443/tcp, 5000/tcp, 10000-10099/tcp,

—udp, 0.0.0.0:21022->22/tcp, :::21022->22/tcp, 0.0.0.0:21830->830/tcp,
—tcp clab-nokia-nokia-west

£59435aa0ed6 vrnetlab/vr-sros:20.10.R1 "/launch.py --trace ..."

—Up 4 minutes (healthy) 80/tcp, 443/tcp, 5000/tcp, 10000-10099/tcp,

—udp, 0.0.0.0:20022->22/tcp, :::20022->22/tcp, 0.0.0.0:20830->830/tcp,
—tcp clab-nokia-nokia-east

fb201bfObeae postgres:10 "docker-entrypoint.s..."

~Up 4 minutes 5432/tcp

—»clab-nokia-inmanta-db

ec307468311c inmantaci/nfv-test-api:0.6.1 "sh -¢ '/bin/sleep 5..."
~Up 4 minutes 0.0.0.0:2002->8080/tcp, :::2002->8080/tcp
—»clab-nokia-subscriber-south-east

448344a5ablf inmantaci/nfv-test-api:0.6.1 "sh -c¢ '/bin/sleep 5..."
~Up 4 minutes 0.0.0.0:2001->8080/tcp, :::2001->8080/tcp
—»clab-nokia-subscriber-north-east

£56297c91866 inmantaci/nfv-test-api:0.6.1 "sh -c¢ '/bin/sleep 5..."
~Up 4 minutes 0.0.0.0:2003->8080/tcp, :::2003->8080/tcp
<»clab-nokia-subscriber-north-west

del39aeef®c4 inmantaci/nfv-test-api:0.6.1 "sh -c '/bin/sleep 5...
~Up 4 minutes 0.0.0.0:2004->8080/tcp, :::2004->8080/tcp

<»clab-nokia-subscriber-south-west

9f73ca4fd97e service-orchestrator:4 "sh -c '/usr/bin/chm..." 4 minutes ago
~Up 4 minutes 0.0.0.0:8888->8888/tcp, :::8888->8888/tcp, 0.0.0.0:2222->22/
tep, :1::2222->22/tcp

< clab-nokia-inmanta-server

CREATED

4 minutes ago
57400/tcp, 161/
1::21830->830/

4 minutes ago
57400/tcp, 161/
1::20830->830/

4 minutes ago

4 minutes ago

4 minutes ago

4 minutes ago

4 minutes ago

1.3. Inmanta Connect Lab

13

Inmanta Documentation, Release 1.7.0

Accessing Containers

To access containers individually and remotely:

Container Service | URL

orchestrator WEB http://vm_ip:8888
orchestrator SSH ssh://vm_ip:2222
subscriber-north-east | API http://vm_ip:2001
subscriber-south-east | API http://vm_ip:2002
subscriber-north-west | API http://vm_ip:2003
subscriber-south-west | API http://vm_ip:2004

To access containers individually on the VM:

Container Access
nokia-east ssh admin @clab-nokia-nokia-east
nokia-west ssh admin @ clab-nokia-nokia-west

subscriber-north-east | docker exec -ti clab-lab-subscriber-north-east bash
subscriber-south-east | docker exec -ti clab-lab-subscriber-south-east bash
subscriber-north-west | docker exec -ti clab-lab-subscriber-north-west bash
subscriber-south-west | docker exec -ti clab-lab-subscriber-south-west bash

Conclusion

This guide showed how to set up a small lab using container lab to test Inmanta connect module. If you are having
any questions or suggestions regarding this guide, please get in touch.

1.3.2 External lab

This document describes how to use an external lab (physical or virtual) to evaluate, develop and test on Inmanta
Connect. There are three steps in this process:

1. Ensure that the lab network supports Inmanta Connect
2. Installing the Inmanta Service Orchestrator

3. Load Inmanta Connect in the Inmanta Service Orchestrator

Support Inmanta Connect network

Inmanta Connect requires a number of things from your network:

1. Each device has a management interface that is reachable by the orchestrator. For each vendor the netconf
interface needs to be reachable.

2. Inmanta Connect only manages the endpoints of the services. This means that it assumes that there is backbone
connectivity between all routers on which endpoints are managed (PE routers). It also assumes that all the
required peerings and protocols are enabled between all PEs. What this means depends on the selected network
backends (LDP, EVPN, ...).

3. Document the endpoints in a compatible inventory. Inmanta Connect needs to know all the user connects to the
network: ports (and ethernet segments), network elements (logical devices and management interface details).

14 Chapter 1. Introduction

http://vm_ip:8888
ssh://vm_ip:2222
http://vm_ip:2001
http://vm_ip:2002
http://vm_ip:2003
http://vm_ip:2004

Inmanta Documentation, Release 1.7.0

The quickest way to get started is using our built-in yaml inventory and pick one of files included in the built-in
lab.

Install the service orchestrator and connect

Inmanta Connect is built on the Inmanta Service Orchestrator. The first step is to install this orchestrator and then load
Inmanta Connect. The current version of Inmanta Connect excepts version Inmanta Service Orchestrator 4. There are
several options to install the orchestrator:

* On a (virtual) machine with a RHEL 7 or 8 compatable operating system and install it from RPM.
e Install it using containers on docker (or podman).

It is important to correctly set the router credentials. The inventory supplies Inmanta Connect with the names of the
environment variables. These variables are set in the environment file of the service orchestrator (The documentation
explains this for an RPM install and containers

Load Inmanta Connect

The final step is to load Inmanta Connect on the service orchestrator. There are mainly two methods to perform this:

* Customize the test suite and run it against the lab. The test suite will deploy Inmanta Connect with all your
customizations.

» Customize the inmanta connect template project and load it in an environment.

Inmanta Connect is a solution that allows you to fully automate the deployment and management of connectivity
services. We recommend and encourages to create a lab environment to test and validate Inmanta Connect and the
customization you have made on top of it. There are several options:

¢ Use the built-in virtual lab. There are labs for each vendor. These labs also include the Inmanta Service Orches-
trator on which Inmanta Connect was built.

» Use an external physical or virtual lab that already exists.

1.4 Inventory

Connect requires one or more inventories to function. The purpose of this document is to describe what the inventory
is used for, which integrations are available and how to add additional integrations.

1.4.1 Purpose

The purpose of the inventory integration can be threefold:

1. A resource inventory to resolve a provided UNI reference to one or more ports in the network. This results in the
port, the device, router ip, management ip, credentials, ... Without this information Inmanta Connect will not
be able to orchestrate any services.

2. Allocate identifiers for resources such as VLANS, service identifiers, ... By default Inmanta Connect requires
arange it can manage and allocate identifiers from. However, Inmanta Connect can also allocate them based on
the inventory.

3. Document the orchestrated services in an external service inventory. All services are always available in the
built-in service inventory of Inmanta Connect.

1.4. Inventory 15

https://docs.inmanta.com/inmanta-service-orchestrator/4/install/1-install-server.html
https://docs.inmanta.com/inmanta-service-orchestrator/4/install/2-install-server-with-docker.html
https://docs.inmanta.com/inmanta-service-orchestrator/4/administrators/credentials.html?highlight=environment
https://docs.inmanta.com/inmanta-service-orchestrator/4/install/2-install-server-with-docker.html#setting-environment-variables%5D
virtual.md
external.md

Inmanta Documentation, Release 1.7.0

Resource inventory

Inmanta Connect uses the MEF reference model for requesting new services such as carrier ethernet services. This
reference model uses the concept of a UNI (User Network Interface) reference. A UNI is an abstract concept to model
the attachment of a customer (user) to the provider network. There can be a one-to-one mapping between a UNI and a
port on a router or it could also model a LAG implemented using multi-homing in an EVPN network.

Inmanta Connect expects a reference to a UNI that it can resolve in a resource inventory to one or more ports in the
network. This reference is a URI that points to the corresponding resource in the resource inventory. Example of a
such a reference are:

e UNI 123-852-456 in the built-in inventory of connect: inmanta:123-852-456
e UNI 1234 in Netbox: netbox:1234

e UNI with name customerl in a TMF639 compliant inventory: tmf639://192.0.2.42/api/resource/?
@type=typeUNI&name=customerl

The inventory integration will provide Inmanta Connect with parameters such as:
e The name of the port
* The name of the router

e The mgmt ip

Identifier allocation

Inmanta Connect requires unique identifiers to work correctly. For example a circuit id, which needs to be unique
within the network. The default mode of operation is assigning a range of identifiers to Inmanta Connect. Connect
allocates an available identifier from the provided range. See the configuration settings for more details. By default
only service ids are allocated from a range. Identifiers such as VLANs have to be provided when the a service instance
is created.

This behaviour can be customized by developing a custom allocator. This allocator can then use an external inventory
to find an available VLAN, service id or other identifier.

Service inventory

Inmanta Connect can integrate with external service inventories to document the created services. Inmanta Connect
currently does not offer out of the box integrations. The orchestration model behind Inmanta Connect has been built to
easily add service documentation.

1.4.2 Inventory integration

Inmanta Connect can integrate with any inventory that has an external API. The default settings enable the built-in
resource inventory. Other inventories can be enabled or integrated. Multiple inventories can be enabled at the same
time.

16 Chapter 1. Introduction

https://netbox.readthedocs.io/en/stable/

Inmanta Documentation, Release 1.7.0

Built-in resource inventory

The built-in resource inventory loads the inventory from a yaml file. Inmanta Connect also contains the topologies to
work with the connect reference labs. The inventory contains only the data required for Connect to orchestrate new
services.

The inventory models Device, Network Element (NE) andUser Network Interface (UNI) resourcesinayaml
file. The default location for this file is /files/connect-inventory.yaml, in the inmanta project. The inventory
path can be modified using the main.inventory_path attribute of the configuration.

The snippet below shows an example of the contents in an inventory file:

devices:
dev-2:
mgmt_ip: 172.20.20.12
mgmt_port: 830
vendor: Nokia
model: 7750 SR
os: TiMos
version: "20.10"
username_env: NETCONF_DEVICE_USER
password_env: NETCONF_DEVICE_PASSWORD
dev-4:
mgmt_ip: 172.20.20.14
mgmt_port: 830
vendor: Nokia
model: 7750 SR
os: TiMos
version: "20.10"
username_env: NETCONF_DEVICE_USER
password_env: NETCONF_DEVICE_PASSWORD

ne:

- id: "2"
name: router-east
router_ip: 10.255.255.2
device: ref#devices.dev-2

- id: "4"
name: router-west
router_ip: 10.255.255.4
device: ref#devices.dev-4

port:
- id: "3"
name: 1/1/c2/1
network_element: ref#nel[id=2]
- id: "4"
name: 1/1/c3/1
network_element: ref#ne[id=2]
- id: "7"
name: 1/1/c2/1
network_element: ref#nel[id=4]
- id: "8"
name: 1/1/c3/1

(continues on next page)

1.4. Inventory 17

Inmanta Documentation, Release 1.7.0

(continued from previous page)

network_element: ref#ne[id=4]

uni
- id: inmanta:456-852-789
ports:
- ref#port[id=3]
- id: inmanta:456-985-752
ports:
- ref#port[id=4]
- id: inmanta:123-852-456
ports:
- ref#port[id=8]
- id: inmanta:456-852-798
ports:

- ref#port[id=7]

Built-in resources

Below are the built-in resources that the built-in inventory models:

 devices: The network devices in the inventory. Its attributes are:

mgmt_ip: the ip address Inmanta Connect should use to access the netconf/yang interface of this device
mgmt_port: the port the netconf/yang interface is running

vendor: the name of the vendor. Inmanta Connect uses this to determine what vendor a device is. Currently
Cisco, Nokia and Juniper are supported.

model: the router model to which is begin deployed. For example: ASR9001 or MX480. This value is
currently not used and is only there for reference.

os: the operating system running on the device. For example Junos, SR-OS, ... This value is currently not
used and is only there for reference.

version: the version of the os running on the device. This is used for version specific work arounds.
username_env: The environment variable on the orchestrator to fetch the device username from.

password_env: The environment variable on the orchestrator to fetch the device password from.

* ne: The network elements in the inventory. This represents the logical router running on the device. Its attributes

are:

id: A reference for the network element that is used internaly in the inventory
name: The name of the network element.
router_ip: The loopback ip of the router. This ip is used for example for LDP configuration.

device: A reference to a device device resource.

e port: A port on a network element. A customer can connect to one or more ports (see uni):

id: An identifier used in the inventory to reference the port.
name: The name of the port on a device. The orchestrator uses this value to reference the port.

network_element: A reference to the network element this port belongs to.

e uni: A user network interface models how a user is connected to the network. Its attributes are:

18

Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

id: An identifier used to reference this UNI. The built-in resolver will use this identifer when used as a uni
reference. The resolver is used when the URI scheme is inmanta:.

ports: A list of references to the ports that make up this UNI.

[es_name]: An optional attribute (combined with es_id). When multi-homing is used with EVPN, it is
important to configure ethernet segments. When this is enabled in the configuration, this value is used.

[es_id]: See es_name

The inventory supports internal references to other resources. These references start with ref#. After that a dictpath
expression is used.

1.5 Testing

This guide includes:
o Testing
— Constructing A LAB File

LAB Topology Constraints

Vendor specific tests
% Example

% Adding New Markers

Topology File Structure

Assembling A Basic Test

Running Tests

Running Mypy Type Check

By following the steps /ere, you should have a virtual environment and a clone of connect module locally.

1.5.1 Constructing A LAB File

All the tests are parametrized so that multiple developers can execute them on the same LAB without interfering with
each other. The user specific data is presented in the LAB file, under tests/labs/user/ directory.

To select a LAB when running the tests, use the --1ab option, specifying in argument the name of the file, except the
.yaml extension. All LAB files should end with the .yaml extension.

Example

Here is an example of the LAB file, you can copy it in this directory, and modify the values.

prefix: IC # Change this
service_id_range:
from: 600 # Change this
to: 700 # Change this
vlan_id_range:
from: 600 # Change this
to: 605 # Change this

1.5. Testing 19

Inmanta Documentation, Release 1.7.0

1.5.2 LAB Topology Constraints
In the test cases some assumptions are made on the structure of the lab. Those assumptions are checked when the tests
using the LAB manager are setup. Here are the assumptions:

1. The topology file contains at least four subscribers, named: subscriber-1, subscriber-2, subscriber-3
and subscriber-4.

Side A (subscriber-1 and subscriber-2) are connected to the same provider router.

Side B (subscriber-3 and subscriber-4) are connected to the same provider router.

Ll

Side A and B do not have a direct connection
5. All routers in the LAB have the same vendor.

Here is a visual representation of the topology:

router-west router-east

B N h : Ve subscriber-east-1
o ~ 4 . E
Ethl o - thi
$ 2
~ w
<
z 2

1.5.3 Vendor specific tests

Some tests can only be executed with a specific topology file because they test the behavior of the module against a
specific vendor. To avoid running this test case in unsupported configurations, pytest’s markers can be used.

Example

This is already the case for two test cases:
e tests/test_model/test_carrier_ethernet_evc_nokia/test_LDP
e tests/test_model/test_carrier_ethernet_evc_nokia/test_EVPN

These verify that the generated yang config contains the desired information. In order to mark those tests as suitable
only for Nokia topology, they get marked with the marker nokia_only:

@pytest.mark.nokia_only
def test_LDP(project: Project, lab_config: LabConfig) -> None:

This marker can be reused for any test that requires a Nokia topology file.

By default those tests will be skipped. If you are running the tests with a topology file containing only Nokia devices,
you can either set the environment variable INMANTA_CONNECT_LAB_VENDOR or the cli parameter --1lab-vendor to
Nokia. In that case, and in that case only, those two tests will be executed.

20 Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

Adding New Markers
To add some additional markers, i.e. when other vendor-specific tests are added apart from Nokia, there are three things
to do:

1. Extend the pytest_configure function in fests/conftest.py to support the additional marker.

2. Extend the pytest_runtest_setup function in tests/conftest.py to skip the test if the marker is detected but
the vendor is not the one we want.

3. Add the marker on top of the test you wish to limit to the specific vendor.

1.5.4 Topology File Structure

The topology file should contain four main entries:
* routers: A dictionary containing the routers of the LAB.
e subscribers: A dictionary containing the subscribers of the LAB.
» links: A list containing the links between different element (routers and subscribers) in the LAB.
* inventory: A dictionary containing a valid inventory that can be given to the module for this LAB.

Here is an example of the topology file:

routers:
nokia-east:

vendor: Nokia
mgmt_address: 192.168.2.33
netconf_port: 20830
ssh_port: 20022
mgmt_username_env: NETCONF_DEVICE_USER
mgmt_password_env: NETCONF_DEVICE_PASSWORD

nokia-west:
vendor: Nokia
mgmt_address: 192.168.2.33
netconf_port: 21830
ssh_port: 21022
mgmt_username_env: NETCONF_DEVICE_USER
mgmt_password_env: NETCONF_DEVICE_PASSWORD

subscribers:
subscriber-1:
mgmt_address: 192.168.2.33
api_port: 2001
uni: inmanta:456-852-789
subscriber-2:
mgmt_address: 192.168.2.33
api_port: 2002
uni: inmanta:456-985-752
subscriber-3:
mgmt_address: 192.168.2.33
api_port: 2003
uni: inmanta:123-852-456

(continues on next page)

1.5. Testing 21

Inmanta Documentation, Release 1.7.0

(continued from previous page)

subscriber-4:

mgmt_address: 192.168.2.33

api_port: 2004

uni: inmanta:652-784-963

links:
- endpoints:

- type: router
device: nokia-east
interface: ethl

- type: subscriber

device: subscriber-1

interface: ethl
namespace: eastl
- endpoints:

- type: router
device: nokia-east
interface: eth2

- type: subscriber

device: subscriber-2

interface: ethl
namespace: eastl
- endpoints:

- type: router
device: nokia-west
interface: ethl

- type: subscriber

device: subscriber-3

interface: ethl
namespace: westl
- endpoints:

- type: router
device: nokia-west
interface: eth2

- type: subscriber

device: subscriber-4

interface: ethl
namespace: westl

inventory:
devices:
dev-1:

mgmt_ip: 172.20.20.31

mgmt_port: 22
vendor: Nokia
model: 7750 SR
os: TiMos
version: "20.10"

username_env:
password_env:

dev-2:
mgmt_ip: 172

NETCONF_DEVICE_USER
NETCONF_DEVICE_PASSWORD

.20.20.21

(continues on next page)

22

Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

(continued from previous page)

mgmt_port: 22

vendor: Nokia

model: 7750 SR

os: TiMos

version: "20.10"

username_env: NETCONF_DEVICE_USER
password_env: NETCONF_DEVICE_PASSWORD

ne:
- id: "1"
name: Nokia_west
router_ip: 10.255.255.2
device: ref#devices.dev-1
- id: "2"
name: Nokia_east
router_ip: 10.255.255.1
device: ref#devices.dev-2

- id: inmanta:456-985-752
port: 1/1/c3/1
network_element: ref#ne[id=1]
- id: inmanta:456-852-789
port: 1/1/c2/1
network_element: ref#ne[id=1]
- id: inmanta:652-784-963
port: 1/1/c3/1
network_element: ref#ne[id=2]
- id: inmanta:123-852-456
port: 1/1/c2/1
network_element: ref#ne[id=2]

Here are some notes about parametrized values:
* Some values in the file can be parametrized using the prefix opt: prefix.
* The remaining part of the value will be extracted and resolved.

* The remaining value should match the key of one of the TestParameter object set in the tests conftest.py
file.

For instance, if you set opt:inm_con_lab_mgmt_ip as a value for routers.nokia-east.mgmt_address, when
the topology file is loaded, this value will be replaced by the value passed to the --lab-mgmt-ip argument or set in
INMANTA_CONNECT_LAB_MGMT_IP. Please note that CLI arguments have more priority than env variables.

1.5. Testing 23

Inmanta Documentation, Release 1.7.0

1.5.5 Assembling A Basic Test

We also need to make a temporary directory for the tests and utilize it by environment variables:

mkdir /tmp/env
export INMANTA_TEST_ENV=/tmp/env

The most basic type of testing is a compile test which can be conducted like:

import uuid
import pytest
from pytest_inmanta.plugin import Project

def test_basics(project: Project) -> None:

Simple example of instantiation of a CarrierEthernetEvc entity. We just try to.

—compile it.
model = fllllll
import connect
import connect::infra as infra
import connect::mock

connect: :CarrierEthernetEvc(
identifier="my-evc-001",
connectionType="POINT_TO_POINT",
ext_networkBackend=connect: :Ext_networkBackend(type="EVPN"),
evcEndPoints=[
connect: :CarrierEthernetEvcEndPoint (
identifier="my-evc-ep-1",
egressBandwidthProfilePerEndPoint=[
connect: :EgressBwpFlow(
cir=1,
)
connect: :EgressBuwpFlow(
cir=2,
),
1,
evcEndPointMap=connect: :VlanIdListOrUntag(
type="LIST",
vlanIdList=[
connect: :VlanId(vlanId=200),
1,
),

—

—carrierEthernetSubscriberUni=connect::CarrierEthernetSubscriberUniRef(
href="inmanta:456-985-752",
),
_uni=infra: :UserNetworkInterface(
id="inmanta:456-985-752",
port="1/1/c3/1",
network_element=infra: :NetworkElement (
id="1",
name="ne-1",

(continues on next page)

24 Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

(continued from previous page)

router_ip="1.2.3.4",
device=infra: :Device(
mgmt_ip="1.2.3.4",
mgmt_port=22,
vendor="Nokia",
model="7750 SR",
os="TiMos",
version="20.10",
username_env="NETCONF_DEVICE_USER",
password_env="NETCONF_DEVICE_PASSWORD",

)
s
connect: :CarrierEthernetEvcEndPoint (
identifier="my-evc-ep-2",
egressBandwidthProfilePerEndPoint=[
connect: :EgressBwpFlow(
cir=1,
),
connect: :EgressBwpFlow(
cir=2,
),
1,
evcEndPointMap=connect: :VlanIdListOrUntag(
type="LIST",
vlanIdList=[
connect::VlanId(vlanId=201),
1,
)

[

—carrierEthernetSubscriberUni=connect: :CarrierEthernetSubscriberUniRef(

href="inmanta:652-784-963",
),
_uni=infra: :UserNetworkInterface(
id="inmanta:652-784-963",
port="1/1/c3/1",
network_element=infra: :NetworkElement (
id="2",
name="ne-2",
router_ip="1.2.3.5",
device=infra: :Device(
mgmt_ip="1.2.3.5",
mgmt_port=22,
vendor="Nokia",
model="7750 SR",
os="TiMos",
version="20.10",
username_env="NETCONF_DEVICE_USER",
password_env="NETCONF_DEVICE_PASSWORD",

(continues on next page)

1.5. Testing

25

Inmanta Documentation, Release 1.7.0

(continued from previous page)

),
),
1,
purge_resources=false,
instance_id="{uuid.uuid4(Q}",

)

non

project.compile(model, no_dedent=False)

1.5.6 Running Tests

The env.sh script loads some environment variables common to any developer of the.
—module

1T you wish to load some env variables automatically, this script looks for the.
—existence

of personal_env.sh file and executes it, if found. You can add all private envs you.
—require there.

source env.sh

export INMANTA_LSM_ENVIRONMENT="" # An environment on mentioned orchestrator (if not.
—added to personal_env.sh)

pytest tests \ # Name of your test file
--use-module-in-place \
--lab <your-lab-name> \
--topology nokia-evc \
--log-cli-level=debug \
tests/ # The directory containing the test files

1.5.7 Running Mypy Type Check

The use of Mypy is encouraged since it makes the code easier to read and debug should a problem occur. Mypy is
an optional static type checker for Python that aims to combine the benefits of dynamic or "duck" typing and static

typing.

Check typing in the plugins
make mypy-plugins

Check typing in the tests
make mypy-tests

Check typing in both plugins and tests
make mypy

To see if you improved the typing, do make mypy-save before you make changes and make mypy-diff
afterwards

26 Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

1.6 Configuration and Customization

Connect can be configuration and customized using configuration files and templates:
 Topologies
» Hardware/vendors
* Allocation Policies
» UNI Resolvers
* Naming conventions
* Etc.

The connect module will load its configuration from a file named connect-config.yaml, which should be located
in the files folder of the project using this module. The project’s structure is depicted as below:

connect-project/
files
L connect-config.yaml
libs
L— connect/
main.cf
project.yml

1.6.1 General Structure

The configuration module hosts all the settings related to the connect module. These ever-expanding settings are:
» NokiaConfig: Contains all the specific config for Nokia routers, E.g. use of SDP.
» LabelDistributionProtocolConfig: Contains all the specific config for LDP.
* ServiceldConfig: Contains all the specific config for allocating an EVC service ID.
¢ CarrierEthernetEvcConfig: Contains all the specific config for Ethernet Virtual Connections.
* MainConfig: Contains elements transient to the whole module usage.

* ConnectConfig: This is the root of the configuration. Each entry in the configuration file should correspond to
one of the embedded Config objects. If called by its default method, it’ll return configuration with all default
values.

» Configuration: Operates on connect-config.yaml file.

1.6.2 Configuration File Content

The available configuration fields in connect-config.yaml file are:
main: The main config, it contains elements transient to the whole module usage. The available options are:
1. inventory_path: The path to the inventory file on the machine where the orchestrator runs.
carrier_ethernet_evc: The CarrierEthernetEve config. The available options are:
1. service_id: EVC service ID. Determines range and allocation strategy.

* start: Start of the service id range. (Value included in the range)

1.6. Configuration and Customization 27

Inmanta Documentation, Release 1.7.0

* end: End of the service id range. (Value included in the range)
e strategy: Strategy to use to determine the next service_id to allocate.
— next: Take the first available id in the range.
— any: Take any available id in the range.
2. backend: The CarrierEthernetEve backend config. Currently the available options are LDP and EVPN.
e default: The default backend to use if none is specified.
* enabled: The list of supported backends that can be selected.

If the backend type is not provided, LDP is selected as the default value. In case the provided backend
value is not supported an exception will be raised.

label_distribution_protocol: The LDP config. The available options are:
« TBD
nokia: The Nokia config. The available options are:

1. customer_id: Customer id or path to a template that allows to render the customer id with some parameters
(service instance)

2. netconf_retry_count: Number of retries before a failure.
3. netconf_retry_interval: Interval time in seconds between retries.
4. epipe: Nokia’s Epipe configuration:

Please note that unless stated otherwise, all the elements below have an instance attribute that is the
CarrierEthernetEvcEndPoint instance using this template, as a DynamicProxy. For the sake of
brevity it has been omitted and replaced with takes instance: true.

* enable_sdp: Controls the creation of Epipe with SDP.

e service_name: Epipe service name or path to a template that allows to generate it. The values available
to the template are:

— takes instance: true
— vcid: The service id of the Epipe, as an integer.

* gos_ingress: QoS configuration for Epipe (ingress):

policy_name: Epipe policy name or a path to a template that allows to generate it. The values avail-
able to the template are:

* takes instance: true

policer_id: Epipe policer id or a path to a template that allows to generate it. The values available
to the template are:

% takes instance: true

cbs: Epipe cbs or a path to a template that allows to generate it. The values available to the template
are:

% takes instance: true

mbs: Epipe mbs or a path to a template that allows to generate it. The values available to the template
are:

% takes instance: true

28 Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

— pir: Epipe pir or a path to a template that allows to generate it. The values available to the template
are:

takes instance: true
* gos_egress: QoS configuration for Epipe (egress):

— policy_name: Epipe policy name or a path to a template that allows to generate it. The values avail-
able to the template are:

% takes instance: true

— queue_id: Epipe queue id or a path to a template that allows to generate it. The values available to
the template are:

* takes instance: true

— cbs: Epipe cbs or a path to a template that allows to generate it. The values available to the template
are:

% takes instance: true

— mbs: Epipe mbs or a path to a template that allows to generate it. The values available to the template
are:

% takes instance: true

— pir: Epipe pir or a path to a template that allows to generate it. The values available to the template
are:

+ takes instance: true
* evpn: EVPN configuration for Nokia
— bgp: BGP configuration for Nokia

resolution: Resolution method for tunnel selection

* tagging: Enable/disable enforcement of strict tunnel tagging

% filters: Resolution filters for auto-bind-tunnel
- 1dp: Enable/disable setting LDP type for auto-bind-tunnel
- rsvp: Enable/disable setting RSVP-TE type for auto-bind-tunnel
- sr_isis: Enable/disable setting SR-ISIS type for auto-bind-tunnel
- sr_te: Enable/disable setting SR-TE type for auto-bind-tunnel

This is how the configuration looks like:

carrier_ethernet_evc:
backend:
default: LDP
enabled:
- LDP
- EVPN
service_id:
start: 1
end: 100
strategy: next
label_distribution_protocol: {}
main:

(continues on next page)

1.6. Configuration and Customization 29

Inmanta Documentation, Release 1.7.0

(continued from previous page)

inventory_path: inmanta:///connect-inventory.yaml
nokia:
customer_id: '1'
epipe:
enable_sdp: true
service_name: template://connect/nokia/epipe_service_name.j2
gos_egress:
policy_name: default-policy
queue_id: 3

cbs: auto
mbs: auto
pir: max

gos_ingress:
policy_name: default-policy
policer_id: 3

cbs: auto

mbs: auto

pir: max
evpn:

bgp:

resolution: any
tagging: True
filters:
1dp: False
rsvp: False
sr_isis: False
sr_te: False
netconf_retry_count: 5
netconf_retry_interval: 5

Controlling the virtual circuit identifier (vcid) with service_id

Each deployment of a CarrierEthernetEvc using LDP backend will need to receive an unused vcid. This id is then
used for configurations such as the Epipe and sdp id. This value is not passed on via the API, the model will receive
it through allocation. The allocator is given a range of values that can be used, it is aware of the values it has already
allocated and based on this and the allocation strategy (next, for sequential allocation, or any, for random allocation)
will pick the allocated vcid.

The user of the module can influence the behavior of the allocator with three parameters in the configuration file:
e carrier_ethernet_evc.service_id.start: The lowest value that can be allocated
e carrier_ethernet_evc.service_id.end: The highest value that can be allocated

e carrier_ethernet_evc.service_id.strategy: The strategy to use when selecting the next allocated
value. Possible values are:

— next: Select the first free value in the range.

— any: Select any free value in the range.

30 Chapter 1. Introduction

Inmanta Documentation, Release 1.7.0

Controlling the ethernet virtual interconnect (evi) with service_id

Each deployment of a CarrierEthernetEvc using EVPN backend will need to receive an unused evi. This id is then
used for configs such as the Epipe and evi id. This value is not passed on via the API, the model will receive it through
allocation. The allocator is given a range of values that can be used, it is aware of the values it has already allocated
and based on this and the allocation strategy (next, for sequential allocation, or any, for random allocation) will pick
the allocated evi.

The behavior of the allocator can be influenced similar to the vcid, by editing the carrier_ethernet_evc.
service_id part of the configuration.

1.6.3 Generating A Default Configuration File

Running the following command will generate a default configuration file using the configuration plugin:

python connect/docs/configuration/new_conf.py <path_to_store_config_file>

For example:

python connect/docs/configuration/new_conf.py /home/user/connect-project/files/connect-
—.config.yaml

1.6.4 Special values

Most of the configuration fields accept a specific primitive type while others have stricter requirements. Moreover,
three additional types which are of primitive constraints are introduced:

e InmantaPath: A string prefixed by inmanta://. The rest of the string should be a path to a file in an Inmanta
module or project. NOTE: All files should be located in the £iles/ folder of the module or the project

e SystemPath: A string prefixed by file://. The rest of the string should be an absolute path to a file on the
system where the compiler is running.

* TemplatePath: A string prefixed by template://. The rest of the string should be a path to a template in an
inmanta module or project. (All templates should be located in the templates/ folder of the module or project)

In the specific case of InmantaPath and TemplatePath, the part past the prefix will be treated in this way:

* If the path starts with /, the path is in the project’s files (or templates) folder. For example, inmanta:///
example/inventory.yaml points to a file located in files/example/inventory.yaml at the root of the
project using this module.

o If the path doesn’t start with /, the part of the string before the first / is the name of the module in the files
directory in which the inventory is located. For example, inmanta://example/inventory.yaml points to a
file located in files/inventory.yaml at the root of the module named example.

1.6. Configuration and Customization 31

Inmanta Documentation, Release 1.7.0

1.6.5 Using templates

Some configuration fields accept a path to a template located in an inmanta module or project. Those fields accept a
value of type TemplatePath, and can also accept a simpler value of a primitive type. In the former case, the path
should point to a Jinja2 template (the extension of the file doesn’t matter, but the content does). This template will be
rendered at compile time when calling one of the get_config_template_value plugins (there is one by primitive
type of the inmanta language). The values used for the rendering are provided in the plugin parameters.

Example: A template has already been added to this module: nokia/epipe_service_name.j2.

* The template path to reach it is: template://connect/nokia/epipe_service_name. j2. This is the default
value of nokia.epipe_service_name in the configuration.

* The template content is epipe-{{ vcid }}
» This template is used to generate the name of the Epipe service, from the vcid.

¢ In the model, the template is rendered and accessed like this:

connect: :get_config_template_value_as_string(
"nokia.epipe_service_name",
instance=self,
kwargs={
"vecid": vc_id,
3
)

The plugins takes three parameters:
— dict_path: The path to the configuration value in which the template path should be found.

— instance: (Optional) An inmanta instance, in this case the one in which implementation we call the plugin
from.

— kwargs: (Optional) A dict, containing key-value pairs, values can only be inmanta primitive types (no
entities).

1.7 Extension

Extending the Connect module requires the following steps:
* Reading the MEF standard specification for your desired feature
* Translating the MEF specification to Inmanta model
» Extending the LSM
* Developing plugins
* Writing unit tests

There are circumstances where you need to introduce additional features to the Connect API which are not part of the
MEF standard. For instance, deploying E-Line with either LDP or EVPN. In such cases, we distinctively use the Ext_
prefix for those entities and if required, define custom data types. In other words, by following these steps we update
and extend the existing LSM API, and diverge from the MEF standard.

Let’s take L2 MPLS VPN as an example to extend the existing API:

¢ Define the required types:

32 Chapter 1. Introduction

https://wiki.mef.net/display/CESG/MEF+Standards#MEFStandards-CarrierEthernetServicesStandards

Inmanta Documentation, Release 1.7.0

typedef connectivity_type as string matching self in ["VPWS", "VPLS"]

L2 connectivity type. VPWS or VPLS.

* Define a new entity, representing the service/technology:

entity Ext_L2MPLSType extends lsm::EmbeddedEntity:
The entity represents L2 MPLS VPN technology.
rattr type: Can be VPWS or VPLS.
connectivity_type type

end

Please note that the entity is prefixed with Ext_ and is extending the existing 1sm: : EmbeddedEntity object.
All extensions to the API have to follow the same structure.

EmbeddedEntity contains attributes that should be embedded into a ServiceEntity or another Embed-
dedEntity.

* Define the implementations (refinement) for the entities:

implementation with_VPWS for Ext_L2MPLSType:
""""The specific VPWS implementation goes here
std: :print("VPWS selected")

end

implementation with_VPLS for Ext_L2MPLSType:
"""The specific VPLS implementation goes here
std::print("VPLS selected")

end

In with_VPLS implementation, the attribute types declaration is omitted for brevity; however, the steps are the
same as for the with_VPWS example.

* Implement the refinements:

implement Ext_L2MPLSType using with_VPWS when self.connectivity_type=="VPWS"

implement Ext_L2MPLSType using with_VPLS when self.connectivity_type=="VPLS"

The implement is used to construct and connect the entities, refinements and their attributes together.
when is a compile time if, which gives us control over how the model should be constructed.

1.7. Extension 33

Inmanta Documentation, Release 1.7.0

1.7.1 Developing Plugins

There are times when you need to perform some additional validation, modification or conversions on the input data.
A very simple example would be converting the connectivity_type value provided by the user in lowercase to
uppercase. Plugins can be used to provide the aforementioned functionalities.

Head to __init__.py file under the plugins directory and implement the solution:

from inmanta.plugins import plugin

@plugin
def transform_to_uppercase(word: "string?") -> "string":
return word.upper()

There are a few point to note here:

* It is strongly advised to use type hinting; however, the types here are accommodated with double quotes since
they differ from Python’s built-in data types.

* The @plugin decorator makes the function available to Inmanta model and it can then be referenced inside your
model. This decorated function (transform_to_uppercase) can utilize any other undecorated function defined
inside the __init__.py file for further processing.

1.7.2 Writing Unit Tests

The most basic type of testing is a compile test in which an Inmanta model is fed to project.compile() and then
compiler will run the initial assessments on our provided data/model.

import pytest
from pytest_inmanta.plugin import Project

def test_connectivity_type(project: Project) -> None:
project.compile(

import connect

backend = connect::Ext L2MPLSType(
type="VPWS"

1.8 Frequently Asked Questions (FAQ)

This section contains the frequently asked questions to gain a better understanding of our solution and customers needs.
1. I don’t see my platform or vendor in the supported platforms and features what should I do?

* We are always developing and also offer custom-tailored developments. If your platform is not in the list,
please get in touch with us.

2. Where can I read about Inmanta language?

* In this page you will find Inmanta’s language reference.

34 Chapter 1. Introduction

https://docs.inmanta.com/inmanta-service-orchestrator/latest/language.html

Inmanta Documentation, Release 1.7.0

3. Where can I learn more about Inmanta Service Orchestrator?
* Inmanta Service Orchestrator is documented here.
4. As a developer, how can I get started with Inmanta and how can I set up a basic project?
* Check out our developer getting started guide
* Set up a base project using this guide.
5. What are the available testing frameworks?
* pytest
* pytest-inmanta
* pytest-inmanta-lsm
6. When should I escalate back to Inmanta core team upon facing an error?

* If you are certain that your model is valid, passes the tests and the error is raised by internal Inmanta
modules.

For further information, please get in touch with us.

1.8. Frequently Asked Questions (FAQ) 35

https://docs.inmanta.com/inmanta-service-orchestrator/latest/
https://docs.inmanta.com/inmanta-service-orchestrator/latest/model_developers/developer_getting_started.html
https://docs.inmanta.com/inmanta-service-orchestrator/latest/model_developers/developer_getting_started.html#benefit-from-linting-and-code-navigation-by-setting-up-a-project

Inmanta Documentation, Release 1.7.0

36

Chapter 1. Introduction

CHAPTER
TWO

ADDITIONAL RESOURCES

* Inmanta User Mailinglist
* Inmanta Developer Mailinglist

¢ Inmanta Twitter

37

https://groups.google.com/forum/#!forum/inmanta-users
https://groups.google.com/forum/#!forum/inmanta-devel
https://twitter.com/inmanta_com

Inmanta Documentation, Release 1.7.0

38

Chapter 2. Additional resources

CHAPTER
THREE

PDF VERSION

Download: inmanta.pdf

39

	Introduction
	Prerequisites
	Planning
	Development

	Supported Features and Platforms
	Inmanta Connect Lab
	Virtual Lab Setup
	Summary
	Set Up A Virtual Machine
	Install Containerlab
	Download And Setup Images
	Cisco LAB Setup
	Cisco Image
	Cisco Base Configuration

	Juniper LAB Setup
	Juniper Image
	Juniper Base Configuration

	Nokia LAB Setup
	Nokia Image And License

	Get The Connect LAB Resources
	Inmanta Service Orchestrator

	Starting the LAB
	Connection Map With 2 Routers
	Topology With 2 Routers
	Connection Map With 4 Routers
	Topology With 4 Routers

	Accessing Containers
	Conclusion

	External lab
	Support Inmanta Connect network
	Install the service orchestrator and connect
	Load Inmanta Connect

	Inventory
	Purpose
	Resource inventory
	Identifier allocation
	Service inventory

	Inventory integration
	Built-in resource inventory
	Built-in resources

	Testing
	Constructing A LAB File
	LAB Topology Constraints
	Vendor specific tests
	Example
	Adding New Markers

	Topology File Structure
	Assembling A Basic Test
	Running Tests
	Running Mypy Type Check

	Configuration and Customization
	General Structure
	Configuration File Content
	Controlling the virtual circuit identifier (vcid) with service_id
	Controlling the ethernet virtual interconnect (evi) with service_id

	Generating A Default Configuration File
	Special values
	Using templates

	Extension
	Developing Plugins
	Writing Unit Tests

	Frequently Asked Questions (FAQ)

	Additional resources
	PDF version

