
Inmanta Documentation
Release 7.1.1.dev20240504011805

Inmanta NV

May 04, 2024

CONTENTS

1 Quickstart 3

2 Installation 13

3 Architecture 33

4 Language Reference 37

5 Model developer documentation 51

6 Platform developer documentation 105

7 Inmanta Lifecycle Service Manager 119

8 Administrator documentation 187

9 Frequently asked questions 233

10 Glossary 235

11 Inmanta Reference 239

12 Troubleshooting 427

13 Changelog 439

14 PDF version 501

Python Module Index 503

Index 505

i

ii

Inmanta Documentation, Release 7.1.1.dev20240504011805

Welcome to the Inmanta Service Orchestrator documentation!

Inmanta empowers telecom operators and service providers to speed up service delivery and reduce the total cost of
ownership through efficient, end-to-end automation. No longer is automation limited to silos and vendor-specific
solutions – you can now integrate with various domains and best-in-class components from any vendor.

Inmanta Service Orchestrator is an automation and orchestration tool to efficiently deploy and manage your end-to-
end services across physical and virtual domains and multi-vendor environments. Inmanta’s open and extensible
micro-services architecture combined with powerful, intent-based service modelling provides the flexibility and
efficiency to rapidly create, customize and roll-out new services, while eliminating costly operational errors.

The key characteristics of Inmanta Service Orchestrator are:

• End-to-end: Inmanta Service Orchestrator ensures end-to-end consistency, higher flexibility and a shorter
time to cash by enabling end-to-end automation of all service delivery aspects:

– Multi-domain: designed to interact across physical and virtual domains, such as WAN, edge, access
network, NFV, cloud, containers, and datacenter.

– Holistic: A single, unifying automation solution, providing service orchestration, network orchestra-
tion, NFV orchestration (NFVO), as well as generic VNF management (gVNFM), cloud orchestration
and configuration management. No other automation tools required.

– Full lifecyle: Manage advanced service lifecycle, covering creation, on-boarding, provisioning, modi-
fication, scaling, upgrading and decommissioning.

• Intent-based programmability: Inmanta optimizes service development and maintenance for telecom op-
erators and service providers through its unifying, model-driven methodology for intent-based orchestration.

– Inmanta’s powerful domain-specific language (DSL) simplifies service creation and management, and
is based on infrastructure as code (IaC) principles to provide a unified way to automate multi-domain
and multi-vendor services. The embedded DSL enables the development of modular building blocks
that make abstraction of low-level details, enabling re-usability across use cases.

– Inmanta’s intent-based programmability provides out-of-the-box self-healing, safe roll-back, detailed
dry run and seamless service upgrades for enhanced stability and resilience.

• Vendor agnostic: Inmanta Service Orchestrator is truly open and vendor agnostic for all network layers,
domains and OSS/BSS. Service providers can integrate with 3rd party solutions as well as a wide range of
open-source technologies to build a best-in-class, all-encompassing solution.

– Interoperability through pluggable adapters and open APIs

– API-ification of orchestrated services to easily plug services into the OSS/BSS environment

– Support for brownfield environments by fine-grained roll-out

The Inmanta Service Orchestrator product is based on mature technology backed by 15+ years of research and
interaction with companies offering telecom and cloud services.

CONTENTS 1

Inmanta Documentation, Release 7.1.1.dev20240504011805

2 CONTENTS

CHAPTER

ONE

QUICKSTART

Inmanta is intended to manage complex infrastructures, often in the cloud or other virtualized environments. In
this guide we start simple and manage a 3-node CLOS network with a spine and two leaf switches. First we install
containerlab and then configure SR Linux containers using Inmanta open source orchestrator and gNMI.

1. First, we use Containerlab to spin-up Inmanta server and its PostgreSQL database, then three SR Linux
containers, connected in a CLOS like topology

2. After that, we configure IP addresses and OSPF on them using Inmanta.

Note: This guide is meant to quickly set up an Inmanta LAB environment to experiment with. It is not recom-
mended to run this setup in production, as it might lead to instabilities in the long term.

1.1 Prerequisites

Python version 3.11, Docker, Containerlab and Inmanta need to be installed on your machine and our SR
Linux repository has to be cloned in order to proceed. Please make sure to follow the links below to that end.

1. Install Docker.

2. Install Containerlab.

3. Prepare a development environment by creating a python virtual environment and installing Inmanta:

mkdir -p ~/.virtualenvs
python3 -m venv ~/.virtualenvs/srlinux
source ~/.virtualenvs/srlinux/bin/activate
pip install inmanta

4. Clone the SR Linux examples repository:

git clone https://github.com/inmanta/examples.git

5. Change directory to SR Linux examples:

cd examples/Networking/SR\ Linux/

This folder contains a project.yml, which looks like this:

name: SR Linux Examples
description: Provides examples for the SR Linux module
author: Inmanta
author_email: code@inmanta.com
license: ASL 2.0
copyright: 2022 Inmanta
modulepath: libs

(continues on next page)

3

https://containerlab.dev/
https://learn.srlinux.dev/
https://docs.docker.com/install/
https://containerlab.dev/install/
https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

downloadpath: libs
pip:
index_url: url: https://packages.inmanta.com/public/quickstart/python/simple/

• The modulepath setting defines that modules will be stored in libs directory.

• The repo setting points to one or more Git repositories containing Inmanta modules.

• The requires setting is used to pin versions of modules, otherwise the latest version is used.

1. Install the required modules inside the SR Linux folder:

inmanta project install

Note: should you face any errors at this stage, please contact us.

In the next sections we will showcase how to set up and configure SR Linux devices.

1.2 Setting up the LAB

Go to the SR Linux folder and then containerlab to spin-up the containers:

cd examples/Networking/SR\ Linux/containerlab
sudo docker pull ghcr.io/nokia/srlinux:latest
sudo clab deploy -t topology.yml

Containerlab will spin-up:

1. an Inmanta server

2. a PostgreSQL Database server

3. Three SR Linux network operating systems.

Depending on your system’s horsepower, give them a few seconds/minutes to fully boot-up.

1.3 Connecting to the containers

At this stage, you should be able to view the Web Console by navigating to:

http://172.30.0.3:8888/console

To get an interactive shell to the Inmanta server:

docker exec -it clab-srlinux-inmanta-server /bin/bash

In order to connect to SR Linux containers, there are two options:

1. Using Docker:

docker exec -it clab-srlinux-spine sr_cli
or
docker exec -it clab-srlinux-leaf1 sr_cli
or
docker exec -it clab-srlinux-leaf2 sr_cli

2. Using SSH (username admin and password NokiaSrl1!):

4 Chapter 1. Quickstart

http://172.30.0.3:8888/console

Inmanta Documentation, Release 7.1.1.dev20240504011805

ssh admin@clab-srlinux-spine
ssh admin@clab-srlinux-leaf1
ssh admin@clab-srlinux-leaf2

The output should look something like this:

Welcome to the srlinux CLI.
Type 'help' (and press <ENTER>) if you need any help using this.

--{ running }--[]--
A:spine#

Optionally, you can enter the configuration mode by typing:

enter candidate

Exit the session by typing:

quit

Now that we have the needed containers, we will need to go up a directory where the project files exist:

cd ..

Note: The rest of the this guide assumes commands are executed from the root path of the SR Linux folder, unless
noted otherwise.

1.4 Create an Inmanta project and an environment

A project is a collection of related environments. (e.g. development, testing, production, qa,. . .). We need to
have an environment to manage our infrastructure. An environment is a collection of resources, such as servers,
switches, routers, etc.

There are two ways to create a project and an environment:

1. Using Inmanta CLI (recommended):

Create a project called test
inmanta-cli --host 172.30.0.3 project create -n test
Create an environment called SR_Linux
inmanta-cli --host 172.30.0.3 environment create -p test -n SR_Linux --save

The first option, inmanta-cli, will automatically create a .inmanta file that contains the required information
about the server and environment ID. The compiler uses this file to find the server and to export to the right
environment.

2. Using the Web Console: Connect to the Inmanta container http://172.30.0.3:8888/console, click on the Cre-
ate new environment button, provide a name for the project and the environment then click submit.

If you have chosen the second option, the Web Console, you need to copy the environment ID for later use, either:

• from the URL, e.g. ec05d6d9-25a4-4141-a92f-38e24a12b721 from the http://172.30.0.3:8888/console/
desiredstate?env=ec05d6d9-25a4-4141-a92f-38e24a12b721.

• or by clicking on the Settings pane, then in the Environment tab, scroll down all the way to the bottom of the
page and copy the environment ID.

1.4. Create an Inmanta project and an environment 5

http://172.30.0.3:8888/console
http://172.30.0.3:8888/console/desiredstate?env=ec05d6d9-25a4-4141-a92f-38e24a12b721
http://172.30.0.3:8888/console/desiredstate?env=ec05d6d9-25a4-4141-a92f-38e24a12b721

Inmanta Documentation, Release 7.1.1.dev20240504011805

1.5 Configuring SR Linux

There are a bunch of examples present inside the SR Linux folder of the examples repository that you have cloned
in the previous step, setting up the lab.

In this guide, we will showcase two examples on a small CLOS topology to get you started:

1. interface configuration.

2. OSPF configuration.

It could be useful to know that Inmanta uses the gNMI protocol to interface with SR Linux devices.

Note: In order to make sure that everything is working correctly, run inmanta compile. This will ensure that
the modules are in place and the configuration is valid. If you face any errors at this stage, please contact us.

1.6 SR Linux interface configuration

The interfaces.cf file contains the required configuration model to set IP addresses on point-to-point interfaces
between the spine, leaf1 and leaf2 devices according to the aforementioned topology.

Let’s have a look at the partial configuration model:

1 import srlinux
2 import srlinux::interface as srinterface
3 import srlinux::interface::subinterface as srsubinterface
4 import srlinux::interface::subinterface::ipv4 as sripv4
5 import yang
6

7

8

9 ######## Leaf 1 ########
10

11 leaf1 = srlinux::GnmiDevice(
12 auto_agent = true,
13 name = "leaf1",
14 mgmt_ip = "172.30.0.210",
15 yang_credentials = yang::Credentials(
16 username = "admin",
17 password = "NokiaSrl1!"
18)
19)
20

21 leaf1_eth1 = srlinux::Interface(
22 device = leaf1,
23 name = "ethernet-1/1",
24 mtu = 9000,
25 subinterface = [leaf1_eth1_subint]
26)
27

28 leaf1_eth1_subint = srinterface::Subinterface(
29 parent_interface = leaf1_eth1,
30 x_index = 0,
31 ipv4 = leaf1_eth1_subint_address
32)
33

(continues on next page)

6 Chapter 1. Quickstart

https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux#user-content-sr-linux-topology
https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/interfaces.cf
https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/ospf.cf
https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/interfaces.cf
https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux#user-content-sr-linux-topology

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

34 leaf1_eth1_subint_address = srsubinterface::Ipv4(
35 parent_subinterface = leaf1_eth1_subint,
36 address = sripv4::Address(
37 parent_ipv4 = leaf1_eth1_subint_address,
38 ip_prefix = "10.10.11.2/30"
39)
40)

• Lines 1-5 import the required modules/packages.

• Lines 11-19 instantiate the device; GnmiDevice object and set the required parameters.

• Lines 21-26 instantiate the Interface object by selecting the parent interface, ethernet-1/1 and setting
the MTU to 9000.

• Lines 28-32 instantiate the Subinterface object, link to the parent interface object, set an index and link
to the child Ipv4 object.

• Lines 34-40 instantiate the Ipv4 object, link to the parent Subinterface object, set the IP address and
prefix.

The rest of the configuration model follows the same method for leaf2 and spine devices, with the only difference
being the spine having two interfaces, subinterfaces and IP addresses.

Now, we can deploy the model by referring to Deploy the configuration model section.

1.7 SR Linux OSPF configuration

The ospf.cf file contains the required configuration model to first set IP addresses on point-to-point interfaces
between the spine, leaf1 and leaf2 devices according to the aforementioned topology and then configure OSPF
between them.

This model build on top of the interfaces model that was discussed in SR Linux interface configuration. It first
imports the required packages, then configures interfaces on all the devices and after that, adds the required
configuration model for OSPF.

Let’s have a look at the partial configuration model:

1 import srlinux
2 import srlinux::interface as srinterface
3 import srlinux::interface::subinterface as srsubinterface
4 import srlinux::interface::subinterface::ipv4 as sripv4
5 import srlinux::network_instance as srnetinstance
6 import srlinux::network_instance::protocols as srprotocols
7 import srlinux::network_instance::protocols::ospf as srospf
8 import srlinux::network_instance::protocols::ospf::instance as srospfinstance
9 import srlinux::network_instance::protocols::ospf::instance::area as srospfarea

10 import yang
11

12

13

14 ######## Leaf 1 ########
15

16 leaf1 = srlinux::GnmiDevice(
17 auto_agent = true,
18 name = "leaf1",
19 mgmt_ip = "172.30.0.210",
20 yang_credentials = yang::Credentials(
21 username = "admin",

(continues on next page)

1.7. SR Linux OSPF configuration 7

https://github.com/inmanta/examples/blob/master/Networking/SR%20Linux/ospf.cf
https://github.com/inmanta/examples/tree/master/Networking/SR%20Linux#user-content-sr-linux-topology

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

22 password = "admin"
23)
24)
25

26 # |interface configuration| #
27

28 leaf1_eth1 = srlinux::Interface(
29 device = leaf1,
30 name = "ethernet-1/1",
31 mtu = 9000,
32 subinterface = [leaf1_eth1_subint]
33)
34

35 leaf1_eth1_subint = srinterface::Subinterface(
36 parent_interface = leaf1_eth1,
37 x_index = 0,
38 ipv4 = leaf1_eth1_subint_address
39)
40

41 leaf1_eth1_subint_address = srsubinterface::Ipv4(
42 parent_subinterface = leaf1_eth1_subint,
43 address = sripv4::Address(
44 parent_ipv4 = leaf1_eth1_subint_address,
45 ip_prefix = "10.10.11.2/30"
46)
47)
48

49 # |network instance| #
50

51 leaf1_net_instance = srlinux::NetworkInstance(
52 device = leaf1,
53 name = "default",
54)
55

56 leaf1_net_instance_int1 = srnetinstance::Interface(
57 parent_network_instance = leaf1_net_instance,
58 name = "ethernet-1/1.0"
59)
60

61 # |OSPF| #
62

63 leaf1_protocols = srnetinstance::Protocols(
64 parent_network_instance = leaf1_net_instance,
65 ospf = leaf1_ospf
66)
67

68 leaf1_ospf_instance = srospf::Instance(
69 parent_ospf = leaf1_ospf,
70 name = "1",
71 router_id = "10.20.30.210",
72 admin_state = "enable",
73 version = "ospf-v2"
74)
75

76 leaf1_ospf = srprotocols::Ospf(
77 parent_protocols = leaf1_protocols,

(continues on next page)

8 Chapter 1. Quickstart

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

78 instance = leaf1_ospf_instance
79)
80

81 leaf1_ospf_area = srospfinstance::Area(
82 parent_instance = leaf1_ospf_instance,
83 area_id = "0.0.0.0",
84)
85

86 leaf1_ospf_int1 = srospfarea::Interface(
87 parent_area = leaf1_ospf_area,
88 interface_name = "ethernet-1/1.0",
89)

• Lines 1-10 import the required modules/packages.

• Lines 16-24 instantiate the device; GnmiDevice object and set the required parameters.

• Lines 28-33 instantiate the Interface object by selecting the parent interface, ethernet-1/1 and setting
the MTU to 9000.

• Lines 35-39 instantiate the Subinterface object, link to the parent interface object, set an index and link
to the child Ipv4 object.

• Lines 41-47 instantiate the Ipv4 object, link to the parent Subinterface object, set the IP address and
prefix.

• Lines 51-54 instantiate NetworkInstance object, set the name to default.

• Lines 56-59 instantiate a network instance Interface object, link to the default network instance object
and use ethernet-1/1.0 as the interface.

• Lines 63-66 instantiate the Protocols object, link to the default network instance object and link to the
OSPF object which we will create shortly.

• Lines 68-74 instantiate an OSPF instance and OSPF Instance, link to the OSPF instance, provide a name,
router ID, admin state and version.

• Lines 76-79 instantiate an OSPF object, link to the Protocols object and link to the OSPF instance.

• Lines 81-84 instantiate an Area object, link to the OSPF instance and provide the area ID.

• Lines 86-89 instantiate an area Interface object, link to the OSPF area object and activates the OSPF on
ethernet-1/1.0 interface.

The rest of the configuration model follows the same method for leaf2 and spine devices, with the only difference
being the spine having two interfaces, subinterfaces and IP addresses and OSPF interface configuration.

Now, we can deploy the model by referring to Deploy the configuration model section.

1.8 Deploy the configuration model

To deploy the project, we must first register it with the management server by creating a project and an environment.
We have covered this earlier at Create an Inmanta project and an environment section.

Export the interfaces configuration model to the Inmanta server:

inmanta -vvv export -f interfaces.cf
or
inmanta -vvv export -f interfaces.cf -d

Export the OSPF configuration model to the Inmanta server:

1.8. Deploy the configuration model 9

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta -vvv export -f ospf.cf
or
inmanta -vvv export -f ospf.cf -d

Note: The -vvv option sets the output of the compiler to very verbose. The -d option instructs the server to
immediately start the deploy.

When the model is sent to the server, it will start deploying the configuration. To track progress, you can go to the
web-console, select the test project and then the SR_Linux environment and click on Resources tab on the left
pane to view the progress.

When the deployment is complete, you can verify the configuration using the commands provided in Verifying the
configuration section.

If the deployment fails for some reason, consult the troubleshooting page to investigate the root cause of the issue.

1.9 Verifying the configuration

After a successful deployment, you can connect to SR Linux devices and verify the configuration.

Pick all or any of the devices you like, connect to them as discussed in Connecting to the containers section and
check the configuration:

show interface ethernet-1/1.0
show network-instance default protocols ospf neighbor
show network-instance default route-table ipv4-unicast summary
info flat network-instance default

1.10 Resetting the LAB environment

To fully clean up or reset the LAB, go to the containerlab folder and run the following commands:

cd containerlab
sudo clab destroy -t topology.yml

This will give you a clean LAB the next time you run:

sudo clab deploy -t topology.yml --reconfigure

1.11 Reusing existing modules

We host modules to set up and manage many systems on our Github. These are available under https://github.com/
inmanta/.

When you use an import statement in your model, Inmanta downloads these modules and their dependencies
when you run inmanta project install. V2 modules (See V2 module format) need to be declared as Python
dependencies in addition to using them in an import statement. Some of our public modules are hosted in the v2
format on https://pypi.org/.

10 Chapter 1. Quickstart

http://172.30.0.3:8888/console
https://github.com/inmanta/
https://github.com/inmanta/
https://pypi.org/

Inmanta Documentation, Release 7.1.1.dev20240504011805

1.12 Update the configuration model

The provided configuration models can be easily modified to reflect your desired configuration. Be it a change in
IP addresses or adding new devices to the model. All you need to do is to create a new or modify the existing
configuration model, say interfaces.cf to introduce your desired changes.

For instance, let’s change the IP address of interface ethernet-1/1.0 to 100.0.0.1/24 in the interfaces.cf config-
uration file:

1 import srlinux
2 import srlinux::interface as srinterface
3 import srlinux::interface::subinterface as srsubinterface
4 import srlinux::interface::subinterface::ipv4 as sripv4
5 import yang
6

7

8

9 ######## Leaf 1 ########
10

11 leaf1 = srlinux::GnmiDevice(
12 auto_agent = true,
13 name = "leaf1",
14 mgmt_ip = "172.30.0.210",
15 yang_credentials = yang::Credentials(
16 username = "admin",
17 password = "admin"
18)
19)
20

21 leaf1_eth1 = srlinux::Interface(
22 device = leaf1,
23 name = "ethernet-1/1",
24 mtu = 9000,
25 subinterface = [leaf1_eth1_subint]
26)
27

28 leaf1_eth1_subint = srinterface::Subinterface(
29 parent_interface = leaf1_eth1,
30 x_index = 0,
31 ipv4 = leaf1_eth1_subint_address
32)
33

34 leaf1_eth1_subint_address = srsubinterface::Ipv4(
35 parent_subinterface = leaf1_eth1_subint,
36 address = sripv4::Address(
37 parent_ipv4 = leaf1_eth1_subint_address,
38 ip_prefix = "100.0.0.1/24"
39)
40)

Additionally, you can add more SR Linux devices to the topology.yml file and explore the possible combinations.

1.12. Update the configuration model 11

Inmanta Documentation, Release 7.1.1.dev20240504011805

1.13 Modify or Create your own modules

Inmanta enables developers of a configuration model to make it modular and reusable. We have made some videos
that can walk you through the entire process in a short time.

Please check our YouTube playlist to get started.

1.13.1 Module layout

A configuration module requires a specific layout:

• The name of the module is determined by the top-level directory. Within this module directory, a module.
yml file has to be specified.

• The only mandatory subdirectory is the model directory containing a file called _init.cf. What is defined
in the _init.cf file is available in the namespace linked with the name of the module. Other files in the
model directory create subnamespaces.

• The files directory contains files that are deployed verbatim to managed machines.

• The templates directory contains templates that use parameters from the configuration model to generate
configuration files.

• The plugins directory contains Python files that are loaded by the platform and can extend it using the
Inmanta API.

module
|
|__ module.yml
|
|__ files
| |__ file1.txt
|
|__ model
| |__ _init.cf
| |__ services.cf
|
|__ plugins
| |__ functions.py
|
|__ templates

|__ conf_file.conf.tmpl

Custom modules should be placed in the libs directory of the project.

1.14 Next steps

Model developer documentation

12 Chapter 1. Quickstart

https://www.youtube.com/playlist?list=PL8UgC-AkgG7ZfqzTBpBYh_Uiou8SsjHaW

CHAPTER

TWO

INSTALLATION

2.1 Install Inmanta

This page explains how to install the Inmanta orchestrator software and setup an orchestration server. Regardless
what platform you installed it on, Inmanta requires at least Python and Git to be installed.

2.1.1 Install the software

Step 1: Install the software

Create a repositories file to point yum to the inmanta service orchestrator release repository. Create a file /etc/
yum.repos.d/inmanta.repo with the following content:

[inmanta-service-orchestrator-7-stable]
name=inmanta-service-orchestrator-7-stable
baseurl=https://packages.inmanta.com/<token>/inmanta-service-orchestrator-7-stable/
↪→rpm/el/8/$basearch
repo_gpgcheck=1
enabled=1
gpgkey=https://packages.inmanta.com/<token>/inmanta-service-orchestrator-7-stable/cfg/
↪→gpg/gpg.1544C2C1F409E6E1.key
gpgcheck=1
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
pkg_gpgcheck=1
autorefresh=1
type=rpm-md

Replace <token> with the token provided with your license.

Use dnf to install the software:

sudo dnf install -y inmanta-service-orchestrator-server

This command installs the software and all of its dependencies.

13

Inmanta Documentation, Release 7.1.1.dev20240504011805

Install the license

For the orchestration server to start a license and entitlement file should be loaded into the server. This section
describes how to configure the license. The license consists of two files:

• The file with the .license extension is the license file

• The file with the .jwe extension is the entitlement file

Copy both files to the server and store them for example in /etc/inmanta/license. If this directory does not
exist, create it. Then create a configuration file to point the orchestrator to the license files. Create a file /etc/
inmanta/inmanta.d/license.cfg with the following content:

[license]
license-key=/etc/inmanta/license/<license name>.license
entitlement-file=/etc/inmanta/license/<license name>.jwe

Replace <license name> with the name of the license you received.

Optional step 2: Setup SSL and authentication

Follow the instructions in Setting up SSL and authentication to configure both SSL and authentication. While not
mandatory, it is highly recommended you do so.

Step 3: Install PostgreSQL 13

Install the PostgreSQL 13 package included in RHEL. More info in the ‘Included in Distribution’ section of the
postgresql documentation.

RHEL 8

sudo dnf module install postgresql:13/server
sudo systemctl enable postgresql

RHEL 9

sudo dnf install postgresql-server
sudo systemctl enable postgresql

Warning: Before moving on to the next step, make sure that the locale used by the system is actually installed.
By default, RHEL9 uses the en_US.UTF-8 locale which can be installed via:

sudo dnf install langpacks-en -y

Note: If your system uses a different locale, please install the corresponding langpack.

14 Chapter 2. Installation

https://www.postgresql.org/download/linux/redhat/

Inmanta Documentation, Release 7.1.1.dev20240504011805

Step 4: Setup a PostgreSQL database for the Inmanta server

Initialize the PostgreSQL server:

sudo su - postgres -c "postgresql-setup --initdb"

Start the PostgreSQL database and make sure it is started at boot.

sudo systemctl enable --now postgresql

Create a inmanta user and an inmanta database by executing the following command. This command will request
you to choose a password for the inmanta database.

sudo -u postgres -i bash -c "createuser --pwprompt inmanta"
sudo -u postgres -i bash -c "createdb -O inmanta inmanta"

Change the authentication method for local connections to md5 by changing the following lines in the /var/lib/
pgsql/data/pg_hba.conf file

IPv4 local connections:
host all all 127.0.0.1/32 ident
IPv6 local connections:
host all all ::1/128 ident

to

IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5

Make sure JIT is disabled for the PostgreSQL database as it might result in poor query performance. To disable
JIT, set

disable JIT
jit = off

in /var/lib/pgsql/13/data/postgresql.conf.

Restart the PostgreSQL server to apply the changes made in the pg_hba.conf and postgresql.conf files:

sudo systemctl restart postgresql

Step 5: Set the database connection details

Add a /etc/inmanta/inmanta.d/database.cfg file as such that it contains the correct database connection
details. That file should look as follows:

[database]
host=<ip-address-database-server>
name=inmanta
username=inmanta
password=<password>

Replace <password> in the above-mentioned snippet with the password of the inmanta database. By default In-
manta tries to connect to the local server and uses the database inmanta. See the database section in the configfile
for other options.

2.1. Install Inmanta 15

Inmanta Documentation, Release 7.1.1.dev20240504011805

Step 6: Set the server address

When virtual machines are started by this server that install the inmanta agent, the correct server.
server-address needs to be configured. This address is used to create the correct boot script for the virtual
machine.

Set this value to the hostname or IP address that other systems use to connect to the server in the configuration file
stored at /etc/inmanta/inmanta.d/server.cfg.

[server]
server-address=<server-ip-address-or-hostname>

Note: If you deploy configuration models that modify resolver configuration it is recommended to use the IP
address instead of the hostname.

Step 7: Configure ssh of the inmanta user

The inmanta user that runs the server needs a working ssh client. This client is required to checkout git repositories
over ssh and if the remote agent is used.

1. Provide the inmanta user with one or more private keys:

a. Generate a new key with ssh-keygen as the inmanta user: sudo -u inmanta ssh-keygen -N
""

b. Install an exiting key in /var/lib/inmanta/.ssh/id_rsa

c. Make sure the permissions and ownership are set correctly.

ls -l /var/lib/inmanta/.ssh/id_rsa

-rw-------. 1 inmanta inmanta 1679 Mar 21 13:55 /var/lib/inmanta/.ssh/id_rsa

2. Configure ssh to accept all host keys or white list the hosts that are allowed or use signed host keys (depends
on your security requirements). This guide configures ssh client for the inmanta user to accept all host keys.
Create /var/lib/inmanta/.ssh/config and create the following content:

Host *
StrictHostKeyChecking no
UserKnownHostsFile=/dev/null

Ensure the file belongs to the inmanta user:

sudo chown inmanta:inmanta /var/lib/inmanta/.ssh/config

3. Add the public key to any git repositories and save it to include in configuration models that require remote
agents.

4. Test if you can login into a machine that has the public key and make sure ssh does not show you any prompts
to store the host key.

16 Chapter 2. Installation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Step 8: Configure the server bind address

By default the server only listens on localhost, port 8888. This can be changed by altering the server.
bind-address and server.bind-port options in the /etc/inmanta/inmanta.d/server.cfg file.

[server]
bind-address=<server-bind-address>
bind-port=<server-bind-port>

Step 9: Enable the required Inmanta extensions

Make sure that the required Inmanta extensions are enabled. This is done by adding a configuration file with the
following content to /etc/inmanta/inmanta.d/extensions.cfg.

[server]
enabled_extensions=lsm,ui,support,license

This file is also installed by the RPM.

Step 10: Start the Inmanta server

Start the Inmanta server and make sure it is started at boot.

sudo systemctl enable --now inmanta-server

The web-console is now available on the port and host configured in step 8.

Optional Step 11: Setup influxdb for collection of performance metrics

Follow the instructions in Performance Metering to send performance metrics to influxdb. This is only recom-
mended for production deployments.

Optional Step 12: Configure logging

Logging can be configured by following the instructions in Logging.

2.2 Install Inmanta with Docker

This page explains how to setup an orchestration server using docker. This guide assumes you already have docker
and docker-compose installed on your machine.

2.2.1 Pull the image

Step 1: Log in to Cloudsmith registry

Connect to the Cloudsmith registry using your entitlement token.

$ docker login containers.inmanta.com
Username: containers
Password: <your-entitlement-token>

Login Succeeded
$

2.2. Install Inmanta with Docker 17

https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/

Inmanta Documentation, Release 7.1.1.dev20240504011805

Replace <your-entitlement-token> with the entitlement token provided with your license.

Step 2: Pull the image

Use docker pull to get the desired image:

docker pull containers.inmanta.com/containers/service-orchestrator:7

This command will pull the latest version of the Inmanta Service Orchestrator image.

2.2.2 Start the server with docker-compose

Here is a minimalistic docker-compose file content that can be used to deploy the server on your machine.

version: '3'
services:

postgres:
container_name: inmanta_db
image: postgres:13
environment:

POSTGRES_USER: inmanta
POSTGRES_PASSWORD: inmanta
PGDATA: /var/lib/postgresql/data/pgdata

networks:
inm_net:

ipv4_address: 172.30.0.2
volumes:

- type: volume
source: pgdata
target: /var/lib/postgresql/data

inmanta-server:
container_name: inmanta_orchestrator
image: containers.inmanta.com/containers/service-orchestrator:7
ports:

- 8888:8888
volumes:

- ./resources/com.inmanta.license:/etc/inmanta/license/com.inmanta.
↪→license

- ./resources/com.inmanta.jwe:/etc/inmanta/license/com.inmanta.jwe
networks:

inm_net:
ipv4_address: 172.30.0.3

depends_on:
- "postgres"

command: "server --wait-for-host inmanta_db --wait-for-port 5432"
networks:

inm_net:
ipam:

driver: default
config:

- subnet: 172.30.0.0/16
volumes:

pgdata:

You can paste this script in a file named docker-compose.yml and ensure you have you license files available. With
the proposed config, they should be located in a resources/ folder on the side of the docker-compose file you
create, and the license files should be named com.inmanta.license and com.inmanta.jwe. You can of course

18 Chapter 2. Installation

Inmanta Documentation, Release 7.1.1.dev20240504011805

update the content of the docker-compose file to match your current configuration. Then bring the containers up
by running the following command:

docker-compose up

You should be able to reach the orchestrator to this address: http://172.30.0.3:8888.

The PostgreSQL server started by the above-mentioned docker-compose file has a named volume pgdata at-
tached. This means that no data will be lost when the PostgreSQL container restarts. Pass the -v option to the
docker-compose down to remove the volume.

The default server config included in the container images assumes that the orchestrator can reach a database
server with hostname inmanta_db and that it can authenticate to it using the username inmanta and password
inmanta. When using a different setup than the one mentioned above, you should overwrite the server config with
one matching your needs. You can find more instructions for overwriting the config in a following section, here.

Warning: We don’t recommend using the setup described above as a production environment. Hosting a
database in a container as shown here is not ideal in term of performance, reliability and raises some serious
data persistence concerns.

2.2.3 Overwrite default server configuration

By default the server will use the file located in the image at /etc/inmanta/inmanta.cfg. If you want to change
it, you can copy this file, edit it, then mount it in the container, where the original file was located.

If you use docker-compose, you can simply update this section of the example above:

inmanta-server:
container_name: inmanta_orchestrator
image: containers.inmanta.com/containers/service-orchestrator:7
ports:

- 8888:8888
volumes:

- ./resources/com.inmanta.license:/etc/inmanta/license/com.inmanta.license
- ./resources/com.inmanta.jwe:/etc/inmanta/license/com.inmanta.jwe
- ./resources/my-server-conf.cfg:/etc/inmanta/inmanta.cfg

2.2.4 Starting the ssh server

By default, no ssh server is running in the container. You don’t need it to have a functional orchestrator. If you want
to enable ssh anyway, for easy access to the orchestrator, you can overwrite the startup command of the container
with the following:

server-with-ssh

If you use docker-compose, it should look like:

inmanta-server:
container_name: inmanta_orchestrator
...
command: "server-with-ssh"

Warning: By default, the inmanta user doesn’t have any password, if you want to ssh into the container, you
also need to set the authorized_keys file for the inmanta user. You can do so by mounting your public key to the

2.2. Install Inmanta with Docker 19

http://172.30.0.3:8888

Inmanta Documentation, Release 7.1.1.dev20240504011805

following path in the container: /var/lib/inmanta/.ssh/authorized_keys. When starting, the container
will make sure that the file has the correct ownership and permissions.

2.2.5 Waiting for the database

Depending on you setup, you might want your container to wait for the database to be ready to accept connections
before starting the server (as this one would fail, trying to reach the db). You can do this by adding the following
arguments to the startup command of the container:

server --wait-for-host <your-db-host> --wait-for-port <your-db-port>

If you use docker-compose, it should look like:

inmanta-server:
container_name: inmanta_orchestrator
...
command: "server --wait-for-host <your-db-host> --wait-for-port <your-db-port>"

2.2.6 Setting environment variables

You might want your inmanta server to be able to reach some environment variables. There are two ways you can
achieve this:

1. Set the environment variables with docker, either using the --env argument or in your docker-compose file.
Those variables will be accessible to the inmanta server and any agent it starts, but not to any other process
running in the container (if you for example login via ssh to the container and try to install a project again).

2. (Recommended) Set the environment variables in a file and mount it to the following path in the container:
/etc/inmanta/env. This file will be loaded when starting the server and for every session that the inmanta
user starts in the container.

inmanta-server:
container_name: inmanta_orchestrator
image: containers.inmanta.com/containers/service-orchestrator:7
ports:

- 8888:8888
volumes:

- ./resources/com.inmanta.license:/etc/inmanta/license/com.inmanta.license
- ./resources/com.inmanta.jwe:/etc/inmanta/license/com.inmanta.jwe
- ./resources/my-server-conf.cfg:/etc/inmanta/inmanta.cfg
- ./resources/my-env-file:/etc/inmanta/env

2.2.7 Changing inmanta user/group id

If you mount a folder of your host in the container, and expect the inmanta user to interact with it, you might face the
issue that the inmanta user inside the container doesn’t have ownership of the files. You could fix this by changing
the ownership in the container, but this change would also be reflected on the host, meaning that you would lose
the ownership of you files. This is a very uncomfortable situation. While Podman has been offering the possibility
to do a mapping of a user id in the container to a user id on the host at runtime, which would solve our problem
here, Docker still doesn’t offer this functionality. The inmanta container allows you to change the user and group
id of the inmanta user inside the container when starting the container to match the user on the host, getting rid
that way of any conflict in the files ownership.

This can be done easily by simply setting those environment variables:
• INMANTA_UID: Will change, when starting the container, the id of the inmanta user.

20 Chapter 2. Installation

Inmanta Documentation, Release 7.1.1.dev20240504011805

• INMANTA_GID: Will change, when starting the container, the id of the inmanta group.

If you use docker-compose, you can simply update this section of the example above:

inmanta-server:
container_name: inmanta_orchestrator
...
environment:

INMANTA_UID: 1000
INMANTA_GID: 1000

2.2.8 Log rotation

By default, the container won’t do any log rotation, to let you the choice of dealing with the logs according to your
own preferences. We recommend that you do so by mounting a folder inside of the container at the following path:
/var/log. This path contains all the logs of inmanta (unless you specified a different path in the config of the
server) and the logs of the SSH server.

2.3 Install Inmanta with Podman and Systemd

This page explains how to setup an Inmanta orchestration server using Podman and Systemd. This guide assumes
you already have Podman installed on your machine and that you are running a Linux distribution using Systemd.

Note: The instructions below will show you how to install the orchestrator, and make the orchestrator run as a
non-root user on the host. To achieve this you can either follow the rootless instructions (User setup), running
them as a simple user without elevated privileged, or as root (Root setup). If you follow the latter, make sure to
create a system user that we will use to run the orchestrator process. We will assume in the next steps that such
system user is named inmanta and its HOME folder is /var/lib/inmanta.

2.3.1 Podman configuration

Follow the Podman documentation to make sure that:

1. The user that will run the orchestrator (your unprivileged user, or the inmanta system user) has a range of
subuids and subgids available to use. You can check it is the case running those commands:

User setup

$ podman unshare cat /proc/self/uid_map
0 1000 1
1 524288 65536

$ podman unshare cat /proc/self/gid_map
0 1000 1
1 524288 65536

2.3. Install Inmanta with Podman and Systemd 21

http://podman.io/
https://github.com/containers/podman/blob/2ba36051082d7ba6ba387f4151e1cfcf338bbc4d/docs/tutorials/rootless_tutorial.md

Inmanta Documentation, Release 7.1.1.dev20240504011805

Root setup

sudo -i -u inmanta -- podman unshare cat /proc/self/uid_map
0 976 1
1 1000000 65536

sudo -i -u inmanta -- podman unshare cat /proc/self/gid_map
0 975 1
1 1000000 65536

If it is not the case, you can set these up following the podman documentation referred above.

2. The user that will run the orchestrator has the runRoot folder configured as follow.

User setup

$ podman info | grep runRoot
runRoot: /run/user/1000/containers

The value 1000 should match the id of your user.

$ id -u
1000

Root setup

sudo -i -u inmanta -- podman info | grep runRoot
runRoot: /run/inmanta/containers

We overwrite the default value that podman will set for this system user for two reasons:

1. The default values it picks depends on the way you used podman for the first time with this user.

2. The default values it picks will contain the id of the inmanta user in its path, which we don’t want to
make any assumption about in the next steps.

You can change this value by updating the file at /var/lib/inmanta/.config/containers/storage.
conf, making sure this entry is in the configuration:

[storage]
runroot = "/run/inmanta/containers"

Then create the folder and reset podman.

mkdir -p /run/inmanta
chown -R inmanta:inmanta /run/inmanta
sudo -i -u inmanta -- podman system reset -f
A "/var/lib/inmanta/.config/containers/storage.conf" config file exists.
Remove this file if you did not modify the configuration.

22 Chapter 2. Installation

Inmanta Documentation, Release 7.1.1.dev20240504011805

2.3.2 Pull the image

Step 1: Log in to container registry

Connect to the container registry using your entitlement token.

User setup

$ podman login containers.inmanta.com
Username: containers
Password: <your-entitlement-token>

Login Succeeded

Root setup

sudo -i -u inmanta -- podman login containers.inmanta.com
Username: containers
Password: <your-entitlement-token>

Login Succeeded

Replace <your-entitlement-token> with the entitlement token provided with your license.

Step 2: Pull the image

Use podman pull to get the desired image:

User setup

$ podman pull containers.inmanta.com/containers/service-orchestrator:7

Root setup

sudo -i -u inmanta -- podman pull containers.inmanta.com/containers/service-
↪→orchestrator:7

This command will pull the latest release of the Inmanta Service Orchestrator image within this major version.

2.3.3 Prepare the orchestrator configuration

1. Get the default configuration file:

As of now, the container cannot be configured with environment variables, we should use a configuration
file, mounted inside the container. To do this, you can get the current configuration file from the container,
edit it, and mount it where it should be in the container.

2.3. Install Inmanta with Podman and Systemd 23

Inmanta Documentation, Release 7.1.1.dev20240504011805

User setup

Let’s create a file on the host at ~/.config/inmanta/inmanta.cfg. We can take as template the default
file already packaged in our container image.

$ mkdir -p ~/.config/inmanta
$ podman run --rm containers.inmanta.com/containers/service-orchestrator:7 cat /
↪→etc/inmanta/inmanta.cfg > ~/.config/inmanta/inmanta.cfg

Root setup

Let’s create a file on the host at /etc/inmanta/inmanta.cfg. We can take as template the default file
already packaged in our container image.

mkdir -p /etc/inmanta
chown -R inmanta:inmanta /etc/inmanta
sudo -i -u inmanta -- podman run --rm containers.inmanta.com/containers/
↪→service-orchestrator:7 cat /etc/inmanta/inmanta.cfg | sudo -i -u inmanta --␣
↪→tee /etc/inmanta/inmanta.cfg

2. Update database settings:

It is very unlikely that your database setup will match the one described in the default config we just got.
Update the configuration in the [database] section to reflect the setup you have.

Note: The setup described here assumes you already have a PostgreSQL instance available that the orches-
trator can use for its persistent storage. If it is not the case, please jump to the end of this document, where
we explain to you how to easily deploy a database using Postman and Systemd.

3. Make sure that there is a folder on your host that can persist all the logs of the server and that it is owned by
the user running the orchestrator service.

User setup

In this setup, the log folder on the host will be ~/.local/share/inmanta-orchestrator-server/logs.

$ mkdir -p ~/.local/share/inmanta-orchestrator-server/logs

Root setup

In this setup, the log folder on the host will be /var/log/inmanta.

mkdir -p /var/log/inmanta
chown -R inmanta:inmanta /var/log/inmanta

Warning: Inside of the container, this folder will be mounted at /var/log/inmanta as it is the default
location where the orchestrator saves its logs. This location is configurable in the orchestrator configura-
tion file. If you for any reason would change this location in the configuration, make sure to update any
usage of the /var/log/inmanta folder in the next installation steps.

4. Get the license files:

Together with the access to the inmanta container repo, you should also have received a license and an
entitlement file. The orchestrator will need them in order to run properly. You can also place them in a
config directory on your host.

24 Chapter 2. Installation

Inmanta Documentation, Release 7.1.1.dev20240504011805

User setup

After this step, we assume that this folder is ~/.config/inmanta/license/ and that both files are named
com.inmanta.license and com.inmanta.jwe respectively.

$ tree .config/inmanta
.config/inmanta

inmanta.cfg
license

com.inmanta.jwe
com.inmanta.license

2 directories, 3 files

Root setup

After this step, we assume that this folder is /etc/inmanta/license/ and that both files are named com.
inmanta.license and com.inmanta.jwe respectively.

tree /etc/inmanta
/etc/inmanta

inmanta.cfg
license

com.inmanta.jwe
com.inmanta.license

2 directories, 3 files

2.3.4 Start the server with systemd

Here is a systemd unit file that can be used to deploy the server on your machine.

User setup

[Unit]
Description=Podman
Documentation=https://docs.inmanta.com
Wants=network-online.target
After=network-online.target
RequiresMountsFor=%t/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman run \

--cidfile=%t/%n.ctr-id \
--cgroups=no-conmon \
--sdnotify=conmon \
-d \
--replace \
--publish=127.0.0.1:8888:8888 \
--uidmap=993:0:1 \
--uidmap=0:1:993 \

(continues on next page)

2.3. Install Inmanta with Podman and Systemd 25

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

--uidmap=994:994:64543 \
--gidmap=993:0:1 \
--gidmap=0:1:993 \
--gidmap=994:994:64543 \
--name=inmanta-orchestrator-server \
--volume=%E/inmanta/inmanta.cfg:/etc/inmanta/inmanta.cfg:z \
--volume=%E/inmanta/license/com.inmanta.license:/etc/inmanta/license/com.

↪→inmanta.license:z \
--volume=%E/inmanta/license/com.inmanta.jwe:/etc/inmanta/license/com.inmanta.

↪→jwe:z \
--volume=%h/.local/share/inmanta-orchestrator-server/logs:/var/log/inmanta:z \
--entrypoint=/usr/bin/inmanta \
--user=993:993 \
containers.inmanta.com/containers/service-orchestrator:7 \
--log-file /var/log/inmanta/server.log --log-file-level 2 --timed-logs server

ExecStop=/usr/bin/podman stop \
--ignore -t 10 \
--cidfile=%t/%n.ctr-id

ExecStopPost=/usr/bin/podman rm \
-f \
--ignore -t 10 \
--cidfile=%t/%n.ctr-id

Type=notify
NotifyAccess=all

[Install]
WantedBy=default.target

You can paste this configuration in a file named inmanta-orchestrator-server.service in the systemd folder
for your user. This folder is typically ~/.config/systemd/user/.

Root setup

[Unit]
Description=Podman
Documentation=https://docs.inmanta.com
Wants=network-online.target
After=network-online.target
RequiresMountsFor=/run/inmanta/containers

[Service]
User=inmanta
Group=inmanta
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman run \

--cidfile=/run/inmanta/%n.ctr-id \
--cgroups=no-conmon \
--sdnotify=conmon \
-d \
--replace \
--publish=127.0.0.1:8888:8888 \
--uidmap=993:0:1 \
--uidmap=0:1:993 \

(continues on next page)

26 Chapter 2. Installation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

--uidmap=994:994:64543 \
--gidmap=993:0:1 \
--gidmap=0:1:993 \
--gidmap=994:994:64543 \
--name=inmanta-orchestrator-server \
--volume=/etc/inmanta/inmanta.cfg:/etc/inmanta/inmanta.cfg:z \
--volume=/etc/inmanta/license/com.inmanta.license:/etc/inmanta/license/com.

↪→inmanta.license:z \
--volume=/etc/inmanta/license/com.inmanta.jwe:/etc/inmanta/license/com.

↪→inmanta.jwe:z \
--volume=/var/log/inmanta:/var/log/inmanta:z \
--entrypoint=/usr/bin/inmanta \
--user=993:993 \
containers.inmanta.com/containers/service-orchestrator:7 \
--log-file /var/log/inmanta/server.log --log-file-level 2 --timed-logs server

ExecStop=/usr/bin/podman stop \
--ignore -t 10 \
--cidfile=/run/inmanta/%n.ctr-id

ExecStopPost=/usr/bin/podman rm \
-f \
--ignore -t 10 \
--cidfile=/run/inmanta/%n.ctr-id

Type=notify
NotifyAccess=all

[Install]
WantedBy=default.target

You can paste this configuration in a file named inmanta-orchestrator-server.service in the systemd folder
/etc/systemd/system.

Note:
In the configuration above, you can observe that the usage of the --uidmap and --gidmap options. We use
them three times to do the following:

1. Map the user 993 inside of the container (the container’s inmanta user) to the user 0 in the podman
user namespace. This user 0 in the user namespace is actually itself mapped to the user running the
podman run command on the host.

2. Map all users from 0 to 65536 (except for 993) inside of the container to subids of the host user running
the container.

This allow us to easily share files between the host user and the inmanta user inside the container, avoiding any
ownership conflict as they are then the same user (just seen from a different user namespace). Strictly speaking, if
the image is already pulled on the host, you might get away with mapping only the inmanta (--uidmap=993:0:1
--gidmap=993:0:1) and the root (--uidmap=0:1:1 --gidmap=0:1:1) user and group inside of the container.
But you would face issue if the container image was deleted from your host and the run command in the unit file
tried to automatically pull the image, as the container image does contain a lot more users and groups than inmanta
and root in its filesystem.

Once the systemd unit files are in place, make sure to enable them and reload the systemctl daemon.

2.3. Install Inmanta with Podman and Systemd 27

Inmanta Documentation, Release 7.1.1.dev20240504011805

User setup

$ systemctl --user daemon-reload
$ systemctl --user enable inmanta-orchestrator-server.service

Root setup

systemctl daemon-reload
systemctl enable inmanta-orchestrator-server.service

Then start the container by running the following command:

User setup

$ systemctl --user start inmanta-orchestrator-server.service

Root setup

systemctl start inmanta-orchestrator-server.service

You should be able to reach the orchestrator at this address: http://127.0.0.1:8888 on the host.

2.3.5 Setting environment variables

You might want your inmanta server to be able to use some environment variables. You can set the environment
variables by updating your Systemd unit file, relying on the --env/--env-file options of the podman run
command. Those variables will be accessible to the inmanta server, the compiler and any agent started by the
server.

2.3.6 Log rotation

By default, the container won’t do any log rotation, we let you the choice of dealing with the logs according to your
own preferences. We recommend you to setup some log rotation, for example using a logrotate service running on
your host.

2.3.7 Deploy postgresql with podman and systemd

User setup

1. Pull the postgresql image from dockerhub.

$ podman pull docker.io/library/postgres:13

2. Create a podman network for your database and the orchestrator.

$ podman network create --subnet 172.42.0.0/24 inmanta-orchestrator-net

3. Create a systemd unit file for your database, let’s name it ~/.config/systemd/user/
inmanta-orchestrator-db.service.

28 Chapter 2. Installation

http://127.0.0.1:8888

Inmanta Documentation, Release 7.1.1.dev20240504011805

[Unit]
Description=Podman
Documentation=https://docs.inmanta.com
Wants=network-online.target
After=network-online.target
RequiresMountsFor=%t/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman run \

--cidfile=%t/%n.ctr-id \
--cgroups=no-conmon \
--sdnotify=conmon \
-d \
--replace \
--network=inmanta-orchestrator-net:ip=172.42.0.2 \
--uidmap=999:0:1 \
--uidmap=0:1:999 \
--uidmap=1000:1000:64537 \
--gidmap=999:0:1 \
--gidmap=0:1:999 \
--gidmap=1000:1000:64537 \
--name=inmanta-orchestrator-db \
--volume=%h/.local/share/inmanta-orchestrator-db/data:/var/lib/

↪→postgresql/data:z \
--env=POSTGRES_USER=inmanta \
--env=POSTGRES_PASSWORD=inmanta \
docker.io/library/postgres:13

ExecStop=/usr/bin/podman stop \
--ignore -t 10 \
--cidfile=%t/%n.ctr-id

ExecStopPost=/usr/bin/podman rm \
-f \
--ignore -t 10 \
--cidfile=%t/%n.ctr-id

Type=notify
NotifyAccess=all

[Install]
WantedBy=default.target

4. Create the folder that will contain the persistent storage for the database: ~/.local/shared/
inmanta-orchestrator-db/data.

$ mkdir -p ~/.local/share/inmanta-orchestrator-db/data

5. Reload the systemd daemon, enable the service, and start it.

$ systemctl --user daemon-reload
$ systemctl --user enable inmanta-orchestrator-db.service
$ systemctl --user start inmanta-orchestrator-db.service

6. In the unit file of the orchestrator (as described here), make sure to attach the orchestrator container to the
network the database is a part of, using the --network option of the podman run command.

7. Don’t forget to update the ip address of the database in the inmanta server configuration file (~/.config/
inmanta/inmanta.cfg)!

2.3. Install Inmanta with Podman and Systemd 29

Inmanta Documentation, Release 7.1.1.dev20240504011805

Root setup

For a proper install of postgres on your host system as root, please refer to the postgres documentation regarding
your operating system.

2.4 Configure agents

Inmanta agents can be started automatically (auto-started agents) or manually (manually-started agents). This
section describes how both types of agents can be set up and configured. Inmanta agents only run on Linux.

2.4.1 Auto-started agents

Auto-started agents always run on the Inmanta server. The Inmanta server manages the full lifecycle of these agents.

Configuring auto-started agents via environment settings

Auto-started agents can be configured via the settings of the environment where the auto-started agent belongs to.
The following options are configurable:

• autostart_agent_map

• autostart_agent_deploy_interval

• autostart_agent_deploy_splay_time

• autostart_agent_repair_interval

• autostart_agent_repair_splay_time

• autostart_on_start

The autostart_agent_map requires an entry for each agent that should be autostarted. The key is the name of
the agent and the value is either local: for agents that map to the Inmanta server or an SSH connection string
when the agent maps to a remote machine. The SSH connection string requires the following format: ssh://
<user>@<host>:<port>?<options>. Options is a ampersand-separated list of key=value pairs. The following
options can be provided:

Option
name

Default
value

Description

retries 10 The amount of times the orchestrator will try to establish the SSH connection when
the initial attempt failed.

retry_wait 30 The amount of second between two attempts to establish the SSH connection.
python python The Python3 interpreter available on the remote side. This executable has to be dis-

coverable through the system PATH.

Auto-started agents start when they are required by a specific deployment or when the Inmanta server starts if
the autostart_on_start setting is set to true. When the agent doesn’t come up when required, consult the
troubleshooting documentation to investigate the root cause of the issue.

30 Chapter 2. Installation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Configuring the autostart_agent_map via the std::AgentConfig entity

The std::AgentConfig entity provides functionality to add an entry to the autostart_agent_map of a specific
environment. As such, the auto-started agents can be managed in the configuration model.

Special Requirements for remote std::File, std::Package, std::Service and exec::Run

When using the agents built-in ssh capability, to perform actions over ssh on remote hosts, the following require-
ments must be met:

• The Inmanta server should have passphraseless SSH access on the machine it maps to. More information on
how to set up SSH connectivity can be found at Step 7: Configure ssh of the inmanta user

• The remote machine should have a Python 2 or 3 interpreter installed. The binary executed by default is
python.

• The user to log into the remote machine should either be root or have the ability to do a passwordless sudo.
To enable passwordless sudo for the user username, add a file to /etc/sudoers.d/ containing username
ALL=(ALL) NOPASSWD: ALL. It is advisable to use a safe editor such as visudo or sudoedit for this. For
more details, go here.

2.4.2 Manually-started agents

Manually started agents can be run on any Linux device, but they should be started and configured manually as the
name suggests.

Requirements

The following requirements should be met for agents that don’t map to the host running the agent process (i.e. The
managed device is remote with respect to the Inmanta agent and the agent has to execute I/O operations on the
remote machine using self._io):

• The Inmanta agent should have passphraseless SSH access on the machine it maps to. More information on
how to set up SSH connectivity can be found at Step 7: Configure ssh of the inmanta user

• The remote machine should have a Python 2 or 3 interpreter installed. The binary executed by default is
python.

Step 1: Installing the required Inmanta packages

In order to run a manually started agent, the inmanta-service-orchestrator-agent package is required on
the machine that will run the agent.

sudo tee /etc/yum.repos.d/inmanta.repo <<EOF
[inmanta-service-orchestrator-7-stable]
name=inmanta-service-orchestrator-7-stable
baseurl=https://packages.inmanta.com/<token>/inmanta-service-orchestrator-7-stable/

↪→rpm/el/8/$basearch
gpgcheck=1
gpgkey=https://packages.inmanta.com/<token>/inmanta-service-orchestrator-7-stable/

↪→cfg/gpg/gpg.1544C2C1F409E6E1.key
repo_gpgcheck=1
enabled=1
enabled_metadata=1
EOF

sudo dnf install -y inmanta-service-orchestrator-agent

2.4. Configure agents 31

https://www.sudo.ws/man/sudoers.man.html

Inmanta Documentation, Release 7.1.1.dev20240504011805

Replace <token> with the token provided with your license.

Step 2: Configuring the manually-started agent

The manually-started agent can be configured via a /etc/inmanta/inmanta.d/*.cfg config file. The following
options configure the behavior of the manually started agent:

• config.state-dir

• config.agent-names

• config.environment

• config.agent-map

• config.agent-deploy-splay-time

• config.agent-deploy-interval

• config.agent-repair-splay-time

• config.agent-repair-interval

• config.agent-reconnect-delay

• config.server-timeout

• agent_rest_transport.port

• agent_rest_transport.host

• agent_rest_transport.token

• agent_rest_transport.ssl

• agent_rest_transport.ssl-ca-cert-file

The agent will follow the pip configuration defined in the project.yml. Make sure it can access the pip index
configured by the project (See the pip documentation for netrc for more information on how to setup authentication).

The config.agent-map option can be configured in the same way as the autostart_agent_map for auto-started
agents.

Step 3: Starting the manually-started agent

Finally, enable and start the inmanta-agent service:

sudo systemctl enable inmanta-agent
sudo systemctl start inmanta-agent

The logs of the agent are written to /var/log/inmanta/agent.log. When the agent doesn’t come up after
starting the inmanta-agent service, consult the troubleshooting documentation to investigate the root cause of
the issue.

32 Chapter 2. Installation

https://pip.pypa.io/en/stable/topics/authentication/#netrc-support

CHAPTER

THREE

ARCHITECTURE

The Inmanta orchestrator consists of several components:

Git Server PostgreSQL

inmanta-server AgentCompiler

CLIweb-console

*

*

*

*

• The Inmanta server: This server manages the deployment process, it keeps track of all agents and the current
state of all projects. The server stores it state in PostgreSQL. All other state can be recovered after a server
restart or failover.

• A PostgreSQL database: The Inmanta server stores its state in a PostgreSQL database.

• The git server: The source code of the configuration models is stored in (one or more) git repositories.

• The compiler: The compiler converts the source code into deployable resources and exports it to the server.

• CLI and web-console: To control the server, you can use either the web-console or the command line tools.
Both communicate through the server rest API.

• The Inmanta agents: Agents execute configuration changes on targets. A target can be a server, a network
switch or an API or cloud service. An agent can manage local and remote resources. This provides the
flexibility to work in an agent based or agent-less architecture, depending on the requirements.

3.1 Usage modes

Inmanta can be used in three modes:

• embedded: all components are started with the deploy command, the server is terminated after the deploy
is finished. Suitable only for development.

• push to server: the server runs on a external machine. Models are compiled on the developer machine and
pushed to the server directly. Suitable only for small setups or for developement/debug purposes.

• autonomous server: the server runs on a external machine. Models are stored in git repos and compiled by
the server.

33

Inmanta Documentation, Release 7.1.1.dev20240504011805

The last two modes support agents on same machine as the server and automatically started, or deployed as an
external process.

3.1.1 All in one

Dev Machine

Compiler

CLI web-console

PostgreSQL

Agent
To target

inmanta-server

In a all-in-one deployment, all components (server, agent and postgres) are started embedded in the compiler and
terminated after the deploy is complete. No specific setup is required. To deploy the current model, use:

inmanta deploy

The all-in-one deployment is ideal for testing, development and one-off deployments. State related to orchestration
is stored locally in data/deploy.

3.1.2 Push to server

Git Server

Inmanta Server

PostgreSQL

inmanta-server

Agent

Dev Machine

Compiler

CLI

web-console

To target

In a push to server model, the server is deployed on an external machine, but models are still compiled on the
developer machine. This gives faster feedback to developers, but makes the compilation less reproducible. It also
complicates collaboration.

Both the developer machine and the server need to have Inmanta installed. To compile and export models to the
server from the developer machine a .inmanta file is required in the project directory (where you find the main.cf
and the project.yaml file) to connect the compiler with the server.

Create a .inmanta file in the project directory and include the following configuration:

[config]
environment=$ENV_ID

[compiler_rest_transport]
(continues on next page)

34 Chapter 3. Architecture

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

host=$SERVER_ADDRESS
port=$SERVER_PORT

Replace $ENV_ID, $SERVER_ADDRESS and $SERVER_PORT with the correct values (See
compiler_rest_transport for more details when using ssl and or auth, config.environment explains
the environment setting). A best practice is to not add the .inmanta to the git repository. Because different
developer may use different orchestration servers.

• inmanta compile compiles the current project but does not upload the result to the orchestration server.

• inmanta export compiles and uploads the current project to the orchestration server. Depending on the
environment settings the server will release and deploy the model or it becomes available in the new state.

• inmanta export -d compiles, uploads and releases the current project. The result will start deploying
immediately.

3.1.3 Autonomous server

Git Server

Inmanta Server

PostgreSQL

inmanta-server

Compiler

Agent

Dev Machine

CLI To target

web-console

With an autonomous server, developers can no longer push models into production directly. Only the server itself
compiles the models. This ensures that every compile is repeatable and allows collaboration because all changes
have to be committed.

3.2 Agent modes

The Inmanta agent performs all changes in the infrastructure. Either the orchestration server starts an agents or an
agent is deployed as a separate process.

• agentless: Autostarted agents allow for an agentless mode: no explicit agents need to be started. When the
agent needs to make changes on machine/vm it can make the changes over remote over ssh. Autostarted
agents are controlled by using std::AgentConfig. ip::Host and subclasses can automatically configure
an agent with the remote_agent attribute.

• external agent: External agent processes need explicit configuration to connect to the orchestration server.
The aws and openstack modules use the platform module to generate a user_data bootscript for virtual ma-
chines to install an agent and connect to the orchestration server. The install_agent boolean controls this
option.

3.2. Agent modes 35

Inmanta Documentation, Release 7.1.1.dev20240504011805

3.3 Resource deployment

The agent is responsible for:

• repair the infrastructure at regular intervals

• change the infrastructure at regular intervals

• enforce desired state when the server requests it

3.3.1 Repair

At regular intervals the agent verifies that the current state of all resources it manages matches the desired state
provided by the orchestration server. For a repair the agent verifies all resources, even if the last known current state
already matches the desired state. In the current release all deploys are done through a repair and run by default
every 600 seconds. This is controlled with config.agent-repair-interval, when this option is set to 0 no
repairs are performed.

3.3.2 Deploy changes

For very large infrastructures or infrastructure that is too slow (for example network devices with underpowered
control planes or thousands of managed resources) a repair cannot run often. For example, only once a week.
When this is the case, the agent can deploy only known changes (based on the previous deployed state cached by
the orchestration server). This interval is controlled by config.agent-deploy-interval. This interval should
be a lot shorter than config.agent-repair-interval

When a repair is running and a deploy run is started, the repair is cancelled, the deploy is performed and then the
repair is restarted. This repair starts again from scratch. So when repairs take a very long time, they might never
finish completely when there is a high rate of change.

3.3.3 Push changes

For very interactive changes the server pushes changes to the agent. The server can push full and incremental
desired state to the agent.

• incremental only deploys resource for which the orchestrator knows there are changes, based on the last
known deploy status of the resource.

• full always deploys all resources even if the last know status of the resource already matches desired state.

36 Chapter 3. Architecture

CHAPTER

FOUR

LANGUAGE REFERENCE

The Inmanta language is a declarative language to model the configuration of an infrastructure.

The evaluation order of statements is determined by their dependencies on other statements and not based on the
lexical order. i.e. The code is not necessarily executed top to bottom.

4.1 Modules

The source is organized in modules. Each module is a git repository with the following structure:

module/
+-- files/
+-- model/
| +-- _init.cf
+-- plugins/
+-- templates/
+-- module.yml

Note: The module format described here is the v1 module format. For more details see Understanding Modules.

The module.yml file, the model directory and the model/_init.cf are required.

For example:

test/
+-- files/
+-- model/
| +-- _init.cf
| +-- services.cf
| +-- policy
| | +-- _init.cf
| | +-- other.cf
+-- plugins/
+-- templates/
+-- module.yml

The model code is in the .cf files. Each file forms a namespace. The namespaces for the files are the following.

File Namespace
test/model/_init.cf test
test/model/services.cf test::services
test/model/policy/_init.cf test::policy
test/model/policy/other.cf test::policy::other

37

Inmanta Documentation, Release 7.1.1.dev20240504011805

Modules are only loaded when they are imported by a loaded module or the main.cf file of the project.

To access members from another namespace, it must be imported into the current namespace.:

import test::services

Imports can also define an alias, to shorten long names:

import test::services as services

4.2 Variables

Variables can be defined in any lexical scope. They are visible in their defining scope and its children. A lexical
scope is either a namespaces or a code block (area between : and end).

Variable names must start with a lower case character and can consist of the characters: a-zA-Z_0-9-

A value can be assigned to a variable exactly once. The type of the variable is the type of the value. Assigning a
value to the same variable twice will produce a compiler error, unless the values are identical.

Variables from other modules can be referenced by prefixing them with the module name (or alias)

import redhat
os = redhat::fedora23
import ubuntu as ubnt
os2 = ubnt::ubuntu1204

4.3 Literals values

Literal values can be assigned to variables

var1 = 1 # assign an integer, var1 contains now a number
var2 = 3.14 # assign a float, var2 also contains a number
var3 = "This is a string" # var3 contains a string
var4 = r"This is a raw string" # var4 contains a raw string

var 5 and 6 are both booleans
var5 = true
var6 = false

var7 is a list of values
var7 = ["fedora", "ubuntu", "rhel"]

a dictionary with string keys and any type of values is also a primitive
var8 = { "foo":"bar", "baz": 1}

var9 contains the same value as var2
var9 = var2

next assignment will not return an error because var1 already contains this value
var1 = 1

next assignment would return an error because var1 already has a different value
#var1 = "test"

#ref to a variable from another namespace
(continues on next page)

38 Chapter 4. Language Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

import ip::services
sshservice = ip::services::ssh

4.4 Arithmetic operations

The following arithmetic operations are supported:

• Addition (+)

• Substraction (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

• Modulo (%)

Example:

var = 3 + 5
var = 10 - 2
var = 4 * 2
var = int(16 / 2)
var = 2 ** 3
var = 18 % 10

Note that the result of the division operation is cast to the type int. This is done because a division always results
in a value of type float.

4.5 Primitive types

The basic primitive types are string, float, int or bool. These basic types also support type casts:

Note: To initialize or assign a float, the value should either include a decimal point or be explicitly converted to
a float type.

assert = true
assert = int("1") == 1
assert = float("1.2") == 1.2
assert = int(true) == 1
assert = bool(1.2) == true
assert = bool(0) == false
assert = bool(null) == false
assert = bool("x") == true
like in Python, only empty strings are considered false
assert = bool("false") == true
assert = bool("") == false
assert = string(true) == "true"

Constrained primitive types can be derived from the basic primitive type with a typedef statement. Constrained
primitive types add additional constraints to the basic primitive type with either a Python regex or a logical condi-
tion. The name of the constrained primitive type must not collide with the name of a variable or type in the same
lexical scope.

4.4. Arithmetic operations 39

Inmanta Documentation, Release 7.1.1.dev20240504011805

A regex matches a given string when zero or more characters at the beginning of that string match the regular
expression. A dollar sign should be used at the end of the regex if a full string match is required.

typedef : 'typedef' ID 'as' PRIMITIVE 'matching' condition|regex;

For example

typedef tcp_port as int matching self > 0 and self < 65535
typedef mac_addr as string matching /([0-9a-fA-F]{2})(:[0-9a-fA-F]{2}){5}$/

Lists of primitive types are also primitive types: string[], float[], bool[] or mac_addr[]

dict is the primitive type that represents a dictionary, with string keys. Dict values can be accessed using the []
operator. All members of a dict have to be set when the dict is constructed. e.g.

#correct
a = {"key":"value", "number":7}
value = a["key"]
value = "value"
incorrect, can't assign to dict after construction
a["otherkey"] = "othervalue"

4.5.1 Strings

There are four kinds of strings in the Inmanta language:

• regular strings

regular_string_1 = "This is...\n...a basic string."

Output when displayed:
This is...
...a basic string.

regular_string_2 = 'This one too.'

Output when displayed:
This one too.

• multi-line strings

It is possible to make a string span multiple lines by triple quoting it e.g.:

multi_line_string = """This
string
spans
multiple
lines"""

Output when displayed:
This
string
spans
multiple
lines

40 Chapter 4. Language Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Note: Unlike python’s multi-line strings, only double quotes are supported to define a multi-line string i.e. """ is
valid, but ''' is not.

• raw strings

Raw strings are similar to python’s raw strings in that they treat backslashes as regular characters. On the other
hand, in regular and multi-line strings, escape characters (e.g. \n, \t. . .) are interpreted and therefore backslashes
need to be escaped in order to be displayed. In addition, no variable expansion is performed in raw strings.

raw_string = r"This is...\n...a raw string."

Output when displayed:
This is...\n...a raw string.

hostname = "serv1.example.org"
raw_motd = r"Welcome to {hostname}"

Output when displayed:
Welcome to {hostname}

• f-strings

An alternative syntax similar to python’s f-strings can be used for string formatting.

hostname = "serv1.example.org"
motd = f"Welcome to {hostname}"

Output when displayed:
Welcome to serv1.example.org

Python’s format specification mini-language can be used for fine-grained formatting:

width = 10
precision = 2
arg = 12.34567

std::print(f"result: {arg:{width}.{precision}f}")

Output:
result: 12.35

Note: The '=' character specifier added in python 3.8 is not supported yet in the Inmanta language.

Note: Unlike in python, raw and format string cannot be used together in the same string e.g. raw_and_format
= rf"Both specifiers" is not allowed.

4.5. Primitive types 41

https://peps.python.org/pep-3101/
https://docs.python.org/3.9/library/string.html#format-specification-mini-language
https://docs.python.org/3/whatsnew/3.8.html#f-strings-support-for-self-documenting-expressions-and-debugging

Inmanta Documentation, Release 7.1.1.dev20240504011805

String interpolation

An alternative syntax to f-strings is string interpolation. It allows variables to be included as parameters inside a
regular or multi-line string. The included variables are resolved in the lexical scope of the string they are included
in:

hostname = "serv1.example.org"
motd = "Welcome to {{hostname}}"

Output when displayed:
Welcome to serv1.example.org

String concatenation

Strings can be concatenated with the + operator.

hello_world = "hello " + "world"

4.6 Conditions

Conditions can be used in typedef, implements and if statements. A condition is an expression that evaluates to a
boolean value. It can have the following forms

condition : '(' condition ')'
| condition 'or' condition
| condition 'and' condition
| 'not' condition
| value
| value ('>' | '>=' | '<' | '<=' | '==' | '!=') value
| value 'in' value
| value 'not in' value
| functioncall
| value 'is' 'defined'
;

The in and not in operators can be used to check if a value is present in a list:

myfiles = ["/a/b/c", "/c/d/e", "x/y/z/u/v/w"]

condition1 = "/a/b/c" in myfiles # evaluates to True
condition2 = "/f/g/h" in myfiles # evaluates to False

condition3 = "/a/b/c" not in myfiles # evaluates to False
condition4 = "/f/g/h" not in myfiles # evaluates to True

condition5 = not "/a/b/c" in myfiles # evaluates to False
condition6 = not "/f/g/h" in myfiles # evaluates to True

The is defined keyword checks if a value was assigned to an attribute or a relation of a certain entity. The
following example sets the monitoring configuration on a certain host when it has a monitoring server associated:

entity Host:

end

(continues on next page)

42 Chapter 4. Language Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

entity MonitoringServer:

end

Host.monitoring_server [0:1] -- MonitoringServer

implement Host using monitoringConfig when monitoring_server is defined

implementation monitoringConfig for Host:
Set monitoring config

end

Empty lists are considered to be unset.

4.7 Function calls / Plugins

Each module can define plugins. Plugins can contribute functions to the module’s namespace. The function call
syntax is

functioncall : moduleref '.' ID '(' arglist? ')';
arglist : arg

| arglist ',' arg
;

arg : value
| key '=' value
| '**' value
;

For example

std::familyof(host.os, "rhel")
a = param::one("region", "demo::forms::AWSForm")

hello_world = "Hello World!"
hi_world = std::replace(hello_world, new = "Hi", old = "Hello")
dct = {

"new": "Hi",
"old": "Hello",

}
hi_world = std::replace(hello_world, **dct)

4.8 Entities

Entities model configuration concepts. They are like classes in other object oriented languages: they can be in-
stantiated and they define the structure of their instances.

Entity names must start with an upper case character and can consist of the characters: a-zA-Z_0-9-

Entities can have a number of attributes and relations to other entities. Entity attributes have primitive types, with
an optional default value. An attribute has to have a value unless the nulable variant of the primitive type is used.
An attribute that can be null uses a primitive type with a ? such as string?. A value can also be assigned only
once to an attribute that can be null. To indicate that no value will be assigned, the literal null is available. null
can also be the default value of an attribute.

4.7. Function calls / Plugins 43

Inmanta Documentation, Release 7.1.1.dev20240504011805

Entities can inherit from multiple other entities. Entities inherits attributes and relations from parent entities. All
entities inherit from std::Entity.

It is not possible to override or rename attributes or relations. However, it is possible to override defaults. Default
values for attributes defined in the class take precedence over those in the parent classes. When a class has multiple
parents, the left parent takes precedence over the others. A default value can be removed by setting its value to
undef.

The syntax for defining entities is:

entity: 'entity' ID ('extends' classlist)? ':' attribute* 'end';

classlist: class
| class ',' classlist;

attribute: primitve_type ID ('=' literal)?;

Defining entities in a configuration model

entity File:
string path
string content
int mode = 640
string[] list = []
dict things = {}

end

4.9 Relations

A Relation is a unidirectional or bidirectional relation between two entities. The consistency of a bidirectional
double binding is maintained by the compiler: assignment to one side of the relation is an implicit assignment of
the reverse relation.

Relations are defined by specifying each end of the relation together with the multiplicity of each relation end.
Each end of the relation is named and is maintained as a double binding by the compiler.

Defining relations between entities in the domain model

relation: class '.' ID multi '--' class '.' ID multi
| class '.' ID multi annotation_list class '.' ID multi ;

annotation_list: value
| annotation_list ',' value

For example a bidirectional relation:

File.service [1] -- Service.file [1:]

Or a unidirectional relation

uni_relation : class '.' ID multi '--' class
| class '.' ID multi annotation_list class;

For example

Service.file [1:] -- File

Relation multiplicities are enforced by the compiler. If they are violated a compilation error is issued.

44 Chapter 4. Language Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

4.10 Instantiation

Instances of an entity are created with a constructor statement

File(path="/etc/motd")

A constructor can assign values to any of the properties (attributes or relations) of the entity. It can also leave the
properties unassigned. For attributes with default values, the constructor is the only place where the defaults can
be overridden.

Values can be assigned to the remaining properties as if they are variables. To relations with a higher arity, multiple
values can be assigned. Additionally, null can be assigned to relations with a lower arity of 0 to indicate explicitly
that the model will not assign any values to the relation attribute.

Host.files [0:] -- File.host [1]

h1 = Host("test")
f1 = File(host=h1, path="/opt/1")
f2 = File(host=h1, path="/opt/2")
f3 = File(host=h1, path="/opt/3")

h1.files equals [f1, f2, f3]

FileSet.files [0:] -- File.set [1]

s1 = FileSet()
s1.files = [f1,f2]
s1.files = f3

s1.files equals [f1, f2, f3]

s1.files = f3
adding a value twice does not affect the relation,
s1.files still equals [f1, f2, f3]

In addition, attributes can be assigned in a constructor using keyword arguments by using **dct where dct is a
dictionary that contains attribute names as keys and the desired values as values. For example:

Host.files [0:] -- File.host [1]
h1 = Host("test")

file1_config = {"path": "/opt/1"}
f1 = File(host=h1, **file1_config)

It is also possible to add elements to a relation with the += operator:

Host.files [0:] -- File.host [1]

h1 = Host("test")
h1.files += f1
h1.files += f2
h1.files += f3

h1.files equals [f1, f2, f3]

Note: This syntax is only defined for relations. The += operator can not be used on variables, which are immutable.

4.10. Instantiation 45

Inmanta Documentation, Release 7.1.1.dev20240504011805

4.10.1 Referring to instances

When referring to entities in the same module, a parent model or std, short names can be used

Following code blocks are equivalent and both valid

std::Host("test")

Host("test")

When constructing entities from other modules, the fully qualified name must be used

import srlinux
import srlinux::interface

interface = srlinux::Interface(
subinterface = srlinux::interface::Subinterface(
)

)

When nesting constructors, short names can be used for the nested constructors, because their types can be inferred

import srlinux
import srlinux::interface

interface = srlinux::Interface(# This type is qualified
subinterface = Subinterface(# This type is inferred
)

)

However, when relying on type inference:

1. avoid creating sibling types with the same name, but different fully qualified name, as they may become
indistinguishable, breaking the inference on existing models.

1. if multiple types exist with the same name, and one is in scope, that one is selected (i.e. it is defined in
this module, a parent module or std)

2. if multiple types exist that are all out of scope, inference fails

2. make sure the type you want to infer is imported somewhere in the model. Otherwise the compiler will not
find it.

4.11 Refinements

Entities define what should be deployed. Entities can either be deployed directly (such as files and packages) or
they can be refined. Refinement expands an abstract entity into one or more more concrete entities.

For example, apache::Server is refined as follows

implementation apacheServerDEB for Server:
pkg = std::Package(host=host, name="apache2-mpm-worker", state="installed")
pkg2 = std::Package(host=host, name="apache2", state="installed")
svc = std::Service(host=host, name="apache2", state="running", onboot=true,␣

↪→reload=true, requires=[pkg, pkg2])
svc.requires = self.requires

put an empty index.html in the default documentroot so health checks do not fail
index_html = std::ConfigFile(host=host, path="/var/www/html/index.html", content="

(continues on next page)

46 Chapter 4. Language Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

↪→",
requires=pkg)

self.user = "www-data"
self.group = "www-data"

end

implement Server using apacheServerDEB when std::familyof(host.os, "ubuntu")

For each entity one or more refinements can be defined with the implementation statement. Implementation are
connected to entities using the implement statement.

When an instance of an entity is constructed, the runtime searches for refinements. One or more refinements are
selected based on the associated conditions. When no implementation is found, an exception is raised. Entities for
which no implementation is required are implemented using std::none.

In the implementation block, the entity instance itself can be accessed through the variable self.

implement statements are not inherited, unless a statement of the form implement ServerX using parents
is used. When it is used, all implementations of the direct parents will be inherited, including the ones with a where
clause.

The syntax for implements and implementation is:

implementation: 'implementation' ID 'for' class ':' statement* 'end';
implement: 'implement' class 'using' implement_list

| 'implement' class 'using' implement_list_cond 'when' condition
;

implement_list: implement_list_cond
| 'parents'
| implement_list ',' implement_list
;

implement_list_cond: ID
| ID ',' implement_list_cond
;

4.12 Indexes and queries

Index definitions make sure that an entity is unique. An index definition defines a list of properties that uniquely
identify an instance of an entity. If a second instance is constructed with the same identifying properties, the first
instance is returned instead.

All identifying properties must be set in the constructor.

Indices are inherited. i.e. all identifying properties of all parent types must be set in the constructor.

Defining an index

entity Host:
string name

end

index Host(name)

Explicit index lookup is performed with a query statement

testhost = Host[name="test"]

For indices on relations (instead of attributes) an alternative syntax can be used

4.12. Indexes and queries 47

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity File:
string path

end

Host.files [0:] -- File.host [1]

index File(host, path)

a = File[host=vm1, path="/etc/passwd"] # normal index lookup
b = vm1.files[path="/etc/passwd"] # selector style index lookup
a == b

Note: The use of float (or number) as part of index properties is generally discouraged. This is due to the reliance
of index matching on precise equality, while floating-point numbers are represented with an inherent imprecision.
If floating-point attributes are used in an index, it is crucial to handle arithmetic operations with caution to ensure
the accuracy of the attribute values for index operations.

4.13 For loop

To iterate over the items of a list, a for loop can be used

for i in std::sequence(size, 1):
app_vm = Host(name="app{{i}}")

end

The syntax is:

for: 'for' ID 'in' value ':' statement* 'end';

4.14 If statement

An if statement allows to branch on a condition.

if nodecount > 1:
self.cluster_mode = "multi"

elif node == 1:
self.cluster_mode = "single"

else:
self.cluster_mode = "off"

end

The syntax is:

if : 'if' condition ':' statement* ('elif' condition ':' statement*)* ('else' ':'␣
↪→statement*)? 'end';

The Conditions section describes allowed forms for the condition.

48 Chapter 4. Language Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

4.15 Conditional expressions

A conditional expression is an expression that evaluates to one of two subexpressions depending on its condition.

x = n > 0 ? n : 0

Which evaluates to n if n > 0 or to 0 otherwise.

The syntax is:

conditional_expression : condition '?' expression ':' expression;

The Conditions section describes allowed forms for the condition.

4.16 List comprehensions

A list comprehension constructs a list (either a primitive list or a relation) by mapping over another list, optionally
filtering some values.

myfiles = ["/a/b/c", "/c/d/e", "x/y/z/u/v/w"]
create File instance for each file in myfiles shorter than 10 characters
host.files = [File(path=path) for path in myfiles if std::length(path) < 10]

The syntax is the following.

list_comprehension : '[' expression ('for' ID 'in' expression)+ ('if' expression)* ']'

It shows that the list comprehension allows for multiple for expressions and multiple if guards. The top for is
always executed first, as if it were the outer for in a conventional for loop. Here’s an example:

all_short_files = [
file
for host in all_hosts
for file in host.files # we can refer to the upper loop variable `host`
if host.name != "exclude_this_host"
if std::length(file.path) < 10

]

While the inmanta language does not make any guarantees about statement execution order, it does provide some
guarantees regarding data ordering for list comprehensions. In the context of relations even data order doesn’t
matter, but in the context of a literal list it might. In such a context the list comprehension promises to keep the
order of the list in the for expression.

my_ordered_numbers = std::sequence(10)
my_ordered_pairs = ["{{i}}-{{i}}" for i in my_ordered_numbers]
order is kept => ["0-0", "1-1", "2-2", ...]

4.15. Conditional expressions 49

Inmanta Documentation, Release 7.1.1.dev20240504011805

4.17 Transformations

At the lowest level of abstraction the configuration of an infrastructure often consists of configuration files. To
construct configuration files, templates and string interpolation can be used.

4.17.1 Templates

Inmanta integrates the Jinja2 template engine. A template is evaluated in the lexical scope where the
std::template function is called. This function accepts as an argument the path of a template file. The first
part of the path is the module that contains the template and the remainder of the path is the path within the tem-
plate directory of the module.

The integrated Jinja2 engine supports to the entire Jinja feature set, except for subtemplates. During execution
Jinja2 has access to all variables and plug-ins that are available in the scope where the template is evaluated.
However, the :: in paths needs to be replaced with a .. The result of the template is returned by the template
function.

Using a template to transform variables to a configuration file

hostname = "wwwserv1.example.com"
admin = "joe@example.com"
motd_content = std::template("motd/message.tmpl")

The template used in the previous listing

Welcome to {{ hostname }}
This machine is maintainted by {{ admin }}

4.18 Plug-ins

For more complex operations, python plugins can be used. Plugins are exposed in the Inmanta language as function
calls, such as the template function call. A template accepts parameters and returns a value that it computed out
of the variables. Each module that is included can also provide plug-ins. These plug-ins are accessible within the
namespace of the module. The Developing Plugins section of the module guide provides more details about how
to write a plugin.

50 Chapter 4. Language Reference

CHAPTER

FIVE

MODEL DEVELOPER DOCUMENTATION

5.1 Developer Getting Started Guide

This guide explains how to set up the recommended developer setup on a Linux machine. Other development
setups are possible, but this one provides a good starting point.

• Install VS Code and Inmanta extension.

• Setting up Python virtual environments.

• Setting up a project.

• Set project sources

• Setting up a module

• Run tests

• Module developers guide

• Required environment variables

The examples below are using pip your system might require you to use pip3.

5.1.1 Install VS Code and Inmanta extension

The developer setup is based on VSCode with the Inmanta extension.

In order to install VS Code, you can refer to this page.

Inmanta’s extension in VS Code marketplace can be found here.

Further information about Inmanta VS Code extension is available on this page.

5.1.2 Setting up Python virtual environments

For every project that you work on, we recommend using a new virtual environment. If you are unfamiliar with
venv’s, you can check out this page.

To create a virtual environment:

python3 -m venv ~/.virtualenvs/my_project

Then activate it by running:

source ~/.virtualenvs/my_project/bin/activate

Upgrading your pip will save you a lot of time and troubleshooting.
You can do so by running:

51

https://code.visualstudio.com/learn/get-started/basics
https://marketplace.visualstudio.com/items?itemName=inmanta.inmanta
https://github.com/inmanta/vscode-inmanta
https://docs.python.org/3/tutorial/venv.html

Inmanta Documentation, Release 7.1.1.dev20240504011805

pip install --upgrade pip wheel

5.1.3 Setting up a project

At the time of this writing, linting and code navigation in IDEs work only if you have a project, so even if you only
work on a single module, it is best to have a project.

There are two scenarios:

1. Working on a New Project.

2. Working on an Existing Project.

Working on a New Project

To create a new project you need to install some essential packages as follows:

pip install inmanta-core pytest-inmanta

Create a new project using the inmanta-project-template:

pip install cookiecutter

cookiecutter https://github.com/inmanta/inmanta-project-template.git

Navigate into the project and install the module dependencies using the inmanta CLI tool:

cd <project_name>

inmanta project install

V1 modules will be downloaded to the downloadpath configured in the project.yml file. V2 modules are
installed in the active Python environment. For more details go here. Once you are done with creating a project,
you can open VS Code by running:

code .

Working on an Existing Project

When working on an existing project, you need to clone them first:

git clone <project_url>

They also come with a requirements.dev.txt to install the development dependencies:

cd <project_name>

pip install -r requirements.dev.txt

The module dependencies are installed using the inmanta CLI tool:

inmanta project install

52 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.1.4 Set project sources

When starting a new project, the next step is to set the sources of your project so that it knows where to get its
required modules from.

V1 module source

If you only use opensource v1 modules as provided by Inmanta, you can skip below step.

1. Find the module you want to work on

2. Copy the SSH URL of the repo

3. In your VS code, open the project.yml file and under repo:, add the copied line there but keep in mind
to replace the name of a specific module with a place holder, like below example:

code project.yml

repo:
- url: git@code.inmanta.com:example/my_module.git
type: git

Becomes:

repo:
- url: git@code.inmanta.com:example/{}.git
type: git

• Now, in your main.cf file, if you import a module like, import <my_module> and save the file, you can get
code completion. If you are working on an existing project with a populated main.cf file, code completion
will work as expected.

Please note, code completion and navigation work on modules that are imported in the main.cf file.

Pip index for V2 modules and V1 modules’ dependencies

Add the pip index where your modules and dependencies are hosted to project.yml in the pip.index-url
section. For example, for modules hosted on PyPi:

pip:
index-url: https://pypi.org/simple/

5.1.5 Setting up a module

Like projects, there are also two scenarios:

1. Working on a New Module.

2. Working on an Existing Module.

5.1. Developer Getting Started Guide 53

Inmanta Documentation, Release 7.1.1.dev20240504011805

Working on a New Module

Same as Working on a New Project part, modules can also be created like:

pip install cookiecutter
cookiecutter --checkout v1 https://github.com/inmanta/inmanta-module-template.git

for a v1 module. If you want to use the module in a project, make sure to put it in the project’s module path.

For a v2 module, use the v2 cookiecutter template, then install the module:

pip install cookiecutter
cookiecutter https://github.com/inmanta/inmanta-module-template.git
pip install -e ./<module-name>

This will install a Python package with the name inmanta-module-<module-name> in the active environment.

If you want to use the v2 module in a project, make sure to set up a v2 module source as outlined in the section
above, then add the module as a dependency of the project as described in Working on an Existing Module. The
location of the module directory is not important for a v2 module.

For more information on how to work on modules, see Understanding Modules and the module template docu-
mentation.

Working on an Existing Module

Modules that you want to work on, have to be added to your Inmanta project using the following command. This
command also installs the module into the project.

inmanta module add --v1 <module-name>

for a v1 module or

inmanta module add --v2 <module-name>

for a v2 module. The latter will implicitly trust any Python package named inmanta-module-<module-name>
in the project’s configured module source.

When starting to work on an existing module, it is recommended to check the readme.md file that comes with the
module to see the instructions on how to install and use them.

5.1.6 Running Test

To run test on modules, it is recommended to set the INMANTA_TEST_ENV environment variable to speed up your
tests and avoid creating virtual environments at each test run.

1. Create a temp directory and export the path:

export INMANTA_TEST_ENV=$(mktemp -d)

2. Install required dependencies

pip install -r requirements.txt -r requirements.dev.txt

3. Run the test

python -m pytest tests

54 Chapter 5. Model developer documentation

https://github.com/inmanta/inmanta-module-template
https://github.com/inmanta/inmanta-module-template

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.2 Project creation guide

This guide explains how to create a project. For detailed documentation see: project.yml.

5.2.1 Create a new source project

The Inmanta compiler expects a project with basic configuration. This project is a directory that contains the
source code of the configuration model. This project also matches with a project defined on the server, from which
multiple environments can be deployed.

1 pip install cookiecutter
2 cookiecutter gh:inmanta/inmanta-project-template

Note: The cookiecutter template also sets up git for the new project. This is a best practice to version control your
infrastructure code.

Inside the project the compiler expects a project.yml file that defines metadata about the project, the location to
store modules, repositories where to find modules and possibly specific versions of modules. project.yml provides
an overview about the supported metadata attributes.

An example project.yml could be:

1 name: test
2 description: a test project
3 author: Inmanta
4 author_email: code@inmanta.com
5 license: ASL 2.0
6 copyright: 2020 Inmanta
7 modulepath: libs
8 downloadpath: libs
9 repo:

10 - url: https://github.com/inmanta/
11 type: git
12 install_mode: release
13 requires:
14 pip:
15 index-url: https://pypi.org/simple
16 extra-index-url: []
17 pre: false
18 use-system-config: false

Warning: Using more than one Python package index in the project config is discouraged. It is a security
risk and using more than one should be done with extreme care. Only proceed if you are aware of dependency
confusion attacks. For more information see the pip documentation and the draft PEP 708

5.2. Project creation guide 55

https://pip.pypa.io/en/stable/cli/pip_install/
https://peps.python.org/pep-0708/#motivation

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.2.2 The main file

The main.cf is the place where the compiler starts executing code first. For example, the main.cf below calls
the print plugin from the std module.

1 std::print("hello world")

Note: The std module is the only module that does not have to be imported explicitly.

Before the project can be executed, the std module has to be installed. This is done by executing the following
command in the project directory:

inmanta project install

The example can be executed with inmanta compile. This prints out “hello world” on stdout.

5.3 Module creation guide

This guide explains how to create a module. For detailed documentation see: module.yml and setup.cfg.

5.3.1 Create a new source module

For a v1 module:

1 pip install cookiecutter
2 cookiecutter --checkout v1 gh:inmanta/inmanta-module-template

For a v2 module:

1 pip install cookiecutter
2 cookiecutter gh:inmanta/inmanta-module-template

Note: The cookiecutter template also sets up git for the new module. This is a best practice to version control
your infrastructure code.

Inside the module the compiler expects a module.yml file (for v1) or a setup.cfg file (for v2) that defines
metadata about the module. module.yml and setup.cfg provide an overview about the supported metadata attributes.

5.4 Understanding Modules

In Inmanta all orchestration model code and related files, templates, plugins and resource handlers are packaged in a
module. Modules can be defined in two different formats, the V1 format and the V2 format. The biggest difference
between both formats is that all Python tools can run on V2 modules, because V2 modules are essentially Python
packages. New modules should use the V2 module format. The following sections describe the directory layout of
the V1 and the V2 module formats and their metadata files.

Note: V2 modules can not depend on V1 modules.

56 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.4.1 V2 module format

A complete V2 module might contain the following files:

module
|
|__ MANIFEST.in
|__ setup.cfg
|__ pyproject.toml
|
|__ model
| |__ _init.cf
| |__ services.cf
|
|__ inmanta_plugins/<module-name>/
| |__ __init__.py
| |__ functions.py
|
|__ files
| |__ file1.txt
|
|__ templates

|__ conf_file.conf.tmpl

• The root of the module directory contains a setup.cfg file. This is the metadata file of the module. It
contains information, such as the version of the module. More details about the setup.cfg file are defined
in the next section.

• The pyproject.toml file defines the build system that should be used to package the module and install
the module into a virtual environment from source.

• The only mandatory subdirectory is the model directory containing a file called _init.cf. What is defined
in the _init.cf file is available in the namespace linked with the name of the module. Other files in the
model directory create subnamespaces.

• The inmanta_plugins/<module-name>/ directory contains Python files that are loaded by the platform
and can extend it using the Inmanta API. This python code can provide plugins or resource handlers.

The template, file and source plugins from the std module expect the following directories as well:

• The files directory contains files that are deployed verbatim to managed machines.

• The templates directory contains templates that use parameters from the orchestration model to generate
configuration files.

The setup.cfg metadata file

The setup.cfg file defines metadata about the module. The following code snippet provides an example about
what this setup.cfg file looks like:

[metadata]
name = inmanta-module-mod1
version = 1.2.3
license = Apache 2.0

[options]
install_requires =
inmanta-modules-net ~=0.2.4
inmanta-modules-std >1.0,<2.5

(continues on next page)

5.4. Understanding Modules 57

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

cookiecutter~=1.7.0
cryptography>1.0,<3.5

[options.extras_require]
feature-x =
inmanta-modules-mod2

zip_safe=False
include_package_data=True
packages=find_namespace:

[options.packages.find]
include = inmanta_plugins*

• The metadata section defines the following fields:

– name: The name of the resulting Python package when this module is packaged. This name should
follow the naming schema: inmanta-module-<module-name>.

– version: The version of the module. Modules must use semantic versioning.

– license: The license under which the module is distributed.

– deprecated: Optional field. If set to True, this module will print a warning deprecation message
when used.

• The install_requires config option in the options section of the setup.cfg file defines the dependen-
cies of the module on other Inmanta modules and external Python libraries. These version specs use PEP440
syntax. Adding a new module dependency to the module should be done using the inmanta module add
command instead of altering the setup.cfg file by hand. Dependencies with extras can be defined in this
section using the dependency[extra-a,extra-b] syntax.

• The options.extras_require config option can be used to define optional dependencies, only required
by a specific feature of the inmanta module.

A full list of all available options can be found in here.

The pyproject.toml file

The pyproject.toml file defines the build system that has to be used to build a python package and perform
editable installs. This file should always have the following content:

[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"

The MANIFEST.in file

This file enables setuptools to correctly build the package. It is documented here. An example that includes the
model, files, templates and metadata file in the package looks like this:

include inmanta_plugins/mod1/setup.cfg
recursive-include inmanta_plugins/mod1/model *.cf
graft inmanta_plugins/mod1/files
graft inmanta_plugins/mod1/templates

You might notice that the model, files and templates directories, nor the metadata file reside in the
inmanta_plugins directory. The inmanta build tool takes care of this to ensure the included files are included in
the package installation directory.

58 Chapter 5. Model developer documentation

https://www.python.org/dev/peps/pep-0440/#version-specifiers
https://www.python.org/dev/peps/pep-0440/#version-specifiers
https://packaging.python.org/guides/using-manifest-in/

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.4.2 V1 module format

A complete module might contain the following files:

module
|
|__ module.yml
|
|__ model
| |__ _init.cf
| |__ services.cf
|
|__ plugins
| |__ functions.py
|
|__ files
| |__ file1.txt
|
|__ templates
| |__ conf_file.conf.tmpl
|
|__ requirements.txt

The directory layout of the V1 module is similar to that of a V2 module. The following difference exist:

• The metadata file of the module is called module.yml instead of setup.cfg. The structure of the module.
yml file also differs from the structure of the setup.cfg file. More information about this module.yml file
is available in the next section.

• The files contained in the inmanta_plugins/<module-name>/ directory in the V2 format, are present in
the plugins directory in the V1 format.

• The requirements.txt file defines the dependencies of this module to other V2 modules and the depen-
dencies to external libraries used by the code in the plugins directory. This file is not present in the V2
module format, since V2 modules defined their dependencies in the setup.cfg file. Dependencies with
extras are supported in the requirements.txt file using the dependency[extra-a,extra-b] syntax.

• The pyproject.toml file doesn’t exist in a V1 module, because V1 modules cannot be packaged into a
Python package.

Module metadata

The module.yml file provides metadata about the module. This file is a yaml file with the following three keys
mandatory:

• name: The name of the module. This name should also match the name of the module directory.

• license: The license under which the module is distributed.

• version: The version of this module. For a new module a start version could be 0.1dev0 These versions are
parsed using the same version parser as python setuptools.

• deprecated: Optional field. If set to True, this module will print a warning deprecation message when used.

For example the following module.yml from the Quickstart

name: lamp
license: Apache 2.0
version: 0.1

The requires key can be used to define the dependencies of this module on other Inmanta modules. Each entry in the
list should contain the name of an Inmanta module, optionally associated with a version constraint. These version

5.4. Understanding Modules 59

Inmanta Documentation, Release 7.1.1.dev20240504011805

specs use PEP440 syntax. Adding a new entry to the requires list should be done using the inmanta module add
<module-name> command.

An example of a module.yml file that defines requires:

license: Apache 2.0
name: ip
source: git@github.com:inmanta/ip
version: 0.1.15
requires:

- net ~= 0.2.4
- std >1.0 <2.5

source indicates the authoritative repository where the module is maintained.

A full list of all available options can be found in here.

5.4.3 Convert a module from V1 to V2 format

To convert a V1 module to the V2 format, execute the following command in the module folder

inmanta module v1tov2

5.4.4 Inmanta module template

To quickly initialize a module use the inmanta module template.

5.4.5 Extending Inmanta

Inmanta offers module developers an orchestration platform with many extension possibilities. When modelling
with existing modules is not sufficient, a module developer can use the Python SDK of Inmanta to extend the
platform. Python code that extends Inmanta is stored in the plugins directory of a module. All python modules in
the plugins subdirectory will be loaded by the compiler when at least a __init__.py file exists, exactly like any
other python package.

The Inmanta Python SDK offers several extension mechanism:

• Plugins

• Resources

• Resource handlers

• Dependency managers

Only the compiler and agents load code included in modules (See Architecture). A module can include external
dependencies. Both the compiler and the agent will install this dependencies with pip install in an virtual
environment dedicated to the compiler or agent. By default this is in .env of the project for the compiler and in
/var/lib/inmanta/agent/env for the agent.

Inmanta uses a special format of requirements that was defined in python PEP440 but never fully implemented in
all python tools (setuptools and pip). Inmanta rewrites this to the syntax pip requires. This format allows module
developers to specify a python dependency in a repo on a dedicated branch. And it allows inmanta to resolve the
requirements of all module to a single set of requirements, because the name of module is unambiguously defined
in the requirement. The format for requires in requirements.txt is the following:

• Either, the name of the module and an optional constraint

• Or a repository location such as git+https://github.com/project/python-foo The correct syntax to use is then:
eggname@git+https://../repository#branch with branch being optional.

60 Chapter 5. Model developer documentation

https://www.python.org/dev/peps/pep-0440/#version-specifiers

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.5 Installing modules

Since modules often have dependencies on other modules, it is common to develop against multiple modules (or
a project and one or more modules) simultaneously. One might for example need to extend a dependent module
to add support for some new feature. Because this use case is so common, this section will describe how to work
on multiple modules simultaneously so that any changes are visible to the compiler. This procedure is of course
applicable for working on a single module as well.

5.5.1 Setting up the dev environment

To set up the development environment for a project, activate your development Python environment and install the
project with inmanta project install. To set up the environment for a single v2 module, run pip install
-e . instead.

The following subsections explain any additional steps you need to take if you want to make changes to one of the
dependent modules as well.

v1 modules

Any modules you find in the project’s modulepath after starting from a clean project and setting up the develop-
ment environment are v1 modules. You can make changes to these modules and they will be reflected in the next
compile. No additional steps are required.

v2 modules

All other modules are v2 and have been installed by inmanta project install into the active Python environ-
ment. If you want to be able to make changes to one of these modules, the easiest way is to check out the module
repo separately and run pip install -e <path> on it, overwriting the published package that was installed pre-
viously. This will install the module in editable form: any changes you make to the checked out files will be picked
up by the compiler. You can also do this prior to installing the project, in which case the pre-installed module will
remain installed in editable form when you install the project, provided it matches the version constraints. Since
these modules are essentially Python packages, you can double check the desired modules are installed in editable
mode by checking the output of pip list --editable.

5.5.2 Working on the dev environment

After setting up, you should be left with a dev environment where all required v2 modules have been installed
(either in editable or in packaged form). If you’re working on a project, all required v1 modules should be checked
out in the modulepath directory.

When you run a compile from the active Python environment context, the compiler will find both the v1 and v2
modules and use them for both their model and their plugins.

Similarly, when you run a module’s unit tests, the installed v2 modules will automatically be used by the compiler.
As for v1 modules, by default, the pytest-inmanta extension makes sure the compile itself runs against an
isolated project, downloading any v1 module dependencies. If you want to compile against local versions of v1
modules, have a look at the --use-module-in-place option in the pytest-inmanta documentation.

5.5. Installing modules 61

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.5.3 Module installation on the server

The orchestrator server generally installs modules from the configured Python package repository, respecting the
project’s constraints on its modules and all inter-module constraints. The server is then responsible for supplying
the agents with the appropriate inmanta_plugins packages.

The only exception to this rule is when using the inmanta export command. It exports a project and all its
modules’ inmanta_plugins packages to the orchestrator server. When this method is used, the orchestrator does
not install any modules from the Python package repository but instead contains all Python code as present in the
local Python environment.

Configure the Inmanta server to install modules from a private python package repository

V2 modules can be installed from a Python package repository that requires authentication. This section explains
how the Inmanta server should be configured to install v2 modules from such a Python package repository.

Create a file named /var/lib/inmanta/.netrc in the orchestrator’s file system. Add the following content to
the file:

machine <hostname of the private repository>
login <username>
password <password>

For more information see the doc about pip authentication.

You will also need to specify the url of the repository in the project.yml file of your project (See: Configure pip
index).

By following the previous steps, the Inmanta server will be able to install modules from a private Python package
repository.

5.5.4 Inter-module dependencies

The plugins code of a module mod-a can have a dependency on the plugins code of another V2 module mod-b.
When doing this, care should be taken that the module(s) you depend on, do not define any resources or providers.
Otherwise the python environment of the agent can get corrupt in the following way:

1. The configuration model (in the project or one of the modules) constructs resources from both modules
mod-a and mod-b.

2. mod-a-1.0 and mod-b-1.0 are exported: The exporter exports the x.py file to the server and the agent puts
the x.py file in its code directory.

3. The configuration model is changed to only construct resources from module mod-a.

4. mod-a-1.0 is exported again. mod-b-1.0 is no longer exported because it doesn’t have any resources. The
x.py file still exists in the agent code directory.

5. A new version of module mod-b (mod-b-2.0) is released and included in the project. The project is re-
exported: mod-a-1.0 is exported again, mod-b-2.0 is not (again because it doesn’t have any resources). The
old x.py file still exists in the agent code directory. It is loaded by the agent instead of the one from mod-b-2.0.

This issue will be resolved by a restart of the agent process.

62 Chapter 5. Model developer documentation

https://pip.pypa.io/en/stable/topics/authentication/

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.6 Releasing and distributing modules

5.6.1 V2 modules

Distributing V2 modules

V2 modules are distributed as Python packages. To build a package for a module, run inmanta module build in
the source directory of the module. The resulting Python wheel can then be found in the dist directory of the module.
You can then publish this to the Python package repository of your choice, for example the public PyPi repository.
The inmanta build tool will package a module named my_module under the name inmanta-module-my-module.

5.6.2 V1 modules

Inmanta V1 modules are versioned based on git tags. The current version is reflected in the module.yml file.
The commit should be tagged with the version in the git repository as well. To release a module, use the release
command as outlined below.

Development Versions

To make changes to a module, first create a new git branch:

git checkout -b mywork

When done, first use git to add files:

git add *

Create a new dev version:

inmanta module release --dev --patch -m "Fixed small bug"

This command will set the version to the next dev version, e.g. +0.0.1dev for a patch increment.

The module tool supports semantic versioning. Use one of --major, --minor or --patch to update version
numbers: <major>.<minor>.<patch>

For the dev releases, no tags are created. Once the dev version is ready for release, perform a proper release by
following the steps in the Release Versions section below.

Release Versions

To perform an actual stable release, checkout the main development branch and use the inmanta module
release command:

inmanta module release
git push
git push origin {tag}

This will create a stable version corresponding to the current dev version without the .dev and tag it. This will also
setup the main development branch for further development by creating a new dev version that is a patch ahead of
the latest released version.

5.6. Releasing and distributing modules 63

https://docs.inmanta.com/community/latest/reference/commands.html#release

Inmanta Documentation, Release 7.1.1.dev20240504011805

Distributing V1 modules

V1 modules are generally simply distributed using a Git repository. They can however also be built as a V2 Python
package and distributed the same as other V2 modules.

Git repository distribution format

Distributing a V1 module using a Git repository happens by storing the source code of that module on a Git
repository that is accessible by the Inmanta orchestrator. The orchestrator will clone the source code of the module
and install it in the Inmanta project. Tagging release versions as outlined above allows specifying constraints on
the module version.

V2 package distribution format

A V2 package can be built for a V1 module with inmanta module build. This package can be distributed as
described in Distributing V2 modules. Modules installed from a package will always act as V2 modules and will
be considered such by the compiler.

5.6.3 Freezing a project

Prior to releasing a new stable version of an inmanta project, you might wish to freeze its module dependencies.
This will ensure that the orchestrator server will always work with the exact versions specified. You can achieve
this with inmanta project freeze --recursive --operator "==". This command will freeze all module
dependencies to their exact version as they currently exist in the Python environment. The recursive option makes
sure all module dependencies are frozen, not just the direct dependencies. In other words, if the project depends on
module a which in turn depends on module b, both modules will be pinned to their current version in setup.cfg.

5.7 Developing Plugins

5.7.1 Adding new plugins

Plugins provide functions that can be called from the DSL. This is the primary mechanism to interface Python
code with the orchestration model at compile time. For Example, this mechanism is also used for std::template and
std::file. In addition to this, Inmanta also registers all plugins with the template engine (Jinja2) to use as filters.

A plugin is a python function, registered with the platform with the plugin() decorator. This plugin accepts
arguments when called from the DSL and can return a value. Both the arguments and the return value must by
annotated with the allowed types from the orchestration model. Type annotations are provided as a string (Python3
style argument annotation). any is a special type that effectively disables type validation.

Through the arguments of the function, the Python code in the plugin can navigate the orchestration model. The
compiler takes care of scheduling the execution at the correct point in the model evaluation.

Note: A module’s Python code lives in the inmanta_plugins.<module_name> namespace.

A simple plugin that accepts no arguments, prints out “hello world” and returns no value requires the following
code:

1 from inmanta.plugins import plugin
2

3 @plugin
4 def hello() -> None:
5 print("Hello world!")

64 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

If the code above is placed in the plugins directory of the example module (examples/plugins/__init__.py)
the plugin can be invoked from the orchestration model as follows:

import example

example::hello()

The plugin decorator accepts an argument name. This can be used to change the name of the plugin in the DSL.
This can be used to create plugins that use python reserved names such as print for example:

1 from inmanta.plugins import plugin
2

3 @plugin("print")
4 def printf() -> None:
5 """
6 Prints inmanta
7 """
8 print("inmanta")

A more complex plugin accepts arguments and returns a value. Compared to what python supports as function
arguments, only positional-only arguments are not supported. The following example creates a plugin that converts
a string to uppercase:

1 from inmanta.plugins import plugin
2

3 @plugin
4 def upper(value: "string") -> "string":
5 return value.upper()

This plugin can be tested with:

import example

std::print(example::upper("hello world"))

Argument type annotations are strings that refer to Inmanta primitive types or to entities. If an entity is passed to a
plugin, the python code of the plugin can navigate relations throughout the orchestration model to access attributes
of other entities.

A base exception for plugins is provided in inmanta.plugins.PluginException. Exceptions raised from a
plugin should be of a subtype of this base exception.

1 from inmanta.plugins import plugin, PluginException
2

3 @plugin
4 def raise_exception(message: "string") -> None:
5 raise PluginException(message)

If your plugin requires external libraries, add them as dependencies of the module. For more details on how to add
dependencies see Understanding Modules.

5.7. Developing Plugins 65

https://docs.python.org/3/glossary.html#term-parameter
https://docs.python.org/3/glossary.html#term-parameter

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.7.2 Deprecate plugins

To deprecate a plugin the deprecated() decorator can be used in combination with the plugin() decorator.
Using this decorator will log a warning message when the function is called. This decorator also accepts an
optional argument replaced_by which can be used to potentially improve the warning message by telling which
other plugin should be used in the place of the current one.

for example if the plugin below is called:

1 from inmanta.plugins import plugin, deprecated
2

3 @deprecated(replaced_by="my_new_plugin")
4 @plugin
5 def printf() -> None:
6 """
7 Prints inmanta
8 """
9 print("inmanta")

it will give following warning:

Plugin 'printf' in module 'inmanta_plugins.<module_name>' is deprecated. It should be␣
↪→replaced by 'my_new_plugin'

Should the replace_by argument be omitted, the warning would look like this:

Plugin 'printf' in module 'inmanta_plugins.<module_name>' is deprecated.

If you want your module to stay compatible with older versions of inmanta you will also need to add a little piece
of code that changes how deprecated() is imported as it does not exist in all versions.

The previous example would then look like this. For older inmanta versions, replace the decorator with a no-op.

1 from inmanta.plugins import plugin
2

3 try:
4 from inmanta.plugins import deprecated
5 except ImportError:
6 deprecated = lambda function=None, **kwargs: function if function is not None␣

↪→else deprecated
7

8

9 @deprecated(replaced_by="my_new_plugin")
10 @plugin
11 def printf() -> None:
12 """
13 Prints inmanta
14 """
15 print("inmanta")

66 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.8 Finalizers

When writing models it can be useful to have functions that will be run at the end of the compilation. A typical
use case is making sure all resources are properly flushed back and all connections are properly closed. To help
with this, finalizers can be used.

5.8.1 Adding new finalizers

A finalizer is a python function that is registered by using the finalizer() function as decorator or as callback.
This function should be a function that doesn’t take arguments and that doesn’t return anything. Functions registered
this way will be call when the compiler finishes (with no guarantee on the execution order).

an example of a finalizer that will close an open connection using the decorator option requires the following code:

1 from inmanta import compiler
2

3 connection = None
4

5 def get_connection():
6 global connection
7 if connection is None:
8 connection = connect()
9 return connection

10

11 @compiler.finalizer
12 def finalize_connection():
13 if connection:
14 connection.close()

the same example but using the callback option would look like this:

1 from inmanta import compiler
2

3 connection = None
4

5 def get_connection():
6 global connection
7 if not connection:
8 connection = connect()
9 compiler.finalizer(finalize_connection)

10 return connection
11

12 def finalize_connection():
13 if connection:
14 connection.close()

5.8. Finalizers 67

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.9 Developing South Bound Integrations

The inmanta orchestrator comes with a set of integrations with different platforms (see: Inmanta modules). But it
is also possible to develop your own south bound integrations.

To integrate a new platform into the orchestrator, you must take the following steps:

1. Create a new module to contain the integration (see: Understanding Modules).

2. Model the target platform as set of entities.

3. Create resources and handler, as described below.

5.9.1 Overview

A South Bound integration always consists of three parts:
• one or more entities in the model

• a resource that serializes the entities and captures all information required to enforce the desired state.

• a handler: the python code required to enforce the desired state.

Exporter

Resources
(python)

Server

Resources
(json)

Compiler

Entities

Agent

Resources
(python)

Handler
(python)

Managed
Infrastructure

• In the compiler, a model is constructed that consists of entities. The entities can be related to each other.

• The exporter will search for all entities that can be directly deployed by a handler. These are the resources.
Resources are self-contained and can not refer to any other entity or resource.

• The resources will be sent to the server in json serialized form.

• The agent will present the resources to a handler in order to have the desired state enforced on the managed
infrastructure.

5.9.2 Resource

A resource is represented by a Python class that is registered with Inmanta using the @resource decorator. This
decorator decorates a class that inherits from the Resource class.

The fields of the resource are indicated with a fields field in the class. This field is a tuple or list of strings with
the name of the desired fields of the resource. The orchestrator uses these fields to determine which attributes of
the matching entity need to be included in the resource.

Fields of a resource cannot refer to an instance in the orchestration model or fields of other resources. The resource
serializers allows to map field values. Instead of referring directly to an attribute of the entity it serializes (path in
std::File and path in the resource map one on one). This mapping is done by adding a static method to the resource
class with get_$(field_name) as name. This static method has two arguments: a reference to the exporter and
the instance of the entity it is serializing.

1 from inmanta.resources import resource, Resource
2

3 @resource("std::File", agent="host.name", id_attribute="path")
4 class File(Resource):
5 fields = ("path", "owner", "hash", "group", "permissions", "purged", "reload")
6

(continues on next page)

68 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

7 @staticmethod
8 def get_hash(exporter, obj):
9 hash_id = md5sum(obj.content)

10 exporter.upload_file(hash_id, obj.content)
11 return hash_id
12

13 @staticmethod
14 def get_permissions(_, obj):
15 return int(x.mode)

Classes decorated with @resource do not have to inherit directly from Resource. The orchestrator already offers
two additional base classes with fields and mappings defined: PurgeableResource and ManagedResource. This
mechanism is useful for resources that have fields in common.

A resource can also indicate that it has to be ignored by raising the IgnoreResourceException exception.

5.9.3 Handler

Handlers interface the orchestrator with resources in the infrastructure. Handlers take care of changing the current
state of a resource to the desired state expressed in the orchestration model.

The compiler collects all python modules from Inmanta modules that provide handlers and uploads them to the
server. When a new orchestration model version is deployed, the handler code is pushed to all agents and imported
there.

Handlers should inherit the class CRUDHandler. The @provider decorator registers the class with the orchestrator.

Each Handler should override 4 methods of the CRUDHandler:

1. read_resource() to read the current state of the system.

2. create_resource() to create the resource if it doesn’t exist.

3. update_resource() to update the resource when required.

4. delete_resource() to delete the resource when required.

The context (See HandlerContext) passed to most methods is used to report results, changes and logs to the
handler and the server.

Using facts

Facts are properties of the environment whose values are not managed by the orchestrator. Facts are either used as
input in a model, e.g. a virtual machine provider provides an ip and the model then uses this ip to run a service, or
used for reporting purposes.

Retrieving a fact in the model is done with the std::getfact() function.

Example taken from the openstack Inmanta module:

1 implementation fipAddr for FloatingIP:
2 self.address = std::getfact(self, "ip_address")
3 end

Facts can be pushed or pulled through the handler.

Pushing a fact is done in the handler with the set_fact() method during resource deployment (in
read_resource and/or create_resource). e.g.:

5.9. Developing South Bound Integrations 69

../reference/modules/std.html#std.getfact
https://github.com/inmanta/openstack

Inmanta Documentation, Release 7.1.1.dev20240504011805

1 @provider("openstack::FloatingIP", name="openstack")
2 class FloatingIPHandler(OpenStackHandler):
3 def read_resource(self, ctx: handler.HandlerContext, resource: FloatingIP) ->␣

↪→None:
4 ...
5

6 def create_resource(self, ctx: handler.HandlerContext, resource: FloatingIP) ->␣
↪→None:

7 ...
8 # Setting fact manually
9 for key, value in ...:

10 ctx.set_fact(fact_id=key, value=value, expires=True)

By default, facts expire when they have not been refreshed or updated for a certain time, controlled by the server.
fact-expire config option. Querying for an expired fact will force the agent to refresh it first.

When reporting a fact, setting the expires parameter to False will ensure that this fact never expires. This is
useful to take some load off the agent when working with facts whose values never change. On the other hand,
when working with facts whose values are subject to change, setting the expires parameter to True will ensure
they are periodically refreshed.

Facts are automatically pulled periodically (this time interval is controlled by the server.fact-renew config op-
tion) when they are about to expire or if a model requested them and they were not present. The server periodically
asks the agent to call into the handler’s facts() method. e.g.:

1 @provider("openstack::FloatingIP", name="openstack")
2 class FloatingIPHandler(OpenStackHandler):
3 ...
4

5 def facts(self, ctx, resource):
6 port_id = self.get_port_id(resource.port)
7 fip = self._neutron.list_floatingips(port_id=port_id)["floatingips"]
8 if len(fip) > 0:
9 ctx.set_fact("ip_address", fip[0]["floating_ip_address"])

Warning: If you ever push a fact that does expire, make sure it is also returned by the handler’s facts()
method. If you omit to do so, when the fact eventually expires, the agent will keep on trying to refresh it
unsuccessfully.

Note: Facts should not be used for things that change rapidly (e.g. cpu usage), as they are not intended to refresh
very quickly.

5.9.4 Built-in Handler utilities

The Inmanta Agent, responsible for executing handlers has built-in utilities to help handler development. This
section describes the most important ones.

70 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Logging

The agent has a built-in logging facility, similar to the standard python logger. All logs written to this logger will
be sent to the server and are available via the web-console and the API. Additionally, the logs go into the agent’s
logfile and into the resource-action log on the server.

To use this logger, use one of the methods: ctx.debug, ctx.info, ctx.warning, ctx.error, ctx.critical
or ctx.exception.

This logger implements the ~inmanta.agent.handler.LoggerABC logging interface and supports kwargs. The
kwargs have to be json serializable. They will be available via the API in their json structured form.

For example:

def create_resource(self, ctx: HandlerContext, resource: ELB) -> None:
...
ctx.debug("Creating loadbalancer with security group %(sg)s", sg=sg_id)

An alternative implementation of the ~inmanta.agent.handler.LoggerABC logging interface that just logs to
the Python logger is provided in ~inmanta.agent.handler.PythonLogger. This logger is not meant to be
used in actual handlers but it can be used for the automated testing of helper methods that accept a ~in-
manta.agent.handler.LoggerABC instance. In production, these helpers would receive the actual HandlerContext
and log appropriately, while for testing the PythonLogger can be passed.

Caching

The agent maintains a cache, that is kept over handler invocations. It can, for example, be used to cache a connec-
tion, so that multiple resources on the same device can share a connection.

The cache can be invalidated either based on a timeout or on version. A timeout based cache is kept for a specific
time. A version based cache is used for all resource in a specific version. The cache will be dropped when the
deployment for this version is ready.

The cache can be used through the @cache decorator. Any method annotated with this annotation will be cached,
similar to the way lru_cache works. The arguments to the method will form the cache key, the return value will be
cached. When the method is called a second time with the same arguments, it will not be executed again, but the
cached result is returned instead. To exclude specific arguments from the cache key, use the ignore parameter.

For example, to cache the connection to a specific device for 120 seconds:

@cache(timeout=120, ignore=["ctx"])
def get_client_connection(self, ctx, device_id):
...
return connection

To do the same, but additionally also expire the cache when the next version is deployed, the method must have
a parameter called version. for_version is True by default, so when a version parameter is present, the cache is
version bound by default.

@cache(timeout=120, ignore=["ctx"], for_version=True)
def get_client_connection(self, ctx, device_id, version):
...
return connection

To also ensure the connection is properly closed, an on_delete function can be attached. This function is called
when the cache is expired. It gets the cached item as argument.

@cache(timeout=120, ignore=["ctx"], for_version=True,
call_on_delete=lambda connection:connection.close())

def get_client_connection(self, ctx, device_id, version):
(continues on next page)

5.9. Developing South Bound Integrations 71

https://docs.python.org/3/library/functools.html#functools.lru_cache

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

...
return connection

5.10 Test plugins

Testing the behavior of an Inmanta plugin can be done by using the project fixture, which is part of the
pytest-inmanta package. This fixture provides functionality to call a plugin directly from a pytest test case.

5.10.1 Install the pytest-inmanta package

The pytest-inmanta package can be installed via pip:

pip install pytest-inmanta

5.10.2 Writing a test case

Take the following plugin as an example:

1 # example_module/plugins/__init__.py
2

3 from inmanta.plugins import plugin
4

5 @plugin
6 def hostname(fqdn: "string") -> "string":
7 """
8 Return the hostname part of the fqdn
9 """

10 return fqdn.split(".")[0]

A test case, to test this plugin looks like this:

1 # example_module/tests/test_hostname.py
2

3 def test_hostname(project, inmanta_plugins):
4 host = "test"
5 fqdn = f"{host}.something.com"
6 assert inmanta_plugins.example_module.hostname(fqdn) == host

• Line 3: Creates a pytest test case, which requires the project fixture.

• Line 6: Uses the inmanta_plugins fixture to access the hostname function from the example_module
module’s Python namespace. As such, this line tests whether host is returned when the plugin function
hostname is called with the parameter fqdn.

Note: V2 modules do not need to use the inmanta_plugins fixture. They can just import from the
inmanta_plugins namespace directly at the top of the test file.

For more information see: pytest-inmanta

72 Chapter 5. Model developer documentation

https://github.com/inmanta/pytest-inmanta

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.11 Understanding Projects

A project is the basic unit of orchestration. It contains:

• main.cf: the entry point for the compiler to start executing

• project.yml: the project meta data, defines where to find modules and which versions to use. For detailed
documentation see: project.yml.

• requirements.txt: (optional) the python dependencies of the project, defines which python dependen-
cies to install and which versions to use. Dependencies with extras can be defined in this file using the
dependency[extra-a,extra-b] syntax. It has two main use cases:

– It contains the listing of all modules that should be installed as a V2 module.

– It contains version constraints to help pip resolve version conflicts on python packages.

project
|
|__ project.yml
|__ requirements.txt
|__ main.cf

5.12 Model debugging

Warning: This is a beta feature. It does not support the full language yet and it might not work as expected.
Currently known limitations:

• lists and dicts not supported

• string interpolation not supported

• constructor kwargs not supported

• plugins not supported

• conditionals not supported

• for loops not supported

• boolean operations not supported

• explicit index lookups not supported

• only double assignment, exceeding relation arity and incomplete instance errors are supported

Support for the listed language features will be added gradually.

The inmanta DSL is essentially a data flow oriented language. As a model developer you never explicitly manipulate
control flow. Instead you declare data flow: the statement x = y for example declares that the data in y should flow
towards x. Even dynamic statements such as implementations and for loops do not explicitly manipulate control
flow. They too can be interpreted as data flow declarations.

Because of this property conventional debugging methods such as inspecting a stack trace are not directly applicable
to the inmanta language. A stack trace is meant to give the developer insight in the part of the control flow that led
to the error. Extending this idea to the inmanta DSL leads to the concept of a data trace. Since the language is data
flow oriented, a trace of the flow to some erroneous part of the configuration model gives the developer insight in
the cause of the error.

Additionally, a root cause analysis will be done on any incomplete instances and only those root causes will be
reported.

5.11. Understanding Projects 73

Inmanta Documentation, Release 7.1.1.dev20240504011805

The first section, Enabling the data trace describes how to enable these two tools. The tools themselves are de-
scribed in the sections Interpreting the data trace and Root cause analysis respectively. An example use case is
shown in Usage example, and the final section, Graphic visualization, shortly describes a graphic representation
of the data flow.

5.12.1 Enabling the data trace

To show a data trace when an error occurs, compile the model with the --experimental-data-trace flag. For
example:

Listing 1: main.cf

1 x = 1
2 x = 2

Compiling with inmanta compile --experimental-data-trace results in

inmanta.ast.DoubleSetException: value set twice:
old value: 1

set at ./main.cf:1
new value: 2

set at ./main.cf:2

data trace:
x

1
SET BY `x = 1`
AT ./main.cf:1
2
SET BY `x = 2`
AT ./main.cf:2

(reported in x = 2 (./main.cf:2))

5.12.2 Interpreting the data trace

Let’s have another look at the data trace for the model above:

1 x
2 1
3 SET BY `x = 1`
4 AT ./main.cf:1
5 2
6 SET BY `x = 2`
7 AT ./main.cf:2

Line 1 shows the variable where the error occurred. A tree departs from there with branches going to lines 2 and 5
respectively. These branches indicate the data flow to x. In this case line 2 indicates x has been assigned the literal
1 by the statement x = 1 at main.cf:1 and the literal 2 by the statement x = 2 at main.cf:2.

Now let’s go one step further and add an assignment to another variable.

Listing 2: variable-assignment.cf

1 x = 0
2 x = y
3 y = 1

74 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Listing 3: data trace for variable-assignment.cf

1 x
2 y
3 SET BY `x = y`
4 AT ./variable-assignment.cf:2
5 1
6 SET BY `y = 1`
7 AT ./variable-assignment.cf:3
8 0
9 SET BY `x = 0`

10 AT ./variable-assignment.cf:1

As before we can see the data flow to x as declared in the model. Following the tree from x to its leaves leads to
the conclusion that x has indeed received two inconsistent values, and it gives insight into how those values came
to be assigned to x (0 directly and 1 via y).

One more before we move on to entities:

Listing 4: assignment-loop.cf

1 x = y
2 y = z
3 z = x
4

5 x = 0
6 z = u
7 u = 1

Listing 5: data trace for assignment-loop.cf

1 z
2 EQUIVALENT TO {x, y, z} DUE TO STATEMENTS:
3 `x = y` AT ./assignment-loop.cf:1
4 `y = z` AT ./assignment-loop.cf:2
5 `z = x` AT ./assignment-loop.cf:3
6 u
7 SET BY `z = u`
8 AT ./assignment-loop.cf:6
9 1

10 SET BY `u = 1`
11 AT ./assignment-loop.cf:7
12 0
13 SET BY `x = 0`
14 AT ./assignment-loop.cf:5

This model defines an assignment loop between x, y and z. Assignment to either of these variables will result in
a flow of data to all of them. In other words, the variables are equivalent. The data trace shows this information at
lines 2–5 along with the statements that caused the equivalence. The rest of the trace is similar to before, except
that the tree now shows all assignments to any of the three variables part of the equivalence. The tree now no longer
shows just the data flow to x but to the equivalence as a whole, since any data that flows to the equivalence will
also flow to x.

Listing 6: entities.cf

1 entity A:
2 number n
3 end

(continues on next page)

5.12. Model debugging 75

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

4

5 implement A using std::none
6

7 x = A(n = 0)
8

9 template = x
10

11 y = A(n = template.n)
12 y.n = 1

Listing 7: data trace for entities.cf

1 attribute n on __config__::A instance
2 SUBTREE for __config__::A instance:
3 CONSTRUCTED BY `A(n=template.n)`
4 AT ./entities.cf:11
5 template.n
6 SET BY `A(n=template.n)`
7 AT ./entities.cf:11
8 SUBTREE for template:
9 x

10 SET BY `template = x`
11 AT ./entities.cf:9
12 __config__::A instance
13 SET BY `x = A(n=0)`
14 AT ./entities.cf:7
15 CONSTRUCTED BY `A(n=0)`
16 AT ./entities.cf:7
17 0
18 SET BY `A(n=0)`
19 AT ./entities.cf:7
20 1
21 SET BY `y.n = 1`
22 AT ./entities.cf:12

As usual, line 1 states the variable that represents the root of the data flow tree. In this case it’s the attribute n of an
instance of A. Which instance? That is shown in the subtree for that instance on lines 2–4. In this case it’s a very
simple subtree that shows just the construction of the instance and the line number in the configuration model. The
tree for the attribute starts at line 5. The first branch shows the assignment to template.n in the constructor for
y. Then another subtree is shown at lines 8–16, this one more useful. It shows a data flow graph like we’re used to
by now, with template as the root. Then at line 17 the trace shows the data flow template.n <- 0 referring to
entities.cf:7. This line doesn’t assign to template.n directly, but it does assign to the instance at the end of
the subtree for template (the data that flows to template).

Let’s have a look at an implementation:

Listing 8: implementation.cf

1 entity A:
2 number n
3 end
4

5 implement A using i
6

7 implementation i for A:
8 self.n = 42
9 end

(continues on next page)

76 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

10

11 x = A(n = 0)

Listing 9: data trace for implementation.cf

1 attribute n on __config__::A instance
2 SUBTREE for __config__::A instance:
3 CONSTRUCTED BY `A(n=0)`
4 AT ./implementation.cf:11
5 0
6 SET BY `A(n=0)`
7 AT ./implementation.cf:11
8 42
9 SET BY `self.n = 42`

10 AT ./implementation.cf:8
11 IN IMPLEMENTATION WITH self = __config__::A instance
12 CONSTRUCTED BY `A(n=0)`
13 AT ./implementation.cf:11

The only thing new in this trace can be found at lines 11—13. It highlights that a statement was executed within a
dynamic context and shows a subtree for the self variable.

And finally, an index:

Listing 10: index.cf

1 entity A:
2 number n
3 number m
4 end
5

6 index A(n)
7

8 implement A using std::none
9

10 A(n = 42, m = 0)
11 A(n = 42, m = 1)

5.12. Model debugging 77

Inmanta Documentation, Release 7.1.1.dev20240504011805

Listing 11: data trace for index.cf

1 attribute m on __config__::A instance
2 SUBTREE for __config__::A instance:
3 CONSTRUCTED BY `A(n=42,m=0)`
4 AT ./index.cf:10
5

6 INDEX MATCH: `__config__::A instance`
7 CONSTRUCTED BY `A(n=42,m=1)`
8 AT ./index.cf:11
9 1

10 SET BY `A(n=42,m=1)`
11 AT ./index.cf:11
12 0
13 SET BY `A(n=42,m=0)`
14 AT ./index.cf:10

This data trace highlights the index match between the two constructors at lines 6–8.

5.12.3 Root cause analysis

Enabling the data trace also enables a root cause analysis when multiple attributes have not received a value. For
example, compiling the model below results in three errors, one for each of the instances.

1 entity A:
2 number n
3 end
4

5 implement A using std::none
6

7 x = A()
8 y = A()
9 z = A()

10

11 x.n = y.n
12 y.n = z.n

Listing 12: compile output

1 Reported 3 errors
2 error 0:
3 The object __config__::A (instantiated at ./main.cf:7) is not complete: attribute n␣

↪→(./main.cf:2) is not set
4 error 1:
5 The object __config__::A (instantiated at ./main.cf:9) is not complete: attribute n␣

↪→(./main.cf:2) is not set
6 error 2:
7 The object __config__::A (instantiated at ./main.cf:8) is not complete: attribute n␣

↪→(./main.cf:2) is not set

Compiling with data trace enabled will do a root cause analysis on these errors. In this case it will infer that x.n
and y.n are only unset because z.n is unset. Compiling then shows:

78 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Listing 13: compile output with –experimental-data-trace

1 Reported 1 errors
2 error 0:
3 The object __config__::A (instantiated at ./main.cf:9) is not complete: attribute n␣

↪→(./main.cf:2) is not set

In cases where a single error leads to errors for a collection of related attributes, this can greatly simplify the
debugging process.

5.12.4 Usage example

Let’s have a look at the model below:

Listing 14: service.cf

1 entity Port:
2 string host
3 number portn
4 end
5

6 index Port(host, portn)
7

8 entity Service:
9 string name

10 string host
11 number portn
12 end
13

14 Service.port [0:1] -- Port.service [0:1]
15

16

17 implement Port using std::none
18 implement Service using bind_port
19

20

21 implementation bind_port for Service:
22 self.port = Port(host = self.host, portn = self.portn)
23 end
24

25

26 sshd = Service(
27 name = "opensshd",
28 host = "my_host",
29 portn = 22,
30)
31

32

33 custom_service = Service(
34 name = "some_custom_service",
35 host = "my_host",
36 portn = 22,
37)

Compiling this with data trace disabled outputs the following error:

5.12. Model debugging 79

Inmanta Documentation, Release 7.1.1.dev20240504011805

Listing 15: compilation output for service.cf with data trace disabled

Could not set attribute `port` on instance `__config__::Service (instantiated at ./
↪→service.cf:33)` (reported in self.port = Construct(Port) (./service.cf:22))
caused by:
Could not set attribute `service` on instance `__config__::Port (instantiated at ./

↪→service.cf:22,./service.cf:22)` (reported in __config__::Port (instantiated at ./
↪→service.cf:22,./service.cf:22) (./service.cf:22))
caused by:
value set twice:
old value: __config__::Service (instantiated at ./service.cf:26)

set at ./service.cf:22
new value: __config__::Service (instantiated at ./service.cf:33)

set at ./service.cf:22
(reported in self.port = Construct(Port) (./service.cf:22))

The error message refers to service.cf:22 which is part of an implementation. It is not clear which Service
instance is being refined, which makes finding the cause of the error challenging. Enabling data trace results in the
trace below:

Listing 16: data trace for service.cf

1 attribute service on __config__::Port instance
2 SUBTREE for __config__::Port instance:
3 CONSTRUCTED BY `Port(host=self.host,portn=self.portn)`
4 AT ./service.cf:22
5 IN IMPLEMENTATION WITH self = __config__::Service instance
6 CONSTRUCTED BY `Service(name='opensshd',host='my_host',portn=22)`
7 AT ./service.cf:26
8

9 INDEX MATCH: `__config__::Port instance`
10 CONSTRUCTED BY `Port(host=self.host,portn=self.portn)`
11 AT ./service.cf:22
12 IN IMPLEMENTATION WITH self = __config__::Service instance
13 CONSTRUCTED BY `Service(name='some_custom_service',host='my_host',

↪→portn=22)`
14 AT ./service.cf:33
15 __config__::Service instance
16 SET BY `self.port = Port(host=self.host,portn=self.portn)`
17 AT ./service.cf:22
18 IN IMPLEMENTATION WITH self = __config__::Service instance
19 CONSTRUCTED BY `Service(name='some_custom_service',host='my_host',portn=22)`
20 AT ./service.cf:33
21 CONSTRUCTED BY `Service(name='some_custom_service',host='my_host',portn=22)`
22 AT ./service.cf:33
23 __config__::Service instance
24 SET BY `self.port = Port(host=self.host,portn=self.portn)`
25 AT ./service.cf:22
26 IN IMPLEMENTATION WITH self = __config__::Service instance
27 CONSTRUCTED BY `Service(name='opensshd',host='my_host',portn=22)`
28 AT ./service.cf:26
29 CONSTRUCTED BY `Service(name='opensshd',host='my_host',portn=22)`
30 AT ./service.cf:26

At lines 15 and 23 it shows the two Service instances that are also mentioned in the original error message. This
time, the dynamic implementation context is mentioned and it’s clear that these instances have been assigned in a
refinement for the Service instances constructed at lines 26 and 33 in the configuration model respectively.

80 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Lines 2–14 in the trace give some additional information about the Port instance. It indicates there is an index
match between the Port instances constructed in the implementations for both Service instances. This illustrates
the existence of the two branches at lines 15 and 23, and why the assignment in this implementation resulted in the
exceeding of the relation arity: the right hand side is the same instance in both cases.

5.12.5 Graphic visualization

Warning: This representation is not as complete as the data trace explained above. It does not show infor-
mation about statements responsible for each assignment. It was primarily developed as an aid in developing
the data flow framework on which the data trace and the root cause analysis tools are built. It’s described here
because it’s closely related to the two tools described above. Its actual use in model debugging might be limited.

Note: Using this feature requires one of inmanta’s optional dependencies to be installed: pip install
inmanta[dataflow_graphic]. It also requires the fdp command to be available on your system. This is most
likely packaged in your distribution’s graphviz package.

Let’s compile the model in service.cf again, this time with --experimental-dataflow-graphic. The compile
results in an error, as usual, but this time it’s accompanied by a graphic visualization of the data flow.

Port

Port

Service

Service

host

__self__

.host

__self__
.host

name

'some_custom_service'

host

'my_host'

portn

22

port

requires

provides

name

'opensshd'

host

portn

port

requires

provides

portn

.portn

.portn

service

requires
provides

sshd

custom_service

index

It shows all assignments, as well as the index match between the two Port constructions. An assignment where
the right hand side is an attribute x.y is shown by an arrow to x, labeled with .y. Variables are represented by
ellipses, values by diamonds and instances by rectangular containers.

5.13 Model Design Guidelines

This section provides design guidelines for experienced developers. It is intended as a way of sharing experience
and improving design.

Warning: We provide guidelines here. These are not absolute rules and not all rules are appropriate at all
times. Trust your own good judgement before anything else.

5.13. Model Design Guidelines 81

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.13.1 Overview

South Bound Integration:

1. Keep close to the API. Keep the structure of the inmanta model as close as possible to the API you model.
Refrain from adding abstraction layers when doing pure integration.

2. Prefer modeling relations as relations, avoid reference by string.

5.13.2 Keep close to the API

When doing south bound integrations, it is tempting to improve the existing API. Resist this temptation. It leads to
the following problems:

1. It costs a lot of effort to integrate the API and redesign it at the same time.

2. Often, you don’t understand the API as well as the people who designed it. The improvements you make
when starting out often lead to dead ends. Some features that are trivial to represent in the original API
become impossible to express in your improved API.

3. APIs evolve. When the API changes in the future, it may become very hard to maintain you improved API.

When you want to offer an improved API, do it in two stages: first model and integrate the existing API, then add
an abstraction layer in the model. This neatly separates the integration and abstraction effort.

5.13.3 Prefer modeling relations as relations

Often, APIs have relations. For example, when creating a virtual machine on AWS EC2, it can refer to one or
more SecurityGroups. This is modeled in the AWS handler as an explicit relation: aws::VirtualMachine.
security_groups.

There are different modeling styles possible: 1. Model the relation as a relation between two model enti-
ties. (e.g. aws::VirtualMachine.security_groups) 2. Model the relation as a (textual) reference. (e.g.
aws::database::RDS.subnet_group.)

These styles can be mixed within one module.

Explicit relations have the advantage that consistency can be enforced within the model. Type errors and dangling
reference are easily prevented. Higher functionality, like correct ordering of the deployment is easy to implement.

Textual references have the advantage that it is easy to refer to things that are not in the model.

When starting to build up a model, textual reference are attractive, as the modeling effort required is very limited.
It is however difficult to migrate away from the textual references later on, because this is a breaking change for
any existing model.

One solution to allow reference to unmanaged entities is to extend std::ManagedResource. This allows an entity
to exist in the model, but when managed is set to false, it will never become a resource. However, the entity must
still be valid. All attributes and relations still have to be filled in correctly. For entities with many non-optional
relations, this is also not the best solution.

Another solution is to introduce a parent entity type that explicitly represents the unmanaged entity. It has only
those attributes that are required to correctly refer to it. The concrete, managed entity is a subtype of the unmanaged
version. This requires a bit more types, but it is most evolution friendly. No naming convention for the unmanaged
parent has been established.

As an example, we could implement aws::VirtualMachine.security_groups as follows:

82 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

VirtualMachine

string image
string size
...

SecurityGroupReference

string name

This entity is used to refer to
an existing, unmanaged SecurityGroup

SecurityGroup

string description

This entity expresses desired state
about a SecurityGroup

security_groups

1 *

In cases where there is a single relation that can point to multiple specific subtypes, we can use the existing supertype
entity to represent unmanaged entities.

Rule
NamedObject

string name

Host

...

Network

...

Group

...

This entity is used to refer to
an existing, unmanaged Object

These entities express desired state
over different specific types of Objects.

source1

target
1

5.14 Partial compiles

Warning: This is an advanced feature, targeted at mature models that have the need to scale beyond their cur-
rent capabilities. Care should be taken to implement this safely, and the user should be aware of its limitations.

Note: For partial compiles through LSM, see its documentation on how to manage resource sets for an LSM
service in addition to the documentation below.

Small updates to large models can be compiled quickly using partial compiles. We merely recompile a tiny, in-
dependent portion of the model, as opposed to doing it for the entire model. A resource set is made up of the
resources in a specific portion of the model.

The model’s resources must be separated into resource sets in order to employ partial compilations. The model
can then be shrunk to only include the entities for the resource sets that need to be modified. The changes will be
pushed to the server when this smaller model is recompiled and exported in partial mode, but all other resource
sets won’t be impacted.

While the remainder of this document will focus on the straightforward scenario of manually trimming down the
model to facilitate quicker compilations, the partial compile feature is actually most useful in conjunction with

5.14. Partial compiles 83

Inmanta Documentation, Release 7.1.1.dev20240504011805

additional tooling (such as a model generator based on a YAML file) or an Inmanta extension (such as LSM) that
offers dynamic entity construction.

5.14.1 Resource sets

Instances of the std::ResourceSet entity serve as the model’s representation of resource sets. The name of the
set and a list of its resources are held by this entity. These ResourceSet instances are found by the default exporter
to ascertain which resources belong to which set.

In the example below, 1000 networks of 5 hosts each are created. Each host is part of its network’s resource set.

Listing 17: main.cf

entity Network:
"""
A network consisting of hosts. Each network is modelled fully independent from␣

↪→others.
"""
int id

end
Network.hosts [0:] -- Host.network [1]

index Network(id)

implementation network_resource_set for Network:
The Host resources for a network are all part of the same resource set
set = std::ResourceSet(name="network-{{ self.id }}")
for host in self.hosts:

set.resources += host
end

end

entity Host extends std::Resource:
int id

end
index Host(network, id)

implementation host for Host:
Resource that doesn't belong to any resource set and is shared
std::AgentConfig(autostart=true, agentname="host_agent")

end

implement Network using network_resource_set
implement Host using host

create 1000 networks with 5 hosts each
for i in std::sequence(1000):

network = Network(id=i)
for j in std::sequence(5):

Host(network=network, id=j)
end

end

84 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.14.2 Partial compiles

When a model is partially compiled, it only includes the entities and resources for the resource sets that need to be
changed (as well as their dependencies on additional resources that aren’t part of a resource set). It is the server’s
responsibility to create a new version of the desired state utilizing the resources from the old version and those
from the partial compile.

Only the resource sets that are present in the partially compiled model will be replaced when a partial export to the
server is performed. Other sets’ resources won’t be impacted in any way. Shared resources are those that aren’t a
part of any resource collection and can always be added.

The resources from the prior example would be updated by a partial export for the model below:

Listing 18: main.cf

entity Network:
"""
A network consisting of hosts. Each network is modelled fully independent from␣

↪→others.
"""
int id

end
Network.hosts [0:] -- Host.network [1]

index Network(id)

implementation network_resource_set for Network:
The Host resources for a network are all part of the same resource set
set = std::ResourceSet(name="network-{{ self.id }}")
for host in self.hosts:

set.resources += host
end

end

entity Host extends std::Resource:
int id

end
index Host(network, id)

implementation host for Host:
Resource that doesn't belong to any resource set and is shared
std::AgentConfig(autostart=true, agentname="host_agent")

end

implement Network using network_resource_set
implement Host using host

turns out network 0 only needs one host
Host(network=Network(id=0), id=0)

As a result, network 0 would be changed to only have one host (the other four resources are removed), but the other
networks would continue to function as they had before (because their resource set was not present in the partial
export). The comparable complete model would seem as follows:

5.14. Partial compiles 85

Inmanta Documentation, Release 7.1.1.dev20240504011805

Listing 19: main.cf

entity Network:
"""
A network consisting of hosts. Each network is modelled fully independent from␣

↪→others.
"""
int id

end
Network.hosts [0:] -- Host.network [1]

index Network(id)

implementation network_resource_set for Network:
The Host resources for a network are all part of the same resource set
set = std::ResourceSet(name="network-{{ self.id }}")
for host in self.hosts:

set.resources += host
end

end

entity Host extends std::Resource:
int id

end
index Host(network, id)

implementation host for Host:
Resource that doesn't belong to any resource set and is shared
std::AgentConfig(autostart=true, agentname="host_agent")

end

implement Network using network_resource_set
implement Host using host

create network 0 with only one host
Host(network=Network(id=0), id=0)
create 999 networks with 5 hosts each
for i in std::sequence(999, start=1):

network = Network(id=i)
for j in std::sequence(5):

Host(network=network, id=j)
end

end

Keep in mind that each resource set contains a collection of independent resources. In this example scenario, since
the host instances for other sets do not exist at compilation time, it would be impossible to enforce a host index that
was based just on the id and excluded the network.

The model developer is accountable for the following: Each resource set in a partial compilation needs to be
separate from and independent of the resource sets that aren’t included in the partial model. When performing
partial compilations, this is a crucial assumption. If this condition is not satisfied, partial compilations may end
up being incompatible with one another (a full compilation with the identical changes would fail), as the index
example shows. This can result in undefinable behavior.

86 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Constraints and rules

When using partial compiles, the following rules have to be followed:

• A resource cannot be a part of more than one resource set at once.

• A resource does not have to be part of a resource set.

• Resources cannot be migrated using a partial compile to a different resource set. A full compile is necessary
for this process.

• A resource set that is contained in a partial export must be complete, meaning that all of its resources must
be present.

• Resources that weren’t assigned to a specific resource set can never be updated or removed by a partial build.
Although, adding resources is allowed.

• Resources within a resource set cannot depend on resources in another resource set. Dependencies on shared
resources are allowed.

• Multiple resource sets may be updated simultaneously via a partial build.

For a guide on how to design a model in order to take these into account, see Modeling guidelines.

Exporting a partial model to the server

Three arguments can be passed to the inmanta export command in order to export a partial model to the server:

• --partial To specify that the model being compiled only contains the resources that need to be updated in
relation to the previous version of the model.

• --delete-resource-set <resource-set-name> This option, which may be used more than once, in-
structs the model to remove the resource set with the specified name. Only in conjunction with the preceding
choice may this option be utilized. Note that utilizing a std::ResourceSet that includes no resources al-
lows resource sets to be implicitly deleted during a partial compilation.

• --soft-delete To silently ignore deletion of resource sets specified through the
--delete-resource-set option if the model is exporting resources that are part of these sets.

Limitations

• The compiler cannot verify all constraints that would be verified when a full build is run. Some index
constraints, for instance, cannot be verified. The model creator is in charge of making sure that these
constraints are met.

See Modeling guidelines on how to design your model.

• If just a partial compile is performed, it is possible for a shared resource to become obsolete. The shared
resource will become obsolete when a partial compile deletes the last resource that depended on it, but it
is preserved as a server-managed resource because partial compiles cannot delete shared resources. A full
compile is required to remove shared resources. Scheduled full compilations that garbage-collect these
shared resources are one way to fix this. The auto_full_compile environment setting is used to schedule
full compilations. As an example, to plan a daily full compile for 01:00 UTC, use the auto_full_compile
environment setting: 0 1 * * *.

5.14. Partial compiles 87

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.14.3 Modeling guidelines

This section will introduce some guidelines for developing models for use with the partial compilation feature.
Take extreme care when not following these guidelines and keep in mind the Constraints and rules. The purpose
of these guidelines is to present a modelling approach to safely make use of partial compiles. In essence, this boils
down to developing the model so that a partial compile only succeeds if a full one would as well.

In this guide, we only cover models where each set of independent resources is defined by a single top-level entity,
which we will refer to as the “service” or “service entity” (as in LSM). We will use the term “identity” to refer to
any set of attributes that uniquely identify an instance. In the model this usually corresponds to an index.

All potential instances of a service entity must be refined to compatible (low level) configuration when creating an
Inmanta model. In the model this config is represented by the resources. Therefore these guidelines will focus on
creating valid and compatible resources. With well-designed resources, valid and compatible config will follow.

To safely make use of partial compiles, each service must be the sole owner of its resources and any shared resources
must be identical across service instances. The graph below pictures a valid service for partial compiles. Each
arrow represents a refinement: one entity creating another in one of its implementations. The valid service results
in fully separate resource sets for each instance. Additionally, the one shared resource is created consistently
between service instances. For each entity type, the id attribute is assumed to be an identifying attribute for the
instance (i.e. there is an index on the attribute).

Owned by GoodService(id=0)

Resource set for GoodService(id=0)

Owned by GoodService(id=1)

Resource set for GoodService(id=1)

Shared and consistent among all service instances

GoodService(id=0)

Resource(id=0)Resource(id=1)

SharedResource(id=0, value=0)

GoodService(id=1)

Resource(id=2)Resource(id=3)

Fig. 1: A good service for partial compiles.

In contrast, the graph below shows an invalid service definition. Its resources overlap between instances. The
invalid service can thus not be allowed for partial compiles because no resource can be considered completely
owned by a single service instance.

Finally, the graph below shows another invalid model. Here, the resources are clearly divided into sets, but the
shared resource is created inconsistently: one instance sets its value to 0 while the other sets it to 1.

In conclusion, each service’s refinements (through implementations) form a tree that may only intersect between
service instances on shared nodes. The whole subtree below such a shared node should be considered shared and
any resources in it must not be part of a resource set. All shared resources should be consistent between any two
service instances that might create the object (see Constraints and rules). All other nodes should generally be
considered owned by the service and all their resources be part of the service’s resource set. For more details on
what it means to own a resource (or any child node in the tree) and how to ensure two service instance’s trees can
not intersect on owned nodes, see the Ownership subsection.

88 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Services' "owned" resources overlap

Not a valid resource set Shared and consistent among all service instances

BadService(id=0)

Resource(id=0)Resource(id=1) SharedResource(id=0, value=0)

BadService(id=1)

Fig. 2: A bad service for partial compiles: no owned resources

Owned by BadService(id=0)

Resource set for BadService(id=0)

Owned by BadService(id=1)

Resource set for BadService(id=1)

Shared resources' values are not consistent

BadService(id=0)

Resource(id=0)Resource(id=1)

SharedResource(id=0, value=0)

BadService(id=1)

Resource(id=2)Resource(id=3)

SharedResource(id=0, value=1)

Fig. 3: A bad service for partial compiles: conflicting shared resources

5.14. Partial compiles 89

Inmanta Documentation, Release 7.1.1.dev20240504011805

Service instance uniqueness

With full compiles, indexes serve as the identity of a service instance in the model. The compiler then validates
that no conflicting service instances exist. With partial compiles this validation is lost because only one service
instance will be present in the model. However, it is still crucial that such conflicts do not exist. Put simply, we
need to make sure that a partial compile succeeds only when a full compile would succeed as well. This subsection
deals solely with the uniqueness of service instances. The Ownership subsection then deals with safe refinements
into resources.

To ensure service instance definitions are distinct, the model must make sure to do appropriate validation on the
full set of definitions. When doing a partial compile, the model must verify that the service instance it is compiling
for has a different identity from any of the previously defined service instances. This can be achieved by externally
checking against some sort of inventory that there are no matches for any set of input attributes that identify the
instance.

The current implementation of partial compiles does not provide any helpers for this verification. It is the respon-
sibility of the model developer or the tool/extension that does the export to ensure that no two service instances
can be created that are considered to have the same identity by the model.

For example, suppose we modify the example model to take input from a simple yaml file:

for network_def in mymodule::read_from_yaml():
network = Network(id=network_def["id"])
for host in network["hosts"]:

network.hosts += Host(id=host["id"])
end

end

networks:
- id: 0
hosts:
- id: 0

- id: 1
hosts:

- id: 0
- id: 1
- id: 2
- id: 3
- id: 4

- id: 0
hosts:
- id: 0
- id: 1

The read_from_yaml() plugin would have to verify that no two networks with the same id are defined. After
this validation, if doing a partial, it may return a list with only the relevant network in it. For the yaml given above
validation would fail because two networks with the same id are defined.

Ownership

A resource can safely be considered owned by a service instance if it could never be created by another service
instance. There are two main mechanisms that can be used to provide this guarantee, both of which will be described
in their own subsection below. One is the use of indexes on appropriate locations, the other is the use of some
external allocator of unique values (e.g. a plugin to generate a UUID or to allocate values in an inventory).

In either case, the goal is to make sure that any object that is marked as owned by a service instance, is unique to
that instance. In the index case we do so by making sure the object’s identity is in fact completely and uniquely
derived from the identity of the service instance. In the case where unique values are externally produced/allocated,
responsibility for uniqueness falls to the plugin that produces the values.

90 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Ownership through indexes

As stated above, during partial compiles indexes alone can not serve as a uniqueness guarantee because each
compile only contains a single service instance. And yet, indexes can still be used as a mechanism to guarantee
ownership: e.g. if a value for a resource’s index is uniquely derived from the identity of its service instance, this
in itself is a guarantee that no other service instance could result in this same resource. In other words, rather than
count on the stand-alone identity aspect of the index, we will make sure the identity is fully defined by the service
instance’s identity (or an external inventory). This, coupled with the Service instance uniqueness guarantee ensures
that the refinement trees will not intersect. This in turn allows us to conclude that the partial compile behavior will
be the same as the full compile behavior.

Generally, for every index on a set of attributes of an owned resource, at least one of the fields must be either
derived from the identity of the service instance, or allocated in a safe manner by a plugin as described above. The
same goes for every pair of resource id and agent. If the first constraint is not met, a full compile might fail, while
if the second is not met, the export will be rejected because two services are trying to configure the same resources.

For example, consider the example model from before. If two networks with two hosts each would be created, they
would result in two disjunct resource sets, as pictured below.

Shared resources

service 0

Resource set for Network 0

service 1

Resource set for Network 1

AgentConfig

Network(id=0)

Host(nid=0, id=0)Host(nid=0, id=1)

Network(id=1)

Host(nid=1, id=0)Host(nid=1, id=1)

Fig. 4: Two valid service instances with their resource sets

Now suppose the index on Host did not include the network instance. In that case the identity of a Host instance
would no longer be derived from the identity of its Network instance. It would then be possible to end up with two
networks that refine to the same host objects as shown below. The resource sets are clearly no longer disjunct.

Ownership through allocation

Instead of the index Host(network, id) we could also use an allocation plugin to determine the id of a host.
Suppose we add such a plugin that allocates a unique value in some external inventory, then the index is no longer
required for correct behavior because the allocator guarantees uniqueness for the host id:

5.14. Partial compiles 91

Inmanta Documentation, Release 7.1.1.dev20240504011805

Shared resources

intersecting services

Resource set 0/1?

AgentConfig

Network(id=0)

Host(id=0)Host(id=1)

Network(id=1)

Fig. 5: Two invalid service instances with a resource set conflict

Shared resources

service 0

Resource set 0

service 1

Resource set 1

AgentConfig

Network(id=0)

Host(id=269)Host(id=694)

Network(id=1)

Host(id=31)Host(id=712)

Fig. 6: Two valid services with their resource sets, using allocation

92 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Inter-resource set dependencies

Resources within a resource set can only depend on resources within the same resource set or on shared resources.
Shared resources on the other hand can have dependencies on any resource in the model. The diagram below
provides an example where the resource dependency graph satisfies these requirements. The arrows in the diagram
show the requires relationship between entities/resources.

Shared resources

service 0

Resource set 0

service 1

Resource set 1

AgentConfig

Network(id=0)

Host(id=269)

Network(id=1)

Host(id=31)

Fig. 7: Two resource sets satisfying the dependency constraints

In the diagram below, resource Host(id=269) that belongs to resource set 0 depends on resource Host(id=31)
that belongs to resource set 1. This inter-resource set dependency is not allowed.

5.14. Partial compiles 93

Inmanta Documentation, Release 7.1.1.dev20240504011805

Shared resources

service 0

Resource set 0

service 1

Resource set 1

AgentConfig

Network(id=0)

Host(id=269)

Host(id=31)

Network(id=1)

Fig. 8: Two resource sets violating the dependency constraints

94 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Testing

While the guidelines outlined above suffice for safe use of partial compiles, a modeling error is easily made. In
addition to the usual testing of behavior of both full and partial compiles, you should include tests that guard against
incompatible resource sets and/or shared resources. These tests would generally be full compile tests with multiple
service instances. As long as a full compile succeeds for any valid set of inputs, you can be confident the partial
compile will behave the same. If on the other hand a set of valid service instances exist for which the full compile
fails, you most likely have a modeling error that would allow sequential partial compiles for those same instances.

5.15 Unmanaged Resources

Unmanaged resources are resources that live in the network that are not yet managed by the orchestrator. They
may be of the same type as other resources that are already managed, or something else entirely. The orchestrator
can discover unmanaged resources in the network, given proper guidance. This discovery is driven by discovery
resources in the model. They express the intent to discover resources of the associated type in the network.

5.15.1 Terminology

• Discovery resource: The category of resources that express the intent to discover resources in the network.
This is an actual resource that is part of the configuration model.

• Discovered resource: This is the unit of data that is generated by the discovery process. Each time the
discovery process discovers a resource, it creates a record in the inventory for discovered resources. This
record contains the set of attributes that define the current state of the discovered resource. Discovered
resources only exist in the discovered resources database. They don’t exist in the configuration model.

5.15.2 Example

The code snippet below defines a discovery resource called InterfaceDiscovery. Instances of this re-
source will discover the interfaces present on a specific host. A discovery resource must always inherit from
std::DiscoveryResource. Note that discovery resources are defined in exactly the same way as a regular
resource, except that they inherit from std::DiscoveryResource instead of std::PurgeableResource or
std::Resource.

Listing 20: my_project/main.cf

1 import ip
2

3 entity InterfaceDiscovery extends std::DiscoveryResource:
4 """
5 A discovery resource that discovers interfaces on a specific host.
6

7 :attr name_filter: If not null, only discover interfaces for which the name␣
↪→matches this regular expression.

8 Otherwise discover all the interfaces on the host.
9 """

10 string? name_filter = null
11 end
12

13 InterfaceDiscovery.host [1] -- ip::Host
14

15 index InterfaceDiscovery(host)
16

17 implement InterfaceDiscovery using parents, std::none

The associated handler code is shown below:

5.15. Unmanaged Resources 95

Inmanta Documentation, Release 7.1.1.dev20240504011805

Listing 21: my_module/inmanta_plugins/__init__.py

1 import re
2 from collections import abc
3

4 import pydantic
5

6 from inmanta import resources
7 from inmanta.data.model import ResourceIdStr
8 from inmanta.agent.handler import provider, DiscoveryHandler, HandlerContext
9 from inmanta.resources import resource, DiscoveryResource

10

11

12 @resource("my_module::InterfaceDiscovery", agent="host.name", id_attribute="host")
13 class InterfaceDiscovery(DiscoveryResource):
14 fields = ("host", "name_filter")
15

16 host: str
17 name_filter: str
18

19 @staticmethod
20 def get_host(exporter, resource):
21 return resource.host.name
22

23

24 class UnmanagedInterface(pydantic.BaseModel):
25 """
26 Datastructure used by the InterfaceDiscoveryHandler to return the attributes
27 of its discovered resources.
28 """
29

30 host: str
31 interface_name: str
32 ip_address: str
33

34

35 @provider("my_module::InterfaceDiscovery", name="interface_discovery_handler")
36 class InterfaceDiscoveryHandler(DiscoveryHandler[InterfaceDiscovery,␣

↪→UnmanagedInterface]):
37 def discover_resources(
38 self, ctx: HandlerContext, discovery_resource: InterfaceDiscovery
39) -> dict[ResourceIdStr, UnmanagedInterface]:
40 """
41 Entrypoint that is called by the agent when the discovery resource is␣

↪→deployed.
42 """
43 discovered: abc.Iterator[UnmanagedInterface] = (
44 UnmanagedInterface(**attributes)
45 for attributes in self._get_discovered_interfaces(discovery_resource)
46 if discovery_resource.name_filter is None or re.match(discovery_resource.

↪→name_filter, attributes["interface_name"])
47)
48 return {
49 resources.Id(
50 entity_type="my_module::Interface",
51 agent_name=res.host,
52 attribute="interface_name",

(continues on next page)

96 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

53 attribute_value=res.interface_name,
54).resource_str(): res
55 for res in discovered
56 }
57

58 def _get_discovered_interfaces(self, discovery_resource: InterfaceDiscovery) ->␣
↪→list[dict[str, object]]:

59 """
60 A helper method that contains the logic to discover the unmanaged interfaces␣

↪→in the network.
61 It returns a list of dictionaries where each dictionary contains the␣

↪→attributes of an unmanaged resource.
62 """
63 raise NotImplementedError()

The handler code consists of three parts:

• Lines 12-21: The class that describes how the discovery resource InterfaceDiscovery should be serial-
ized. This resource definition is analogous to the definition of a regular PurgeableResource or Resource,
except that the class inherits from DiscoveryResource.

• Lines 24-31: A Pydantic BaseModel that represents the datastructure that will be used by the discovery
handler to return the attributes of the discovered resources. This specific example uses a Pydantic BaseModel,
but discovery handlers can use any json serializable datastructure.

• Line: 34-61: This is the handler for the discovery resource. A discovery handler class must satisfy the
following requirements:

– It must be annotated with the @provider annotation, like a regular CRUDHandler or
ResourceHandler.

– It must inherit from the DiscoveryHandler class. This is a generic class with two parameters. The
first parameter is the class of the associated DiscoveryResource and the second parameter is the type
of datastructure that the discovery handler will use to return the attributes of discovered resources.

– It must implement a method called discover_resources that contains the logic to discover the re-
sources in the network. This method returns a dictionary. The keys of this dictionary contain the
resource ids of the discovered resources and the values the associated attributes.

5.15.3 Sharing attributes

In some situations there is a need to share behavior or attributes between a resource X and the discovery resource
for X. For example, both might require credentials to authenticate to their remote host. This can be done by making
both entities inherit from a shared parent entity. An example is provided below.

Listing 22: my_project/main.cf

1 import ip
2

3 entity Credentials:
4 """
5 An entity that holds the shared attributes between the Interface and␣

↪→InterfaceDiscovery entity.
6 """
7 string username
8 string password
9 end

10

11 implement Credentials using std::none
(continues on next page)

5.15. Unmanaged Resources 97

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

12

13 entity InterfaceBase:
14 """
15 Base entity for the Interface and InterfaceDiscovery handler.
16 """
17 end
18

19 InterfaceBase.credentials [1] -- Credentials
20 InterfaceBase.host [1] -- ip::Host
21

22 implement InterfaceBase using std::none
23

24 entity Interface extends InterfaceBase, std::PurgeableResource:
25 """
26 An entity that represents an interface that is managed by the Inmanta server.
27 """
28 string name
29 std::ipv4_address ip_address
30 end
31

32 index Interface(host, name)
33

34 implement Interface using parents, std::none
35

36 entity InterfaceDiscovery extends InterfaceBase, std::DiscoveryResource:
37 """
38 A discovery resource used to discover interfaces that exist on a specific host.
39

40 :attr name_filter: If not null, this resource only discovers the interfaces for␣
↪→which the name matches this

41 regular expression. Otherwise discover all the interfaces on␣
↪→the host.

42 """
43 string? name_filter = null
44 end
45

46 index InterfaceDiscovery(host)
47

48 implement InterfaceDiscovery using parents, std::none

The Credentials entity, in the above-mentioned snippet, contains the shared attributes between the PurgeableRe-
source Interface and the DiscoveryResource InterfaceDiscovery.

The associated handler code is provided below:

Listing 23: my_module/inmanta_plugins/__init__.py

1 import re
2 from collections import abc
3 from typing import Optional
4

5 import pydantic
6

7 from inmanta import resources
8 from inmanta.data.model import ResourceIdStr
9 from inmanta.agent.handler import provider, DiscoveryHandler, HandlerContext,␣

↪→CRUDHandler
(continues on next page)

98 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

10 from inmanta.resources import resource, DiscoveryResource, PurgeableResource
11

12

13 class InterfaceBase:
14 fields = ("host", "username", "password")
15

16 host: str
17 username: str
18 password: str
19

20 @staticmethod
21 def get_host(exporter, resource):
22 return resource.host.name
23

24 @staticmethod
25 def get_username(exporter, resource):
26 return resource.credentials.username
27

28 @staticmethod
29 def get_password(exporter, resource):
30 return resource.credentials.password
31

32

33 @resource("my_module::Interface", agent="host.name", id_attribute="name")
34 class Interface(InterfaceBase, PurgeableResource):
35 fields = ("name", "ip_address")
36

37 name: str
38 ip_address: str
39

40

41 @resource("my_module::InterfaceDiscovery", agent="host.name", id_attribute="host")
42 class InterfaceDiscovery(InterfaceBase, DiscoveryResource):
43 fields = ("name_filter",)
44

45 name_filter: Optional[str]
46

47

48 class UnmanagedInterface(pydantic.BaseModel):
49 """
50 Datastructure used by the InterfaceDiscoveryHandler to return the attributes
51 of the discovered resources.
52 """
53

54 host: str
55 interface_name: str
56 ip_address: str
57

58

59 class Authenticator:
60 """
61 Helper class that handles the authentication to the remote host.
62 """
63

64 def login(self, credentials: InterfaceBase) -> None:
65 raise NotImplementedError()

(continues on next page)

5.15. Unmanaged Resources 99

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

66

67 def logout(self, credentials: InterfaceBase) -> None:
68 raise NotImplementedError()
69

70

71 @provider("my_module::Interface", name="interface_handler")
72 class InterfaceHandler(Authenticator, CRUDHandler[Interface]):
73 """
74 Handler for the interfaces managed by the orchestrator.
75 """
76

77 def pre(self, ctx: HandlerContext, resource: Interface) -> None:
78 self.login(resource)
79

80 def post(self, ctx: HandlerContext, resource: Interface) -> None:
81 self.logout(resource)
82

83 def read_resource(self, ctx: HandlerContext, resource: Interface) -> None:
84 raise NotImplementedError()
85

86 def create_resource(self, ctx: HandlerContext, resource: Interface) -> None:
87 raise NotImplementedError()
88

89 def delete_resource(self, ctx: HandlerContext, resource: Interface) -> None:
90 raise NotImplementedError()
91

92 def update_resource(self, ctx: HandlerContext, changes: dict, resource:␣
↪→Interface) -> None:

93 raise NotImplementedError()
94

95

96 @provider("my_module::InterfaceDiscovery", name="interface_discovery_handler")
97 class InterfaceDiscoveryHandler(Authenticator, DiscoveryHandler[InterfaceDiscovery,␣

↪→UnmanagedInterface]):
98

99 def pre(self, ctx: HandlerContext, resource: InterfaceDiscovery) -> None:
100 self.login(resource)
101

102 def post(self, ctx: HandlerContext, resource: InterfaceDiscovery) -> None:
103 self.logout(resource)
104

105 def discover_resources(
106 self, ctx: HandlerContext, discovery_resource: InterfaceDiscovery
107) -> abc.Mapping[ResourceIdStr, UnmanagedInterface]:
108 """
109 Entrypoint that is called by the agent when the discovery resource is␣

↪→deployed.
110 """
111 discovered: abc.Iterator[UnmanagedInterface] = (
112 UnmanagedInterface(**attributes)
113 for attributes in self._get_discovered_interfaces(discovery_resource)
114 if discovery_resource.name_filter is None or re.match(discovery_resource.

↪→name_filter, attributes["interface_name"])
115)
116 return {
117 resources.Id(

(continues on next page)

100 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

118 entity_type="my_module::Interface",
119 agent_name=res.host,
120 attribute="interface_name",
121 attribute_value=res.interface_name,
122).resource_str(): res
123 for res in discovered
124 }
125

126 def _get_discovered_interfaces(self, discovery_resource: InterfaceDiscovery) ->␣
↪→list[dict[str, object]]:

127 """
128 A helper method that contains the logic to discover the unmanaged interfaces␣

↪→in the network.
129 It returns a list of dictionaries where each dictionary contains the␣

↪→attributes of a discovered interface.
130 """
131 raise NotImplementedError()

In the above-mentioned code snippet the Credentials class contains the shared attributes between the Interface
resource and the InterfaceDiscovery resource. The Authenticator class on the other hand contains the
shared logic between the InterfaceHandler and the InterfaceDiscoveryHandler class.

5.16 Dict Path

DictPath is a library for navigating json data.

The DictPath library offers a convenient way to get a specific value out of a structure of nested dicts and lists.

5.16.1 Writing DictPath expressions

A DictPath expression is a .-separated path. The following elements are supported:

1. .dkey: Return the value under dkey in the dict. dkey cannot be an empty string. Use the * character to get
all values of the dictionary.

2. lst[lkey=lvalue]: Find a dictionary in a list of dictionaries. Find the dict with lkey=lvalue.
lvalue can be an empty string. lst and lkey cannot be an empty string. If no or more than one dict
matches the filter, a LookupError is raised. The * character can be used for lkey and lvalue to
match respectively any key or value. \0 can be used for lvalue to match against the value``None``.

If no single key uniquely identifies an object, multiple keys can be used:
lst[lkey1=lvalue1][lkey2=lvalue2].

Each element of the path (keys or values) must escape the following special characters with a single backslash: \,
[,], ., * and =. Other characters must not be escaped.

A leading . character represent the entire data structure provided to the dict path library. As such, the following
dict paths are logically equivalent to each other: a.b.c and .a.b.c. A dict path can also consist of a single dot
(.). This expression represents the identity function.

5.16. Dict Path 101

Inmanta Documentation, Release 7.1.1.dev20240504011805

5.16.2 Using DictPath in code

Warning: The dict path library only works correctly when the keys and values, referenced in a dict path
expression, are of a primitive type and the type is the same for all keys and values at the same level. For
example, {"True": 1, True: 2} is not a valid dictionary.

• To convert a dictpath expression to a DictPath instance, use dict_path.to_path. Use dict_path.
to_wild_path in order to allow wildcards (*) to be used in the dict path expression.

• To get the element from a collection use DictPath.get_element(collection)

• To set an element in a collection use DictPath.set_element(collection, value)

class inmanta.util.dict_path.DictPath

A base class for all non-wild dict paths segments. The key difference between WildDictPath and
DictPath subclasses are:

1. WildDictPath can only get a list of elements, with get_elements. If no element is found, an empty
list is returned, no error is raised.

2. DictPath can not use get_elements as it is always expected to have exactly one match.

3. DictPath can use get_element, which will return the matching element, or raise an exception if
more or less than one is found.

4. DictPath can set values, using set_element, and can build the dict structure expected by the path
by using the construct flag in the get_element method.

abstract get_element(container: object, construct: bool = False)→ object
Get the element identified by this Path from the given collection

Parameters
• container – the container to search in

• construct – construct a dict on the location identified by this path in the container if
the element doesn’t exist. Return this new dict.

Raises
KeyError – if the element is not found or if more than one occurrence was found.

get_elements(container: object)→ list[object]
Get the elements identified by this Path from the given collection. If no element is matched, an empty
list is returned.

Parameters
container – the container to search in

abstract get_key()→ str
Return the dictionary key referenced by this element in the dict path.

get_path_sections()→ Sequence[DictPath]
Get the individual parts of this path

abstract remove(container: object)→ None

Remove an element if it exists:
• On an InDict or a WildInDict: Remove the referenced key from the dictionary.

• On a KeyedList or a WildKeyedList: Remove the referenced element from the list.

• On a NullPath: This operation is not supported on a NullPath.

102 Chapter 5. Model developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

abstract set_element(container: object, value: object, construct: bool = True)→ None
Set the element identified by this Path from the given collection.

If construct is True, all containers on the path towards the value are constructed if absent.

Raises
LookupError – if the path leading to the element is not found or if more than one occur-
rence was found.

inmanta.util.dict_path.to_path(inp: str)→ DictPath
Convert a string to a DictPath

Raises
InvalidPathException – the path is not valid

inmanta.util.dict_path.to_wild_path(inp: str)→ WildDictPath
Convert a string to a WildDictPath

Raises
InvalidPathException – the path is not valid

5.16.3 Example

from inmanta.util import dict_path

container = {
"a": "b",
"c": {

"e": "f"
},
"g": [

{"h": "i", "j": "k"},
{"h": "a", "j": "b"}

]
}

assert dict_path.to_path("a").get_element(container) == "b"
assert dict_path.to_path("c.e").get_element(container) == "f"
assert dict_path.to_path("g[h=i]").get_element(container) == {"h": "i", "j": "k"}

assert dict_path.to_wild_path("c.*").get_elements(container) == ["f"]
assert sorted(dict_path.to_wild_path("g[h=i].*").get_elements(container)) == ["i", "k
↪→"]
assert dict_path.to_wild_path("g[*=k]").get_elements(container) == [{"h": "i", "j": "k
↪→"}]

dict_path.to_path("g[h=b].i").set_element(container, "z")
assert dict_path.to_path("g[h=b]").get_element(container) == {"h": "b", "i": "z"}
assert dict_path.to_path("g[h=b].i").get_element(container) == "z"

5.16. Dict Path 103

Inmanta Documentation, Release 7.1.1.dev20240504011805

104 Chapter 5. Model developer documentation

CHAPTER

SIX

PLATFORM DEVELOPER DOCUMENTATION

6.1 Creating a new server extension

Inmanta server extensions are separate Python packages with their own release cycle that can add additional server
slices and Inmanta environment settings to the orchestrator. Server slices are components in the service orchestrator.
A slice can be responsible for API endpoints or provide internal services to other slices. The core server extension
provides all slices of the core service orchestrator.

6.1.1 The package layout of a server extension

Each Inmanta server extension is defined as a subpackage of the inmanta_ext package. inmanta_ext is a names-
pace package used by the service orchestrator to discover new extensions. The following directory structure is
required for a new extension called new_extension.

inmanta_ext
|
|__ new_extension
| |__ __init__.py
| |__ extension.py

• The __init__.py file can be left empty. This file is only required to indicate that new_extension is a
python package.

• The extension.py file must contain a setup function that registers the necessary server slices
to the application context. An example extension.py file is shown below. The parameter
<server-slice-instance> should be replaced with an instance of the server slice that belongs to the
extension. Multiple server slices can be registered.

• The extension.py file can contain an optional register_environment_settings function that allows
an extension to register extension-specific settings that can be used to customize an Inmanta environment.

File: extension.py
from inmanta.server.extensions import ApplicationContext
from inmanta import data

def setup(application: ApplicationContext) -> None:
application.register_slice(<server-slice-instance>)

def register_environment_settings(application: ApplicationContext) -> None:
application.register_environment_setting(

data.Setting(
name="my_environment_setting",
default=False,
typ="bool",
validator=data.convert_boolean,

(continues on next page)

105

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

doc="Explain what the setting does.",
)

)

Tip: Indicate which version of the Inmanta core is compatible with the developed extension by constraining the
version of the Inmanta core package to a valid range in the setup.py file of the extension.

6.1.2 Adding server slices to the extension

A server slice is defined by creating a class that extends from inmanta.server.protocol.ServerSlice.

class inmanta.server.protocol.ServerSlice(name: str)
Base class for server extensions offering zero or more api endpoints

Extensions developers should override the lifecycle methods:

• ServerSlice.prestart()

• ServerSlice.start()

• ServerSlice.prestop()

• ServerSlice.stop()

• ServerSlice.get_dependencies()

To register endpoints that server static content, either use :func:’add_static_handler’ or
:func:’add_static_content’ To create endpoints, use the annotation based mechanism

To schedule recurring tasks, use schedule() or self._sched To schedule background tasks, use
add_background_task()

get_depended_by()→ list[str]
List of names of slices that must be started after this one.

get_dependencies()→ list[str]
List of names of slices that must be started before this one.

async prestart(server: Server)→ None
Called by the RestServer host prior to start, can be used to collect references to other server slices
Dependencies are not up yet.

async prestop()→ None
Always called before stop

Stop producing new work: - stop timers - stop listeners - notify shutdown to systems depending on us
(like agents)

sets is_stopping to true

But remain functional

All dependencies are up (if present)

async start()→ None
Start the server slice.

This method blocks until the slice is ready to receive calls

Dependencies are up (if present) prior to invocation of this call

106 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

async stop()→ None
Go down

All dependencies are up (if present)

This method blocks until the slice is down

• The constructor of the ServerSlice class expects the name of the slice as an argument. This name should
have the format "<extension-name>.<server-slice-name>". <extension-name> is the name of the
package that contains the extension.py file. <server-slice-name> can be chosen by the developer.

• The prestart(), start(), prestop(), stop(), get_dependencies() and get_depended_by()
methods can be overridden when required.

6.1.3 Enable the extension

By default, no extensions are enabled on the Inmanta server. Extensions can be enabled by specifying them in the
server.enabled-extensions option of the Inmanta configuration file. This option accepts a comma-separated
list of extensions that should be enabled.

File: /etc/inmanta/inmanta.d/0-extensions.cfg
[server]
enabled_extensions=new_extension

6.1.4 The Inmanta extension template

A new Inmanta extension can be created via the Inmanta extension template. This is a cookiecutter template to
generate the initial Python project for a new Inmanta extension. The documentation regarding this template is
available on https://github.com/inmanta/inmanta-extension-template.

6.2 Database Schema Management

In some situation, a change to the database schema is required. To perform these database schema migrations, we
implemented a migration tool and associated testing framework. This page describes how to create a new version
of the database schema and test the migration script.

6.2.1 New schema version definition

The version number of the database schema evolves independently from any other versioned Inmanta element
(product version, extension version, etc.). Each commit can introduce changes to the database schema. When that
happens the commit creates a new database schema version. This means that multiple schema version can exist
between two consecutive stable releases of the orchestrator.

A new version of the database schema is defined by adding a new Python module to the inmanta.db.versions
package. The name of this module should have the format v<timestamp><i>.py, where the timestamp is in the
form YYYYMMDD and i is an index to allow more than one schema update per day (e.g. v202102220.py).

Each of these Python modules should implement an asynchronous function update that accepts a database connec-
tion object as an argument. This function should execute all database queries required to update from the previous
version of the database schema to the new version of the database schema.

An example is given in the code snippet below:

File: src/inmanta/db/versions/v202102220.py
from asyncpg import Connection

(continues on next page)

6.2. Database Schema Management 107

https://github.com/inmanta/inmanta-extension-template

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

async def update(connection: Connection) -> None:
schema = """
ALTER TABLE public.test
ADD COLUMN new_column;
"""
await connection.execute(schema)

6.2.2 Executing schema updates

Schema updates are applied automatically when the Inmanta server starts. The following algorithm is used to apply
schema updates:

1. Retrieve the current version of the database schema from the public.schemamanager table of the database.

2. Check if the inmanta.db.versions package contains any schema updates.

3. When schema updates are available, each update function between the current version and the latest version
is executed in the right order.

When a schema update fails, the database schema is rolled-back to the state before the start of the Inmanta server.
In that case the Inmanta server will fail to start.

6.2.3 Testing database migrations

Each database migration script should be tested using an automated test case. The tests that verify the mi-
gration from schema version <old_version> to <new_version> are stored in a file named tests/db/
test_v<old_version>_to_v<new_version>.py.

In general, a database schema migration test has the following flow:

1. Load a database dump that uses the database schema version directly preceding the version being tested.

2. Perform assertions that verify the database schema before the migration.

3. Start the inmanta server to trigger the database migration scripts.

4. Perform assertions to verify that the migration was done correctly.

The example below shows a test for the above-mentioned database migration script.

1 # File: tests/db/test_v202101010_to_v202102220.py
2 @pytest.mark.db_restore_dump(os.path.join(os.path.dirname(__file__), "dumps",

↪→"v202101010.sql"))
3 async def test_add_new_column_to_test_table(
4 migrate_db_from: abc.Callable[[], abc.Awaitable[None]],
5 get_columns_in_db_table: abc.Callable[[str], list[str]],
6) -> None:
7 """
8 Verify that the database migration script v202102220.py correctly adds the column␣

↪→new_column to the table test.
9 """

10 # Assert state before migration
11 assert "new_column" not in await get_columns_in_db_table(table_name="test")
12 # Migrate DB schema
13 await migrate_db_from()
14 # Assert state after migration
15 assert "new_column" in await get_columns_in_db_table(table_name="test")

The most important elements of the test case are the following:

108 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Line 2: The db_restore_dump annotation makes the migrate_db_from fixture load the database dump
tests/db/dumps/v202101010.sql in the database used by the test case. This happens in the setup stage
of the fixture. As such, the database contains the old version of the database schema at the beginning of the
test case.

• Line 11: Verifies that the column new_column doesn’t exist in the table test. The test case uses the fixture
get_columns_in_db_table to obtain that information, but the postgresql_client fixture can be used
as well to run arbitrary queries against the database.

• Line 13: Invokes the callable returned by the migrate_db_from fixture. This function call starts an Inmanta
server against the database used by the test case, which runs the migration script being tested.

• Line 15: Verifies whether the migration script correctly added the column new_column to the table test.

Each commit that creates a new database version should also add a database dump for that new version to the
tests/db/dumps/ directory. Generating this dump can be done using the tests/db/dump_tool.py script.
This script does the following:

1. Start an Inmanta server using the latest database schema available in inmanta.db.versions package.

2. Execute some API calls against the server to populate the database tables with some dummy data.

3. Dump the content of the database to tests/db/dumps/v<latest_version>.sql.

The actions to be taken after generating a new dump file are described in the docstring of the dump_tool.py file.
If a new table or column is added using a database migration script, the developer should make sure to adjust the
dump_tool.py script with the necessary API calls to populate the table or column if required.

6.3 Define API endpoints

This page describes how to add an API endpoint to the Inmanta server. Adding a new API endpoint requires two
methods: an API method and an API handle. The API method provides the specification of the endpoint. This
includes the HTTP request method, the path to the endpoint, etc. The API handle on the other hand provides the
actual implementation of the endpoint.

6.3.1 API Method

The Python function that acts as an API method should be annotated using the method decorator. The implemen-
tation of the method should be left empty.

An example is shown in the code snippet below.

import uuid
from inmanta.const import ClientType
from inmanta.protocol.decorators import method

@method(path="/project/<id>", operation="GET", client_types=[ClientType.api])
def get_project(id: uuid.UUID):

"""
Get a project and a list of the ids of all environments.

:param id: The id of the project to retrieve.
:return: The project and a list of environment ids.
:raises NotFound: The project with the given id doesn't exist.

"""

This API method defines an HTTP GET operation at the path /project/<id> which can be used by a client of
type api (cli, web-console and 3rd party service). The id parameter in the path will be passed to the associate API
handle. A docstring can be associated with the API method. This information will be included in the OpenAPI
documentation, available via the /docs endpoint of the Inmanta server.

6.3. Define API endpoints 109

Inmanta Documentation, Release 7.1.1.dev20240504011805

A complete list of all the arguments accepted by the method decorator is given below.

decorators.method(operation: str = 'POST', reply: bool = True, arg_options: dict[str, ArgOption] = {},
timeout: int | None = None, server_agent: bool = False, api: bool | None = None,
agent_server: bool = False, validate_sid: bool | None = None, client_types:
list[ClientType] = [ClientType.api], api_version: int = 1, api_prefix: str = 'api',
envelope: bool = False, envelope_key: str = 'data')→ Callable[[...], Callable]

Decorator to identify a method as a RPC call. The arguments of the decorator are used by each transport to
build and model the protocol.

Parameters
• path – The url path to use for this call. This path can contain parameter names of the

function. These names should be enclosed in < > brackets.

• operation – The type of HTTP operation (verb).

• timeout – nr of seconds before request it terminated.

• api – This is a call from the client to the Server (True if not server_agent and not
agent_server).

• server_agent – This is a call from the Server to the Agent (reverse http channel through
long poll).

• agent_server – This is a call from the Agent to the Server.

• validate_sid – This call requires a valid session, true by default if agent_server and
not api

• client_types – The allowed client types for this call. The valid values are defined by
the inmanta.const.ClientType enum.

• arg_options – Options related to arguments passed to the method. The key of this
dict is the name of the arg to which the options apply. The value is another dict that can
contain the following options:

header: Map this argument to a header with the following name. reply_header: If
the argument is mapped to a header, this header will also be included in the reply
getter: Call this method after validation and pass its return value to the method call.
This may change the type of the argument. This method can raise an HTTPExcep-
tion to return a 404 for example.

• api_version – The version of the api this method belongs to.

• api_prefix – The prefix of the method: /<prefix>/v<version>/<method_name>.

• envelope – Put the response of the call under an envelope with key envelope_key.

• envelope_key – The envelope key to use.

6.3.2 API Handle

An API handle function should be annotated with the handle decorator and should contain all the arguments of
the associated API method and the parameters defined in the path of the endpoint. The names these arguments can
be mapped onto a different name by passing arguments to the handle decorator.

An example is shown in the code snippet below.

import uuid
from inmanta.server import protocol
from inmanta.types import Apireturn
from inmanta import data
from inmanta.protocol import methods

(continues on next page)

110 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

@protocol.handle(methods.get_project, project_id="id")
async def get_project(self, project_id: uuid.UUID) -> Apireturn:

try:
project = await data.Project.get_by_id(project_id)
environments = await data.Environment.get_list(project=project_id)

if project is None:
return 404, {"message": "The project with given id does not exist."}

project_dict = project.to_dict()
project_dict["environments"] = [e.id for e in environments]

return 200, {"project": project_dict}
except ValueError:

return 404, {"message": "The project with given id does not exist."}

return 500

The first argument of the handle decorator defines that this is the handle function for the get_project API
method. The second argument remaps the id argument of the API method to the project_id argument in the
handle function.

The arguments and the return type of the handle method can be any built-in Python type or a user-defined object.
The input format of an API call be verified automatically using Pydantic.

An overview of all the arguments of the handle decorator are shown below.

class inmanta.protocol.decorators.handle(method: Callable[[...], int | tuple[int, dict[str, Any] | None]
| ReturnValue[ReturnTypes] | ReturnValue[None] |
BaseModel | UUID | bool | float | datetime | str |
Sequence[BaseModel | UUID | bool | int | float | datetime |
str] | Mapping[str, BaseModel | UUID | bool | int | float |
datetime | str] | None], api_version: int | None = None,
**kwargs: str)

Decorator for subclasses of an endpoint to handle protocol methods

Parameters
• method – A subclass of method that defines the method

• api_version – When specific this handler is only associated with a method of the
specific api version. If the version is not defined, the handler is not associated with a rest
endpoint.

• kwargs – Map arguments in the message from one name to an other

6.3. Define API endpoints 111

Inmanta Documentation, Release 7.1.1.dev20240504011805

6.4 Documentation writing

Inmanta uses Sphinx to generate documentation.

6.4.1 Inmanta code documentation

Modules

Python core

6.4.2 Sphinx tooling

The inmanta-sphinx package provides additional sphinx directives. The directives can render inmanta module
documentation and configuration documentation.

Install inmanta sphinx extension

Install the inmanta sphinx extension by installing the inmanta-sphinx package from pypi. Adding the extensions
to the extension list in conf.py enables the extensions. The names are `sphinxcontrib.inmanta.config` and
`sphinxcontrib.inmanta.dsl`.

This module also install the sphinx-inmanta-api script. This script can be used to generate an RST file with the
full API documentation from a module. This script is used to generate for example the API docs included in the
documentation on https://docs.inmanta.com

sphinxcontrib.inmanta.config

This extension loads all the defined configuration options in the Inmanta core and uses the embedded documentation
to generate a config reference.

It adds the show-options directive and a number of config objects to sphinx. Use it like this to generate documen-
tation:

.. show-options::

inmanta.server.config
inmanta.agent.config

sphinxcontrib.inmanta.dsl

This exention adds objects and directives to add documentation for Inmanta dsl objects such as entities, relations,
. . .

RST files can reference to inmanta configuration code with `:inmanta:entity:`std::File``. This renders to
std::File

112 Chapter 6. Platform developer documentation

https://docs.inmanta.com

Inmanta Documentation, Release 7.1.1.dev20240504011805

sphinx-inmanta-api

This scripts generates an RST file that provides the API documentation of a module. The documentation is gener-
ated by compiling an empty project with this module included. The generator then uses the compiler representation
to emit RST code, using the directives from the inmanta.dsl domain extension. This script has the following op-
tions:

• `--module_repo`A local directory that function as the repo where all modules are stored that are required
to generate the API documentation.

• `--module` The name of the module to generate api docs for.

• `-m` or `--extra-modules` An optional argument that can be provided multiple times. This is a list of
modules that should be loaded as well when the API docs are generated. This might be required when other
modules also provided implementations that have to be listed.

• `--source-repo` The repo where the upstream source is located. This is used to include a url in the
documentation.

• `-f` or `--file` The file to save the generated documentation in.

6.5 Exceptions

For more details about Compiler Exceptions, see Compiler exceptions

6.5.1 HTTP Exceptions

HTTP Exceptions are raised when a server request can’t be completed successfully. Each exception specifies what
the HTTP status code of the response should be. By using the correct exception type (and a descriptive error
message) the clients can get more information about what went wrong.

class inmanta.protocol.exceptions.BaseHttpException(status_code: int = 500, message: str | None
= None, details: dict[str, Any] | None =
None)

Bases: HTTPError

A base exception for errors in the server.

Classes which extend from the BaseHttpException class cannot have mandatory arguments in their con-
structor. This is required to determine the status_code of the exception in inmanta.protocol.common.
MethodProperties._get_http_status_code_for_exception()

class inmanta.protocol.exceptions.Forbidden(message: str | None = None, details: dict[str, Any] |
None = None)

Bases: BaseHttpException

An exception raised when access is denied (403)

class inmanta.protocol.exceptions.UnauthorizedException(message: str | None = None, details:
dict[str, Any] | None = None)

Bases: BaseHttpException

An exception raised when access to this resource is unauthorized

class inmanta.protocol.exceptions.BadRequest(message: str | None = None, details: dict[str, Any] |
None = None)

Bases: BaseHttpException

This exception is raised for a malformed request

6.5. Exceptions 113

Inmanta Documentation, Release 7.1.1.dev20240504011805

class inmanta.protocol.exceptions.NotFound(message: str | None = None, details: dict[str, Any] |
None = None)

Bases: BaseHttpException

This exception is used to indicate that a request or reference resource was not found.

class inmanta.protocol.exceptions.Conflict(message: str | None = None, details: dict[str, Any] |
None = None)

Bases: BaseHttpException

This exception is used to indicate that a request conflicts with the current state of the resource.

class inmanta.protocol.exceptions.ServerError(message: str | None = None, details: dict[str, Any] |
None = None)

Bases: BaseHttpException

An unexpected error occurred in the server

class inmanta.protocol.exceptions.ShutdownInProgress(message: str | None = None, details:
dict[str, Any] | None = None)

Bases: BaseHttpException

This request can not be fulfilled because the server is going down

6.5.2 Database Schema Related Exceptions

For more details, see Database Schema Management

class inmanta.data.schema.TableNotFound

Bases: Exception

Raised when a table is not found in the database

class inmanta.data.schema.ColumnNotFound

Bases: Exception

Raised when a column is not found in the database

6.6 Features

A default Inmanta install comes with all features enabled by default. config.feature-file points to a yaml file
that enables or disables features. The format of this file is:

slices:
slice_name:

feature_name: bool

6.7 Model Export Format

1. top level is a dict with one entry for each instance in the model

2. the key in this dict is the object reference handle

3. the value is the serialized instance

4. the serialized instance is a dict with three fields: type, attributes and relation.

5. type is the fully qualified name of the type

6. attributes is a dict, with as keys the names of the attributes and as values a dict with one entry.

114 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

7. An attribute can have one or more of tree keys: unknows, nones and values. The “values” entry has
as value a list with the attribute values.

If any of the values is Unknown or None, it is removed from the values array and the index at which it
was removed is recorded in respective the unknowns or nones value

8. relations is like attributes, but the list of values contains the reference handles to which this relations points

Basic structure as pseudo jinja template

{
{% for instance in instances %}
'{{instance.handle}}':{

"type":"{{instance.type.fqn}}",
"attributes":[

{% for attribute in instance.attributes %}
"{{attribute.name}}": [{{ attribute.values | join(",") }}]
{% endfor %}

]
"relations" : [

{% for relation in instance.relations %}
"{{relation.name}}": [

{% for value in relation.values %}
{{value.handle}}

{% endfor %}
]
{% endfor %}

]

{% endif %}
}

6.8 Type Export Format

class inmanta.model.Attribute(mytype: str, nullable: bool, multi: bool, comment: str, location:
Location)

Attribute defined on an entity

Parameters
• mytype (str) – fully qualified name of the type of this attribute

• nullable (bool) – can this attribute be null

• multi (bool) – is this attribute a list

• comment (str) – docstring for this attribute

• location (inmanta.model.Location) – source location where this attribute is de-
fined

to_dict()→ dict[str, Any]
Convert to serialized form:

{
"type": self.type,
"multi": self.multi,
"nullable": self.nullable,
"comment": self.comment,
"location": self.location.to_dict()

}

6.8. Type Export Format 115

Inmanta Documentation, Release 7.1.1.dev20240504011805

class inmanta.model.DirectValue(value: Value)
A primitive value, directly represented in the serialized form.

Parameters
value – the value itself, as string or number

to_dict()→ dict[str, Any]
Convert to serialized form:

{"value": self.value}

class inmanta.model.Entity(parents: list[str], attributes: dict[str, Attribute], relations: dict[str, Relation],
location: Location)

An entity type

Parameters
• parents (List[str]) – parent types

• Attribute] (Dict[str,) – all attributes declared on this entity directly, by name

• Relation] (Dict[str,) – all relations declared on this entity directly, by name

• location (inmanta.model.Location) – source location this entity was defined at

to_dict()→ dict[str, Any]
Convert to serialized form:

{
"parents": self.parents,
"attributes": {n: a.to_dict() for n, a in self.attributes.items()},
"relations": {n: r.to_dict() for n, r in self.relations.items()},
"location": self.location.to_dict(),
}

class inmanta.model.Location(file: str, lnr: int)
Position in the source

Parameters
• file (str) – source file name

• lnr (int) – line in the source file

to_dict()→ dict[str, Any]
Convert to serialized form:

{
"file": self.file,
"lnr": self.lnr

}

class inmanta.model.ReferenceValue(reference)
A reference to an instance of an entity.

Parameters
reference (str) – the handle for the entity this value refers to

to_dict()→ dict[str, Any]
Convert to serialized form:

{"reference": self.reference}

116 Chapter 6. Platform developer documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

class inmanta.model.Relation(mytype: str, multi: tuple[int, int | None], reverse: str, comment: str,
location: Location, source_annotations: list[Value], target_annotations:
list[Value])

A relation between two entities.

Parameters
• mytype (str) – the type this relation refers to

• multi (Tuple[int, int]) – the multiplicity of this relation in the form (lower,upper),
-1 for unbounded

• reverse (str) – the fully qualified name of the inverse relation

• location (inmanta.model.Location) – source location this relation was defined at

• source_annotations (List[Value]) – annotations on this relation on the source side

• target_annotations (List[Value]) – annotations on this relation on the target side

to_dict()→ dict[str, Any]
Convert to serialized form:

{
"type": self.type,
"multi": [self.multi[0], self.multi[1]],
"reverse": self.reverse,
"comment": self.comment,
"location": self.location.to_dict(),
"source_annotations": [x.to_dict() for x in self.source_annotations],
"target_annotations": [x.to_dict() for x in self.target_annotations]
}

class inmanta.model.Value

A value reference from a type either DirectValue or ReferenceValue

6.9 Platform Developers Guide

6.9.1 Dependencies

All dependencies in this project need to be pinned to specific version. These versions are pinned in requirements.txt.
This file can be used to install all dependencies at once or use it as a constraint file for tox or pip install. require-
ments.txt contains all dependencies for the core platform, for running tests and for generating documentation.

Install inmanta from current checkout
pip install -c requirements.txt .

https://dependabot.com monitors each dependency for updates and security issues. The inmanta development
policy is to track the latest version of all dependencies.

6.9. Platform Developers Guide 117

https://dependabot.com

Inmanta Documentation, Release 7.1.1.dev20240504011805

6.9.2 Versioning

A release gets its version based on the current year and an index for the release. The release schedule targets a release
every two months but this tends to slip. The latest stable release (e.g. 2017.1) gets backported bugfixes, these release
get a micro version number (e.g. 2017.1.4). All versions get a tag in the git repo prefixed with v (e.g. v2017.1.
Supported versions are available in a branch under stable/ for backports and bugfixes (e.g. stable/v2017.1).

Development is done in the master branch. The version of the master branch is set to the next release version,
but tagged with dev. This is configured in setup.cfg with the tag_build setting. The CI/build server can generate
snapshots. Snapshots also need to have the dev tag (for correct version comparison) appended with the current
date in +%Y%m%d%H%M format.

Tag the code and build a source dist
python setup.py egg_info -b "dev$(date +%Y%m%d%H%M)" sdist

6.9.3 Running tests

Inmanta unit tests are executed with pytest. In tests/conftest.py provides numerous fixtures for tests. Use python
functions for new tests. If setup and teardown is required, use fixtures instead of class based tests. Currently a
number of tests are still class based and are in progress of being ported to function based tests.

To make sure the tests run with correct dependencies installed, use tox as a testrunner. This is as simple as installing
tox and executing tox in the inmanta repo. This will first run unit tests and validate code guideliness as well.

118 Chapter 6. Platform developer documentation

CHAPTER

SEVEN

INMANTA LIFECYCLE SERVICE MANAGER

The Inmanta LSM is an active component that governs the lifeycle of services in the orchestration model. LSM
extends the Orchestration Engine (OrE) and Resource Controller (ResC) with a service catalog, a service inventory
and a lifecycle manager.

The Resource Controller manages the low level desired state of individual resources in the managed infrastructure.
This desired state is defined by the orchestration engine. The orchestration engine is responsible for the translation
of high level desired state into low level desired state, based on a library of refinements.

The LSM makes the orchestator service aware: the orchestration engine can control the refinement process per
service instance and change the refinement process based on external events.

119

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.1 LSM quickstart

This document provides a quickstart for the Inmanta lifecycle service manager (LSM). A high-level overview will
be given on how Inmanta LSM can be used to model and provision new services within a certain infrastructure.
This quickstart considers a basic service, which creates and updates the IP of a given interface.

7.1.1 Overview setup

The figure shown below, gives an overview of the infrastructure required to execute this quickstart. The infrastruc-
ture consists of:

1. An Inmanta Service Orchestrator with LSM

2. Three SR Linux routers (spine, leaf1, leaf2)

3. An internet connection

The SR Linux routers in this guide are setup as a 3-node CLOS network with a spine and two leaf switches. mgmt
is the management interface of the SR Linux routers and the Inmanta Service Orchestrator making them reachable
over the management network (172.30.0.0/24).

The service modelled in the following section manages the association of IP-addresses to any interface of the SR
Linux routers.

7.1.2 Prerequisites

This guide assumes that you already finished the quickstart, so if you haven’t followed that one, please start with
it.

Make sure that you have the necessary license information, namely:

• Credentials to the package repository;

• Entitlement file;

• License file.

System requirements:
• Python version 3.9 needs to be installed on your machine.

120 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Minimal 8GB of RAM.

Setup procedure:
1. Install Docker.

2. Install Containerlab.

3. Prepare a development environment by creating a python virtual environment and installing Inmanta:

$ mkdir -p ~/.virtualenvs
$ python3 -m venv ~/.virtualenvs/lsm-srlinux
$ source ~/.virtualenvs/lsm-srlinux/bin/activate
$ pip install inmanta

4. Change directory to the LSM SR Linux example of the examples repository:

$ cd examples/lsm-srlinux

This folder contains a project.yml, which looks like this:

name: LSM SR Linux Example
description: Provides an example of a LSM use case with SR Linux.
author: Inmanta
author_email: code@inmanta.com
license: ASL 2.0
copyright: 2022 Inmanta
modulepath: libs
downloadpath: libs
This example requires licensed modules,
replace <token> with inmanta access token you received with your license
pip:
index_url: https://packages.inmanta.com/<token>/inmanta-service-orchestrator-7-

↪→stable/python/simple/

Note: Additional explanation of each field can be found on the quickstart.

5. Change the <token> in the repo url to the credentials to the package repository (see Prerequisites section).

6. Go to the containerlab directory.

$ cd containerlab

7. Create a folder called resources in the containerlab folder and place your license and entitlement files
there. The names of the files have to be com.inmanta.jwe for the entitlement file and com.inmanta.
license for the license file.

8. Spin-up the containers.

$ docker login containers.inmanta.com
Username: containers
Password: <token>

Login Succeeded
$ sudo clab deploy -t topology.yml

Note: Additional information about this command and how to connect to these containers can be found on the
quickstart.

7.1. LSM quickstart 121

https://docs.docker.com/get-docker/
https://containerlab.dev/install/
https://github.com/inmanta/examples

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.1.3 Orchestration model

The full orchestration model to assign an IP-address to an interface of a SR Linux router, is shown below.

1 import srlinux
2 import srlinux::interface as srinterface
3 import srlinux::interface::subinterface as srsubinterface
4 import srlinux::interface::subinterface::ipv4 as sripv4
5 import yang
6 import lsm
7 import lsm::fsm
8

9 entity InterfaceIPAssignment extends lsm::ServiceEntity:
10 """
11 Interface details.
12

13 :attr router_ip: The IP address of the SR linux router that should be␣
↪→configured.

14 :attr router_name: The name of the SR linux router that should be configured.
15 :attr interface_name: The name of the interface of the router that should be␣

↪→configured.
16 :attr address: The IP-address to assign to the given interface.
17 """
18

19 std::ipv_any_address router_ip
20 string router_name
21 string interface_name
22

23 std::ipv_any_interface address
24 lsm::attribute_modifier address__modifier="rw+"
25

26 end
27

28 implement InterfaceIPAssignment using parents, interfaceIPAssignment
29

30 implementation interfaceIPAssignment for InterfaceIPAssignment:
31

32 device = srlinux::GnmiDevice(
33 auto_agent = true,
34 name = self.router_name,
35 mgmt_ip = self.router_ip,
36 yang_credentials = yang::Credentials(
37 username = "admin",
38 password = "NokiaSrl1!",
39)
40)
41

42 resource = srlinux::Resource(
43 device=device,
44 identifier = self.instance_id
45)
46

47 self.resources += resource.yang_resource
48

49 interface = srlinux::Interface(
50 device = device,
51 name = self.interface_name,

(continues on next page)

122 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

52 resource = resource,
53 mtu = 9000,
54 subinterface = srinterface::Subinterface(
55 x_index = 0,
56 ipv4=srsubinterface::Ipv4(
57 address = sripv4::Address(
58 ip_prefix = self.address
59),
60),
61),
62 comanaged = false
63)
64

65 end
66

67

68 binding = lsm::ServiceEntityBinding(
69 service_entity="__config__::InterfaceIPAssignment",
70 lifecycle=lsm::fsm::simple,
71 service_entity_name="interface-ip-assignment",
72)
73

74

75 for assignment in lsm::all(binding):
76 InterfaceIPAssignment(
77 instance_id=assignment["id"],
78 router_ip=assignment["attributes"]["router_ip"],
79 router_name=assignment["attributes"]["router_name"],
80 interface_name=assignment["attributes"]["interface_name"],
81 address=assignment["attributes"]["address"],
82 entity_binding=binding,
83)
84 end

• Lines 1 to 7 import several modules required by this configuration model.

• Lines 9 to 26 define the API of the new service, i.e. the attributes required to instantiate a new instance of the
service. The InterfaceIPAssignment entity defines four attributes: router_ip, router_name, interface_name
and address. Each attribute has a description defined in the docstring above. The docstring provides docu-
mentation on the meaning of a specific service attribute. The “<attribute>__modifier” fields are meta-data
fields. They defines whether the attribute can be modified or not. In the above-mentioned orchestration
model, the router_ip, router_name and the interface_name attribute can only be set upon instantiation of the
model, while the address attribute can be changed during the lifetime of the service. More information on
attribute modifiers can be found here.

• Line 28 defines which implementation should be used to instantiate the InterfaceIPAssignment service entity.

• Lines 30 to 65 provide the actual implementation for the InterfaceIPAssignment service entity. If an instance
is created of the InterfaceIPAssignment service entity, this implementation will make sure that the address
specified in the attributes of the service instance, will be configured on the requested interface and SR Linux
router.

• Lines 42 to 47 in particular, is where the resource is instantiated and assigned to the resources field. The
resources field should contain the list of resources that need to be deployed before the state of the instance
can be moved from creating to up.

• Lines 68 to 72 create a service entity binding. It associates a name and a lifecycle to the InterfaceIPAs-
signment service entity and registers it in the Inmanta Service Orchestrator via its northbound API. More
information on service lifecycles can be found here.

7.1. LSM quickstart 123

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Lines 75 to 83 create an instance of the InterfaceIPAssignment entity for each service instance. The
lsm::all() plugin retrieves all the service instances via the Inmanta Service Orchestrator API.

7.1.4 Install the orchestration model onto the Inmanta server

Go back to the previous folder and create an Inmanta project and environment.

Go back to previous folder
$ cd ..
Create a project called test
$ inmanta-cli --host 172.30.0.3 project create -n test
Create an environment called lsm-srlinux
$ inmanta-cli --host 172.30.0.3 environment create -p test -n lsm-srlinux --save

The following command executes a script to copy the required resources to a specific folder inside the container.

$ docker exec -ti -w /code clab-srlinux-inmanta-server /code/setup.sh

Afterwards, open the web-console, in this example it is on http://172.30.0.3:8888/console/.

Click on the Update Service Catalog button. This will make the new interface-ip-assignment service
known by the Inmanta orchestrator, making it possible to create new instances of this service via the LSM API or
via the Inmanta web-console.

Clicking on the button will:

• Download all required code onto the orchestrator;

• Install the project;

• Export the service entity bindings to the service catalog.

After executing these commands, the interface-ip-assignment service will appear in the service catalog of
the Inmanta web-console as shown in the figure below.

124 Chapter 7. Inmanta Lifecycle Service Manager

http://172.30.0.3:8888/console/

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.1.5 Check that the router is empty

Login into the SR Linux router named “spine” using the username “admin” and password “NokiaSrl1!”.

$ ssh admin@clab-srlinux-spine

Note: Additional information on how to connect to these containers can be found on the quickstart. In this guide
we will only do certain commands to show the changes.

Check the interface configuration via the following command.

A:spine# list interface
interface ethernet-1/1 {
}
interface ethernet-1/2 {
}
interface mgmt0 {

subinterface 0 {
ipv4 {

dhcp-client {
}

}
ipv6 {

dhcp-client {
}

}
}

}

7.1.6 Create a new service instance

Now, we will provision a new instance of the interface-ip-assignment service via the Inmanta web-console. Click
on the Show inventory button after the vlan-assignment service and click on the Add instance button.

7.1. LSM quickstart 125

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fill in the required attributes and click on confirm.

126 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

The service will be deployed automatically after clicking the confirm button. During the deployment, the service
instance will move through different states of its lifecycle: start -> acknowledged -> creating -> up. When the
service is in the up state, the interface is configured successfully. Verify the configuration on the SR Linux “spine”
router.

A:spine# list interface
interface ethernet-1/1 {

subinterface 0 {
ipv4 {

address 10.0.0.4/16 {
}

}
}

}
interface ethernet-1/2 {
}
interface mgmt0 {

subinterface 0 {
ipv4 {

dhcp-client {
}

}
ipv6 {

dhcp-client {
}

}
}

}

7.2 Allocation

In a service lifecycle, allocation is the lifecycle stage where identifiers are allocated for use by a specific service
instance.

For example a customer orders a virtual wire between two ports on two routers. The customer specifies router, port
and vlan for both the A and Z side of the wire. In the network, this virtual wire is implemented as a VXlan tunnel,
tied to both endpoints. Each such tunnel requires a “VXLAN Network Identifier (VNI)” that uniquely identifies
the tunnel. In the allocation phase, the orchestrator selects a VNI and ensures no other customer is assigned the
same VNI.

Correct allocation is crucial for the correct functioning of automated services. However, when serving multiple
customers at once or when mediating between multiple inventories, correct allocation can be challenging, due to
concurrency and distribution effects.

LSM offers a framework to perform allocation correctly and efficiently. The remainder of this document will
explain how.

7.2. Allocation 127

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.2.1 Types of Allocation

We distinguish several types of allocation. The next sections will explain each type, from simplest to most advanced.
After the basic explanation, a more in-depth explanation is given for the different types. When first learning about
LSM allocation (or allocation in general), it is important to have a basic understanding of the different types, before
diving into the details.

LSM internal allocation

The easiest form of allocation is when no external inventory is involved. A range of available identifiers is assigned
to LSM to distribute as it sees fit. For example, VNI range 50000-70000 is reserved to this service and can be used
by LSM freely. This requires no coordination with external systems and is supported out-of-the-box.

The VNI example, allocation would look like this

Listing 1: main.cf

1 import lsm
2 import lsm::fsm
3

4 entity VlanAssignment extends lsm::ServiceEntity:
5 string name
6

7 int? vlan_id
8 lsm::attribute_modifier vlan_id__modifier="r"
9 end

10

11 implement VlanAssignment using parents, do_deploy
12

13 binding = lsm::ServiceEntityBinding(
14 service_entity="__config__::VlanAssignment",
15 lifecycle=lsm::fsm::simple,
16 service_entity_name="vlan-assignment",
17 allocation_spec="allocate_vlan",
18)
19

20 for assignment in lsm::all(binding):
21 VlanAssignment(
22 instance_id=assignment["id"],
23 entity_binding=binding,
24 **assignment["attributes"]
25)
26 end

The main changes in the model are:

1. the attributes that have to be allocated are added to the service definition as r (read only) attributes.

2. the service binding refers to an allocation spec (defined in python code)

Listing 2: plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2020 Inmanta
5 :contact: code@inmanta.com
6 :license: Inmanta EULA
7 """

(continues on next page)

128 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

8

9 import inmanta_plugins.lsm.allocation as lsm
10

11 lsm.AllocationSpec(
12 "allocate_vlan",
13 lsm.LSM_Allocator(
14 attribute="vlan_id", strategy=lsm.AnyUniqueInt(lower=50000, upper=70000)
15),
16)

The allocation spec specifies how to allocate the attribute:

1. Use the pure LSM internal allocation mechanism for vlan_id

2. To select a new value, use the AnyUniqueInt strategy, which selects a random number in the specified range

Internally, this works by storing allocations in read-only attributes on the instance. The lsm::all function ensures
that if a value is already in the attribute, that value is used. Otherwise, the allocator gets an appropriate, new value,
that doesn’t collide with any value in any attribute-set of any other service instance.

In practice, this means that a value is allocated as long as it’s in the active, candidate or rollback attribute sets of
any non-terminated service instance. When a service instance is terminated, or clears one of its attribute sets, all
identifiers are automatically deallocated.

Important note when designing custom lifecycles: allocation only happens during validating, and the result of the
allocation is always written to the candidate attributes.

External lookup

Often, values received via the NorthBound API are not directly usable. For example, a router can be identified in
the API by its name, but what is required is its management IP. The management IP can be obtained based on the
name, through lookup in an inventory.

While lookup is not strictly allocation, it is in many ways similar.

The basic mechanism for external lookup is similar to internal allocation: the resolved value is stored in a read-
only parameter. This is done to ensure that LSM remains stable, even if the inventory is down or corrupted. This
also implies that if the inventory wants to change the value (i.e. router management IP is suddenly changed), it
should notify LSM. LSM will not by itself pick up inventory changes. This notification mechanism is currently
not supported yet.

An example with router management IP looks like this:

Listing 3: main.cf

1 import lsm
2 import lsm::fsm
3

4 entity VirtualWire extends lsm::ServiceEntity:
5 string router_a
6 int port_a
7 int vlan_a
8 string router_z
9 int port_z

10 int vlan_z
11 int? vni
12 std::ipv4_address? router_a_mgmt_ip
13 std::ipv4_address? router_z_mgmt_ip
14 lsm::attribute_modifier vni__modifier="r"
15 lsm::attribute_modifier router_a_mgmt_ip__modifier="r"

(continues on next page)

7.2. Allocation 129

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

16 lsm::attribute_modifier router_z_mgmt_ip__modifier="r"
17 lsm::attribute_modifier router_a__modifier="rw+"
18 lsm::attribute_modifier router_z__modifier="rw+"
19 end
20

21 implement VirtualWire using parents, do_deploy
22

23 for assignment in lsm::all(binding):
24 VirtualWire(
25 instance_id=assignment["id"],
26 router_a = assignment["attributes"]["router_a"],
27 port_a = assignment["attributes"]["port_a"],
28 vlan_a = assignment["attributes"]["vlan_a"],
29 router_z = assignment["attributes"]["router_z"],
30 port_z = assignment["attributes"]["port_z"],
31 vlan_z = assignment["attributes"]["vlan_z"],
32 vni=assignment["attributes"]["vni"],
33 router_a_mgmt_ip=assignment["attributes"]["router_a_mgmt_ip"],
34 router_z_mgmt_ip=assignment["attributes"]["router_z_mgmt_ip"],
35 entity_binding=binding,
36)
37 end
38

39 binding = lsm::ServiceEntityBinding(
40 service_entity="__config__::VirtualWire",
41 lifecycle=lsm::fsm::simple,
42 service_entity_name="virtualwire",
43 allocation_spec="allocate_for_virtualwire",

While the allocation implementation could look like the following

Listing 4: plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2020 Inmanta
5 :contact: code@inmanta.com
6 :license: Inmanta EULA
7 """
8

9 import os
10 from typing import Any, Optional
11

12 import inmanta_plugins.lsm.allocation as lsm
13 import psycopg2
14 from inmanta_plugins.lsm.allocation import (
15 AllocationContext,
16 ExternalAttributeAllocator,
17 T,
18)
19 from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT
20

21

22 class PGRouterResolver(ExternalAttributeAllocator[T]):
23 def __init__(self, attribute: str, id_attribute: str) -> None:

(continues on next page)

130 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

24 super().__init__(attribute, id_attribute)
25 self.conn = None
26 self.database = None
27

28 def pre_allocate(self):
29 """Connect to postgresql"""
30 host = os.environ.get("db_host", "localhost")
31 port = os.environ.get("db_port")
32 user = os.environ.get("db_user")
33 self.database = os.environ.get("db_name", "allocation_db")
34 self.conn = psycopg2.connect(
35 host=host, port=port, user=user, dbname=self.database
36)
37 self.conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)
38

39 def post_allocate(self) -> None:
40 """Close connection"""
41 self.conn.close()
42

43 def needs_allocation(
44 self, ctx: AllocationContext, instance: dict[str, Any]
45) -> bool:
46 attribute_not_yet_allocated = super().needs_allocation(ctx, instance)
47 id_attribute_changed = self._id_attribute_changed(instance)
48 return attribute_not_yet_allocated or id_attribute_changed
49

50 def _id_attribute_changed(self, instance: dict[str, Any]) -> bool:
51 if instance["candidate_attributes"] and instance["active_attributes"]:
52 return instance["candidate_attributes"].get(self.id_attribute) !=␣

↪→instance[
53 "active_attributes"
54].get(self.id_attribute)
55 return False
56

57 def _get_value_from_result(self, result: Optional[tuple[T]]) -> Optional[T]:
58 if result and result[0]:
59 return result[0]
60 return None
61

62 def allocate_for_attribute(self, id_attribute_value: Any) -> T:
63 with self.conn.cursor() as cursor:
64 cursor.execute(
65 "SELECT mgmt_ip FROM routers WHERE name=%s", (id_attribute_value,)
66)
67 result = cursor.fetchone()
68 allocated_value = self._get_value_from_result(result)
69 if allocated_value:
70 return allocated_value
71 raise Exception("No ip address found for %s", str(id_attribute_value))
72

73

74 lsm.AllocationSpec(
75 "allocate_for_virtualwire",
76 PGRouterResolver(id_attribute="router_a", attribute="router_a_mgmt_ip"),
77 PGRouterResolver(id_attribute="router_z", attribute="router_z_mgmt_ip"),
78 lsm.LSM_Allocator(

(continues on next page)

7.2. Allocation 131

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

79 attribute="vni", strategy=lsm.AnyUniqueInt(lower=50000, upper=70000)
80),
81)

External inventory owns allocation

When allocating is owned externally, synchronization between LSM and the external inventory is crucial. If either
LSM or the inventory fails, this should not lead to inconsistencies. In other words, LSM doesn’t only have to
maintain consistency between different service instances, but also between itself and the inventory.

The basic mechanism for external allocation is similar to external lookup. One important difference is that we also
write our allocation to the inventory.

For example, consider that there is an external Postgres Database that contains the allocation table. In the model,
this will look exactly the same as in the case of internal allocation, in the code, it will look as follows

Listing 5: plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2020 Inmanta
5 :contact: code@inmanta.com
6 :license: Inmanta EULA
7 """
8

9 import os
10 from typing import Optional
11 from uuid import UUID
12

13 import inmanta_plugins.lsm.allocation as lsm
14 import psycopg2
15 from inmanta_plugins.lsm.allocation import ExternalServiceIdAllocator, T
16 from psycopg2.extensions import ISOLATION_LEVEL_SERIALIZABLE
17

18

19 class PGServiceIdAllocator(ExternalServiceIdAllocator[T]):
20 def __init__(self, attribute: str) -> None:
21 super().__init__(attribute)
22 self.conn = None
23 self.database = None
24

25 def pre_allocate(self):
26 """Connect to postgresql"""
27 host = os.environ.get("db_host", "localhost")
28 port = os.environ.get("db_port")
29 user = os.environ.get("db_user")
30 self.database = os.environ.get("db_name", "allocation_db")
31 self.conn = psycopg2.connect(
32 host=host, port=port, user=user, dbname=self.database
33)
34 self.conn.set_isolation_level(ISOLATION_LEVEL_SERIALIZABLE)
35

36 def post_allocate(self) -> None:
37 """Close connection"""
38 self.conn.close()

(continues on next page)

132 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

39

40 def _get_value_from_result(self, result: Optional[tuple[T]]) -> Optional[T]:
41 if result and result[0]:
42 return result[0]
43 return None
44

45 def allocate_for_id(self, serviceid: UUID) -> T:
46 """Allocate in transaction"""
47 with self.conn.cursor() as cursor:
48 cursor.execute(
49 "SELECT allocated_value FROM allocation WHERE attribute=%s AND owner=

↪→%s",
50 (self.attribute, serviceid),
51)
52 result = cursor.fetchone()
53 allocated_value = self._get_value_from_result(result)
54 if allocated_value:
55 return allocated_value
56 cursor.execute(
57 "SELECT max(allocated_value) FROM allocation where attribute=%s",
58 (self.attribute,),
59)
60 result = cursor.fetchone()
61 current_max_value = self._get_value_from_result(result)
62 allocated_value = current_max_value + 1 if current_max_value else 1
63 cursor.execute(
64 "INSERT INTO allocation (attribute, owner, allocated_value) VALUES (

↪→%s, %s, %s)",
65 (self.attribute, serviceid, allocated_value),
66)
67 self.conn.commit()
68 return allocated_value
69

70

71 lsm.AllocationSpec(
72 "allocate_vlan",
73 PGServiceIdAllocator(
74 attribute="vlan_id",
75),
76)

What is important to notice is that the code first tries to see if an allocation has already happened. This is important
in case there was a failure before LSM could commit the allocation. In general, LSM must be able to identify
what has been allocated to it, in order to recover aborted operations. This is done either by attaching an identifier
when performing allocation by knowing where the value will be stored in the inventory up front (e.g. the inventory
contains a service model as well, LSM can find the VNI for a service by requesting the VNI for that service directly).

In the above example, the identifier is the same as the service instance id that LSM uses internally to identify an
instance. An attribute of the instance can also be used to identify it in the external inventory, as the name attribute
in the the example below.

Listing 6: plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2020 Inmanta
(continues on next page)

7.2. Allocation 133

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

5 :contact: code@inmanta.com
6 :license: Inmanta EULA
7 """
8

9 import os
10 from typing import Any, Optional
11

12 import inmanta_plugins.lsm.allocation as lsm
13 import psycopg2
14 from inmanta_plugins.lsm.allocation import ExternalAttributeAllocator, T
15 from psycopg2.extensions import ISOLATION_LEVEL_SERIALIZABLE
16

17

18 class PGAttributeAllocator(ExternalAttributeAllocator[T]):
19 def __init__(self, attribute: str, id_attribute: str) -> None:
20 super().__init__(attribute, id_attribute)
21 self.conn = None
22 self.database = None
23

24 def pre_allocate(self):
25 """Connect to postgresql"""
26 host = os.environ.get("db_host", "localhost")
27 port = os.environ.get("db_port")
28 user = os.environ.get("db_user")
29 self.database = os.environ.get("db_name", "allocation_db")
30 self.conn = psycopg2.connect(
31 host=host, port=port, user=user, dbname=self.database
32)
33 self.conn.set_isolation_level(ISOLATION_LEVEL_SERIALIZABLE)
34

35 def post_allocate(self) -> None:
36 """Close connection"""
37 self.conn.close()
38

39 def _get_value_from_result(self, result: Optional[tuple[T]]) -> Optional[T]:
40 if result and result[0]:
41 return result[0]
42 return None
43

44 def allocate_for_attribute(self, id_attribute_value: Any) -> T:
45 """Allocate in transaction"""
46 with self.conn.cursor() as cursor:
47 cursor.execute(
48 "SELECT allocated_value FROM allocation WHERE attribute=%s AND owner=

↪→%s",
49 (self.attribute, id_attribute_value),
50)
51 result = cursor.fetchone()
52 allocated_value = self._get_value_from_result(result)
53 if allocated_value:
54 return allocated_value
55 cursor.execute(
56 "SELECT max(allocated_value) FROM allocation where attribute=%s",
57 (self.attribute,),
58)
59 result = cursor.fetchone()

(continues on next page)

134 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

60 current_max_value = self._get_value_from_result(result)
61 allocated_value = current_max_value + 1 if current_max_value else 1
62 cursor.execute(
63 "INSERT INTO allocation (attribute, owner, allocated_value) VALUES (

↪→%s, %s, %s)",
64 (self.attribute, id_attribute_value, allocated_value),
65)
66 self.conn.commit()
67 return allocated_value
68

69

70 lsm.AllocationSpec(
71 "allocate_vlan",
72 PGAttributeAllocator(attribute="vlan_id", id_attribute="name"),
73)

Second, it is required that the inventory has a procedure to safely obtain ownership of an identifier. There must
be some way LSM can definitely determine if it has correctly obtained an identifier. In the example, the database
transaction ensures this. Many other mechanisms exist, but the inventory has to support at least one. Examples of
possible transaction coordination mechanism are:

1. an API endpoint that atomically and consistently performs allocation,

2. database transaction

3. Compare-and-set style API (when updating a value, the old value is also passed along, ensuring no concurrent
updates are possible)

4. API with version argument (like the LSM API itself, when updating a value, the version prior to update has
to be passed along, preventing concurrent updates)

5. Locks and/or Leases (a value or part of the inventory can be locked or leased(locked for some time) prior to
allocation, the lock ensures no concurrent modifications)

This scenario performs no de-allocation.

External inventory with deallocation

To ensure de-allocation on an external inventory is properly executed, it is not executed during compilation, but by
a handler. This ensures that de-allocation is retried until it completes successfully.

The example below shows how allocation and de-allocation of a VLAN ID can be done using an external inventory.
The handler of the PGAllocation entity performs the de-allocation. An instance of this entity is only constructed
when the service instance is in the deallocating state.

Listing 7: vlan_assignment/model/_init.cf

1 import lsm
2 import lsm::fsm
3

4 entity VlanAssignment extends lsm::ServiceEntity:
5 string name
6

7 int? vlan_id
8 lsm::attribute_modifier vlan_id__modifier="r"
9 end

10

11 implement VlanAssignment using parents, do_deploy
12 implement VlanAssignment using de_allocation when lsm::has_current_state(self,

(continues on next page)

7.2. Allocation 135

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

↪→"deallocating")
13

14 entity PGAllocation extends std::PurgeableResource:
15 """
16 This entity ensures that an identifier allocated in PostgreSQL
17 gets de-allocated when the service instance is removed.
18 """
19 string attribute
20 std::uuid service_id
21 string agent
22 end
23

24 implement PGAllocation using std::none
25

26 implementation de_allocation for VlanAssignment:
27 """
28 De-allocate the vlan_id identifier.
29 """
30 self.resources += PGAllocation(
31 attribute="vlan_id",
32 service_id=instance_id,
33 purged=true,
34 send_event=true,
35 agent="internal",
36 requires=self.requires,
37 provides=self.provides,
38)
39 end
40

41 binding = lsm::ServiceEntityBinding(
42 service_entity="vlan_assignment::VlanAssignment",
43 lifecycle=lsm::fsm::simple_with_deallocation,
44 service_entity_name="vlan-assignment",
45 allocation_spec="allocate_vlan",
46)
47

48 for assignment in lsm::all(binding):
49 VlanAssignment(
50 instance_id=assignment["id"],
51 entity_binding=binding,
52 **assignment["attributes"],
53)
54 end

The handler associated with the PGAllocation handler is shown in the code snippet below. Note that the handler
doesn’t have an implementation for the create_resource() and the update_resource() method since they can never
be called. The only possible operation is a delete operation.

Listing 8: vlan_assignment/plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2020 Inmanta
5 :contact: code@inmanta.com
6 :license: Inmanta EULA

(continues on next page)

136 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

7 """
8

9 import os
10 from typing import Optional
11 from uuid import UUID
12

13 import psycopg2
14 from inmanta.agent import handler
15 from inmanta.agent.handler import CRUDHandlerGeneric as CRUDHandler
16 from inmanta.agent.handler import ResourcePurged, provider
17 from inmanta.resources import PurgeableResource, resource
18 from inmanta_plugins.lsm.allocation import AllocationSpec, ExternalServiceIdAllocator
19 from psycopg2.extensions import ISOLATION_LEVEL_SERIALIZABLE
20

21

22 class PGServiceIdAllocator(ExternalServiceIdAllocator[int]):
23 def __init__(self, attribute: str) -> None:
24 super().__init__(attribute)
25 self.conn = None
26 self.database = None
27

28 def pre_allocate(self) -> None:
29 """Connect to postgresql"""
30 host = os.environ.get("db_host", "localhost")
31 port = os.environ.get("db_port")
32 user = os.environ.get("db_user")
33 self.database = os.environ.get("db_name", "allocation_db")
34 self.conn = psycopg2.connect(
35 host=host, port=port, user=user, dbname=self.database
36)
37 self.conn.set_isolation_level(ISOLATION_LEVEL_SERIALIZABLE)
38

39 def post_allocate(self) -> None:
40 """Close connection"""
41 self.conn.close()
42

43 def _get_value_from_result(self, result: Optional[tuple[int]]) -> Optional[int]:
44 if result and result[0]:
45 return result[0]
46 return None
47

48 def allocate_for_id(self, serviceid: UUID) -> int:
49 """Allocate in transaction"""
50 with self.conn.cursor() as cursor:
51 cursor.execute(
52 "SELECT allocated_value FROM allocation WHERE attribute=%s AND owner=

↪→%s",
53 (self.attribute, serviceid),
54)
55 result = cursor.fetchone()
56 allocated_value = self._get_value_from_result(result)
57 if allocated_value:
58 return allocated_value
59 cursor.execute(
60 "SELECT max(allocated_value) FROM allocation where attribute=%s",
61 (self.attribute,),

(continues on next page)

7.2. Allocation 137

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

62)
63 result = cursor.fetchone()
64 current_max_value = self._get_value_from_result(result)
65 allocated_value = current_max_value + 1 if current_max_value else 1
66 cursor.execute(
67 "INSERT INTO allocation (attribute, owner, allocated_value) VALUES (

↪→%s, %s, %s)",
68 (self.attribute, serviceid, allocated_value),
69)
70 self.conn.commit()
71 return allocated_value
72

73 def has_allocation_in_inventory(self, serviceid: UUID) -> bool:
74 """
75 Check whether a VLAN ID is allocated by the service instance with the given␣

↪→id.
76 """
77 with self.conn.cursor() as cursor:
78 cursor.execute(
79 "SELECT allocated_value FROM allocation WHERE attribute=%s AND owner=

↪→%s",
80 (self.attribute, serviceid),
81)
82 result = cursor.fetchone()
83 allocated_value = self._get_value_from_result(result)
84 if allocated_value:
85 return True
86 return False
87

88 def de_allocate(self, serviceid: UUID) -> None:
89 """
90 De-allocate the VLAN ID allocated by the service instance with the given id.
91 """
92 with self.conn.cursor() as cursor:
93 cursor.execute(
94 "DELETE FROM allocation WHERE attribute=%s AND owner=%s",
95 (self.attribute, serviceid),
96)
97 self.conn.commit()
98

99

100 @resource("vlan_assignment::PGAllocation", agent="agent", id_attribute="service_id")
101 class PGAllocationResource(PurgeableResource):
102 fields = ("attribute", "service_id")
103

104

105 @provider("vlan_assignment::PGAllocation", name="pgallocation")
106 class PGAllocation(CRUDHandler[PGAllocationResource]):
107 def __init__(self, *args, **kwargs):
108 super().__init__(*args, **kwargs)
109 self._allocator = PGServiceIdAllocator(attribute="vlan_id")
110

111 def pre(self, ctx: handler.HandlerContext, resource: PGAllocationResource) ->␣
↪→None:

112 self._allocator.pre_allocate()
113

(continues on next page)

138 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

114 def post(self, ctx: handler.HandlerContext, resource: PGAllocationResource) ->␣
↪→None:

115 self._allocator.post_allocate()
116

117 def read_resource(
118 self, ctx: handler.HandlerContext, resource: PGAllocationResource
119) -> None:
120 if not self._allocator.has_allocation_in_inventory(resource.service_id):
121 raise ResourcePurged()
122

123 def delete_resource(
124 self, ctx: handler.HandlerContext, resource: PGAllocationResource
125) -> None:
126 self._allocator.de_allocate(resource.service_id)
127

128

129 AllocationSpec("allocate_vlan", PGServiceIdAllocator(attribute="vlan_id"))

7.3 Allocation V2

Allocation V2 is a new framework, similar to allocation (v1). It happens in the same lifecycle stage and serves the
same purpose: filling up read-only values of a service instance.

It comes to fill some gaps in the functionalities of allocation (v1) and takes advantages of the experience and
learnings that using allocation (v1) taught us. It is a more complete, functional, and elegant framework.

7.3.1 Example

The example below show you the use case where a single allocator is used the same way on both the service instance
and an embedded entity.

Listing 9: main.cf

1 import lsm
2 import lsm::fsm
3

4

5 entity ValueService extends lsm::ServiceEntity:
6 string name
7 lsm::attribute_modifier name__modifier="rw"
8

9 int? first_value
10 lsm::attribute_modifier first_value__modifier="r"
11 end
12 ValueService.embedded_values [0:] -- EmbeddedValue
13

14 entity EmbeddedValue extends lsm::EmbeddedEntity:
15 string id
16 lsm::attribute_modifier id__modifier="rw"
17

18 int? third_value
19 lsm::attribute_modifier third_value__modifier="r"
20

21 string[]? __lsm_key_attributes = ["id"]
(continues on next page)

7.3. Allocation V2 139

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

22 end
23

24 index EmbeddedValue(id)
25

26 implement ValueService using parents
27 implement EmbeddedValue using std::none
28

29 binding = lsm::ServiceEntityBinding(
30 service_entity="__config__::ValueService",
31 lifecycle=lsm::fsm::simple,
32 service_entity_name="value-service",
33 allocation_spec="value_allocation",
34 strict_modifier_enforcement=true,
35)
36

37 for assignment in lsm::all(binding):
38 attributes = assignment["attributes"]
39

40 service = ValueService(
41 instance_id=assignment["id"],
42 entity_binding=binding,
43 name=attributes["name"],
44 first_value=attributes["first_value"],
45)
46

47 for embedded_value in attributes["embedded_values"]:
48 service.embedded_values += EmbeddedValue(
49 **embedded_value
50)
51 end
52 end

Listing 10: plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2022 Inmanta
5 :contact: code@inmanta.com
6 :license: Inmanta EULA
7 """
8

9 from inmanta.util import dict_path
10 from inmanta_plugins.lsm.allocation import AllocationSpecV2
11 from inmanta_plugins.lsm.allocation_v2.framework import AllocatorV2, ContextV2,␣

↪→ForEach
12

13

14 class IntegerAllocator(AllocatorV2):
15 def __init__(self, value: int, attribute: str) -> None:
16 self.value = value
17 self.attribute = dict_path.to_path(attribute)
18

19 def needs_allocation(self, context: ContextV2) -> bool:
20 try:
21 if not context.get_instance().get(self.attribute):

(continues on next page)

140 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

22 # Attribute not present
23 return True
24 except IndexError:
25 return True
26 return False
27

28 def allocate(self, context: ContextV2) -> None:
29 context.set_value(self.attribute, self.value)
30

31

32 AllocationSpecV2(
33 "value_allocation",
34 IntegerAllocator(value=1, attribute="first_value"),
35 ForEach(
36 item="item",
37 in_list="embedded_values",
38 identified_by="id",
39 apply=[
40 IntegerAllocator(
41 value=3,
42 attribute="third_value",
43),
44],
45),
46)

7.3.2 Allocation V2 features

The two main additions to allocation v2 when compared to v1 are:
• The new ContextV2 object (replacement for AllocationContext object), which goes in pair with

AllocatorV2 and AllocationSpecV2

• The support for allocating attributes in embedded entities.

Setting a read-only attribute on an embedded entity, like done in the above-mentioned example,
is only possible when strict_modifier_enforcement is enabled. On legacy services, where
strict_modifier_enforcement is not enabled, read-only attributes can be set on embedded entities
using the workaround mentioned the Section Legacy: Set attributes on embedded entities.

Warning: To use allocation safely, allocators should not keep any state between invocations, but pass all state
via the ContextV2 object.

ContextV2

A context object that will be passed to each allocator and that should be used to set values. This context always
shows the attributes the allocator should have access to, based on its level in the allocators tree. This means a top
level allocator will see all the attributes, but an allocator used on embedded entities will only see the attributes of
such embedded entity (as if it was a standalone entity). The context object can also be used to store values at each
“level of allocation”, reachable by all allocators at the same level.

In the example at the beginning of this page, the same allocator can be used to set a value on the service entity
and an embedded entity. In needs_allocation, when calling context.get_instance(), we receive as dict
the full service entity when allocating first_value and the embedded entity when allocating third_value.

7.3. Allocation V2 141

Inmanta Documentation, Release 7.1.1.dev20240504011805

AllocatorV2

A base class for all v2 allocators, they are provided with a ContextV2 object for those two methods:
needs_allocation and allocate. The main difference with v1, is that the allocate method doesn’t return any
value to allocate, it sets them using the context object: context.set_value(name, value).

AllocationSpecV2

The collector for all AllocatorV2.

7.3.3 Legacy: Set attributes on embedded entities

The server doesn’t have support to set read-only attributes on embedded entities when
strict_modifier_enforcement is disabled. Thanks to the allocator ContextV2Wrapper and the plu-
gin lsm::context_v2_unwrapper a workaround exists to do allocation on an embedded entity’s attributes
with strict_modifier_enforcement disabled. This workaround saves all the allocated values in a dict, in an
attribute of the service instance (added to the instance for this single purpose). That way, the server accepts the
update.

The ContextV2Wrapper, which has to be used at the root of the allocation tree, will collect and save all the
allocated value in a single dict. And when getting all the service instances in your model, with lsm::all, you can
simply wrap the call to lsm::allwith a call to lsm::context_v2_unwrapper, which will place all the allocated
values saved in the dict, directly where they belong, in the embedded entities.

When using the ContextV2Wrapper and the lsm::context_v2_unwrapper plugin, you will have to specify in
which attributes all the allocated values should be saved.

Listing 11: main.cf

1 import lsm
2 import lsm::fsm
3

4

5 entity ValueService extends lsm::ServiceEntity:
6 string name
7 lsm::attribute_modifier name__modifier="rw"
8

9 int? first_value
10 lsm::attribute_modifier first_value__modifier="r"
11

12 dict? allocated
13 lsm::attribute_modifier allocated__modifier="r"
14 end
15 ValueService.embedded_values [0:] -- EmbeddedValue
16

17 entity EmbeddedValue extends lsm::EmbeddedEntity:
18 string id
19 lsm::attribute_modifier id__modifier="rw"
20

21 int? third_value
22 lsm::attribute_modifier third_value__modifier="r"
23 end
24

25 implement ValueService using parents
26 implement EmbeddedValue using std::none
27

28 binding = lsm::ServiceEntityBinding(
(continues on next page)

142 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

29 service_entity="__config__::ValueService",
30 lifecycle=lsm::fsm::simple,
31 service_entity_name="value-service",
32 allocation_spec="value_allocation",
33)
34

35 for assignment in lsm::context_v2_unwrapper(
36 assignments=lsm::all(binding),
37 fallback_attribute="allocated",
38):
39 attributes = assignment["attributes"]
40

41 service = ValueService(
42 instance_id=assignment["id"],
43 entity_binding=binding,
44 name=attributes["name"],
45 first_value=attributes["first_value"],
46 allocated=attributes["allocated"],
47)
48

49 for embedded_value in attributes["embedded_values"]:
50 service.embedded_values += EmbeddedValue(
51 **embedded_value
52)
53 end
54 end

Listing 12: plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2022 Inmanta
5 :contact: code@inmanta.com
6 :license: Inmanta EULA
7 """
8

9 from inmanta.util import dict_path
10 from inmanta_plugins.lsm.allocation import AllocationSpecV2
11 from inmanta_plugins.lsm.allocation_v2.framework import (
12 AllocatorV2,
13 ContextV2,
14 ContextV2Wrapper,
15 ForEach,
16)
17

18

19 class IntegerAllocator(AllocatorV2):
20 def __init__(self, value: int, attribute: str) -> None:
21 self.value = value
22 self.attribute = dict_path.to_path(attribute)
23

24 def needs_allocation(self, context: ContextV2) -> bool:
25 try:
26 if not context.get_instance().get(self.attribute):
27 # Attribute not present

(continues on next page)

7.3. Allocation V2 143

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

28 return True
29 except IndexError:
30 return True
31 return False
32

33 def allocate(self, context: ContextV2) -> None:
34 context.set_value(self.attribute, self.value)
35

36

37 AllocationSpecV2(
38 "value_allocation",
39 IntegerAllocator(value=1, attribute="first_value"),
40 ContextV2Wrapper(
41 "allocated",
42 ForEach(
43 item="item",
44 in_list="embedded_values",
45 identified_by="id",
46 apply=[
47 IntegerAllocator(
48 value=3,
49 attribute="third_value",
50),
51],
52),
53),
54)

To facilitate allocation on embedded entities, the ForEach allocator can be used.

Deleting of Embedded entities

When you want to support deletion of embedded entities during updates, a slightly different configuration is needed.
Because all allocated values are stored in a single attribute, the deleted entities will be recreated when unwrapping.

To prevent this, use track_deletes=true on both the the allocator ContextV2Wrapper and the plugin
lsm::context_v2_unwrapper

Additionally, to re-trigger allocation when an item is deleted, use SetSensitiveForEach instead of ForEach.

Listing 13: main.cf

1 import lsm
2 import lsm::fsm
3

4

5 entity ValueService extends lsm::ServiceEntity:
6 string name
7 lsm::attribute_modifier name__modifier="rw"
8

9 int? first_value
10 lsm::attribute_modifier first_value__modifier="r"
11

12 dict? allocated
13 lsm::attribute_modifier allocated__modifier="r"
14 end
15 ValueService.embedded_values [0:] lsm::__rwplus__ EmbeddedValue

(continues on next page)

144 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

16

17 entity EmbeddedValue extends lsm::EmbeddedEntity:
18 string id
19 lsm::attribute_modifier id__modifier="rw"
20

21 int? third_value
22 lsm::attribute_modifier third_value__modifier="r"
23

24 string other_value
25 lsm::attribute_modifier other_value__modifier="rw"
26 end
27

28 index EmbeddedValue(id)
29

30 implement ValueService using parents
31 implement EmbeddedValue using std::none
32

33 binding = lsm::ServiceEntityBindingV2(
34 service_entity="__config__::ValueService",
35 lifecycle=lsm::fsm::simple,
36 service_entity_name="value-service",
37 allocation_spec="value_allocation",
38)
39

40 for assignment in lsm::context_v2_unwrapper(
41 assignments=lsm::all(binding),
42 fallback_attribute="allocated",
43 track_deletes=true,
44):
45 attributes = assignment["attributes"]
46

47 service = ValueService(
48 instance_id=assignment["id"],
49 entity_binding=binding,
50 name=attributes["name"],
51 first_value=attributes["first_value"],
52 allocated=attributes["allocated"],
53)
54

55 for embedded_value in attributes["embedded_values"]:
56 service.embedded_values += EmbeddedValue(
57 **embedded_value
58)
59 end
60 end

Listing 14: plugins/__init__.py

1 """
2 Inmanta LSM
3

4 :copyright: 2020 Inmanta
5 :contact: code@inmanta.com
6 :license: Inmanta EULA
7 """
8

(continues on next page)

7.3. Allocation V2 145

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

9 from inmanta.util import dict_path
10 from inmanta_plugins.lsm.allocation import AllocationSpecV2
11 from inmanta_plugins.lsm.allocation_v2.framework import (
12 AllocatorV2,
13 ContextV2,
14 ContextV2Wrapper,
15 SetSensitiveForEach,
16)
17

18

19 class IntegerAllocator(AllocatorV2):
20 def __init__(self, value: int, attribute: str) -> None:
21 self.value = value
22 self.attribute = dict_path.to_path(attribute)
23

24 def needs_allocation(self, context: ContextV2) -> bool:
25 try:
26 if not context.get_instance().get(self.attribute):
27 # Attribute not present
28 return True
29 except IndexError:
30 return True
31 return False
32

33 def allocate(self, context: ContextV2) -> None:
34 if self.needs_allocation(context):
35 context.set_value(self.attribute, self.value)
36

37

38 AllocationSpecV2(
39 "value_allocation",
40 IntegerAllocator(value=1, attribute="first_value"),
41 ContextV2Wrapper(
42 "allocated",
43 SetSensitiveForEach(
44 item="item",
45 in_list="embedded_values",
46 identified_by="id",
47 apply=[
48 IntegerAllocator(
49 value=3,
50 attribute="third_value",
51),
52],
53),
54 track_deletes=True,
55),
56)

146 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.4 Allocation V3

Allocation V3 is a new framework that changes significantly compared to Allocation V2. The purpose is the same
as V2: filling up the read-only values of a service instance during the first validation compile of the lifecycle.
Allocation is now performed via a plugin call.

The advantage of this approach is that it simplifies greatly the process: you don’t need anymore to write allocator
classes and all the required functions (needs_allocation, allocate, etc.). You also don’t need to instantiate
many AllocationSpecV2 with your allocators inside. Instead, you just need to write one plugin per attribute you
want to allocate and register it as an allocator, it is less verbose and a much more straightforward approach.
LSM comes with build-in allocators that can be used out of the box, e.g. get_first_free_integer.

7.4.1 Create an allocator

In the allocation V3 framework, an allocator is a python function returning the value to be set for a specific read-only
attribute on a specific service instance. To register this function as an allocator, use the allocation_helpers.
allocator() decorator:

1 from inmanta_plugins.lsm.allocation_helpers import allocator
2

3 @allocator()
4 def get_service_id(
5 service: "lsm::ServiceEntity",
6 attribute_path: "string",
7) -> "int":
8 return 5

An allocator must accept exactly two positional arguments:
1. service, the service instance for which the value is being allocated.

2. attribute_path, the attribute of the service instance in which the allocated value should be saved, as a
DictPath expression. The decorated function can define a default value.

After those two positional arguments, the function is free of accepting any keyword argument it needs from the
model and they will be passed transparently. The function can also define default values, that will be passed
transparently as well.

Once an allocator is registered, it can be reused for other instances and attributes that require the same type of
allocation by passing the appropriate parameters to the plugin call.

It is also possible to enforce an order in the allocators call by passing values that are returned by other plugins in
the model:

Listing 15: main.cf (Plugin call ordering)

1 """
2 Inmanta LSM
3 :copyright: 2024 Inmanta
4 :contact: code@inmanta.com
5 :license: Inmanta EULA
6 """
7

8

9 import lsm
10 import lsm::fsm
11

12 entity ServiceWithOrderedAllocation extends lsm::ServiceEntity:
13 """

(continues on next page)

7.4. Allocation V3 147

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

14 This service entity demonstrates how to enforce a specific order during
15 the allocation process. Here we want to allocate some attributes in a
16 specific order: value_allocated_first and then value_allocated_last.
17

18 :attr name: The name identifying the service instance.
19 :attr value_allocated_first: A read-only value, automatically assigned by the api
20 before value_allocated_last.
21 :attr value_allocated_last: A read-only value, automatically assigned by the api
22 after value_allocated_first.
23 """
24

25 string name
26 lsm::attribute_modifier name__modifier="rw"
27 string? value_allocated_first=null
28 lsm::attribute_modifier value_allocated_first__modifier="r"
29 string? value_allocated_last=null
30 lsm::attribute_modifier value_allocated_last__modifier="r"
31 end
32

33 # Inherit parent entity's implementations
34 implement ServiceWithOrderedAllocation using parents
35

36

37 # Create a binding to enable service creation through the service catalog
38 ordered_allocation_binding = lsm::ServiceEntityBindingV2(
39 service_entity="allocatorv3_demo::ServiceWithOrderedAllocation",
40 lifecycle=lsm::fsm::simple,
41 service_entity_name="allocation_order_enforcement",
42)
43

44 # Collect all service instances
45 for assignment in lsm::all(ordered_allocation_binding):
46 service = ServiceWithOrderedAllocation(
47 instance_id=assignment["id"],
48 entity_binding=ordered_allocation_binding,
49 name=assignment["attributes"]["name"],
50

51 # Regular allocation:
52 value_allocated_first=ordered_allocation(
53 service,
54 "value_allocated_first"
55),
56

57 # Passing value_allocated_first as a parameter to this allocator
58 # will enforce the ordering:
59 value_allocated_last = ordered_allocation(
60 service,
61 "value_allocated_last",
62 requires=[service.value_allocated_first]
63)
64

65)
66 end

On the plugin side, add an optional argument to enforce ordering:

148 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

Listing 16: __init__.py (Plugin call ordering)

1 """
2 Copyright 2024 Inmanta
3

4 Licensed under the Apache License, Version 2.0 (the "License");
5 you may not use this file except in compliance with the License.
6 You may obtain a copy of the License at
7

8 http://www.apache.org/licenses/LICENSE-2.0
9

10 Unless required by applicable law or agreed to in writing, software
11 distributed under the License is distributed on an "AS IS" BASIS,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 See the License for the specific language governing permissions and
14 limitations under the License.
15

16 Contact: code@inmanta.com
17 """
18

19 from datetime import datetime
20

21 from inmanta_plugins.lsm.allocation_helpers import allocator
22

23

24 @allocator()
25 def ordered_allocation(
26 service: "lsm::ServiceEntity",
27 attribute_path: "string",
28 *,
29 requires: "list?" = None
30) -> "string":
31 """
32 For demonstration purposes, this allocator returns the current time.
33

34 :param service: The service instance for which the attribute value
35 is being allocated.
36 :param attribute_path: DictPath to the attribute of the service
37 instance in which the allocated value will be stored.
38 :param requires: Optional list containing the results of allocator calls
39 that should happen before the current call.
40 """
41 return str(datetime.now())

7.4.2 V2 to V3 migration

Moving from allocation V2 to allocation V3 boils down to the following steps:

In the plugins directory:

1. Create a specific allocator for each property of the service that requires allocation.

2. Make sure to register these allocators by decorating them with the @allocator() decorator.

In the model:

3. Call the relevant allocator plugin for each value requiring allocation in the lsm::all unwrapping.

7.4. Allocation V3 149

Inmanta Documentation, Release 7.1.1.dev20240504011805

Basic example

Here is an example of a V2 to V3 migration. For both the model and the plugin, first the old V2 version is shown
and then the new version using V3 framework:

Plugin

Baseline V2 allocation in the plugins directory:

Listing 17: __init__.py (V2 allocation)

1 """
2 Copyright 2024 Inmanta
3

4 Licensed under the Apache License, Version 2.0 (the "License");
5 you may not use this file except in compliance with the License.
6 You may obtain a copy of the License at
7

8 http://www.apache.org/licenses/LICENSE-2.0
9

10 Unless required by applicable law or agreed to in writing, software
11 distributed under the License is distributed on an "AS IS" BASIS,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 See the License for the specific language governing permissions and
14 limitations under the License.
15

16 Contact: code@inmanta.com
17 """
18

19 from inmanta.util import dict_path
20 from inmanta_plugins.lsm.allocation import AllocationSpecV2
21 from inmanta_plugins.lsm.allocation_v2.framework import AllocatorV2, ContextV2,␣

↪→ForEach
22

23

24 class IntegerAllocator(AllocatorV2):
25 """
26 Custom allocator class to set an integer value for an attribute.
27 """
28

29 def __init__(self, value: int, attribute: str) -> None:
30 """
31 :param value: The value to store for this attribute of this service.
32 :param attribute: Attribute of the service instance in which the
33 value will be stored.
34 """
35 self.value = value
36 self.attribute = dict_path.to_path(attribute)
37

38 def needs_allocation(self, context: ContextV2) -> bool:
39 """
40 Determine if this allocator has any work to do or if all
41 values have already been allocated correctly for the instance
42 exposed through the context object.
43

44 :param context: Interface with the current instance
45 being unwrapped in an lsm::all call.

(continues on next page)

150 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

46 """
47 try:
48 if not context.get_instance().get(self.attribute):
49 # Attribute not present
50 return True
51 except IndexError:
52 return True
53

54 return False
55

56 def allocate(self, context: ContextV2) -> None:
57 """
58 Allocate the value for the attribute via the context object.
59

60 :param context: Interface with the current instance
61 being unwrapped in an lsm::all call.
62 """
63 context.set_value(self.attribute, self.value)
64

65

66 # In the allocation V2 framework, AllocationSpecV2 objects
67 # are used to configure the allocation process:
68 AllocationSpecV2(
69 "value_allocation",
70 IntegerAllocator(value=1, attribute="top_level_value"),
71 ForEach(
72 item="item",
73 in_list="embedded_services",
74 identified_by="id",
75 apply=[
76 IntegerAllocator(
77 value=3,
78 attribute="embedded_value",
79),
80],
81),
82)

When moving to V3, register an allocator in the plugin:

Listing 18: __init__.py (V3 allocation)

1 """
2 Copyright 2024 Inmanta
3

4 Licensed under the Apache License, Version 2.0 (the "License");
5 you may not use this file except in compliance with the License.
6 You may obtain a copy of the License at
7

8 http://www.apache.org/licenses/LICENSE-2.0
9

10 Unless required by applicable law or agreed to in writing, software
11 distributed under the License is distributed on an "AS IS" BASIS,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 See the License for the specific language governing permissions and
14 limitations under the License.

(continues on next page)

7.4. Allocation V3 151

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

15

16 Contact: code@inmanta.com
17 """
18

19 from inmanta_plugins.lsm.allocation_helpers import allocator
20

21

22 @allocator()
23 def get_value(
24 service: "lsm::ServiceEntity",
25 attribute_path: "string",
26 *,
27 value: "any",
28) -> "any":
29 """
30 Store a given value in the attributes of a service.
31

32 :param service: The service instance for which the attribute value
33 is being allocated.
34 :param attribute_path: DictPath to the attribute of the service
35 instance in which the allocated value will be stored.
36 :param value: The value to store for this attribute of this service.
37 """
38

39 return value

Model

Baseline V2 allocation in the model:

Listing 19: main.cf (V2 allocation)

1 """
2 Inmanta LSM
3 :copyright: 2024 Inmanta
4 :contact: code@inmanta.com
5 :license: Inmanta EULA
6 """
7

8 import lsm
9 import lsm::fsm

10

11 entity TopLevelService extends lsm::ServiceEntity:
12 """
13 Top-level service to demonstrate V2 allocation.
14

15 :attr name: The name identifying the service instance.
16 :attr top_level_value: A read-only value, automatically assigned by the api.
17 """
18 string name
19 lsm::attribute_modifier name__modifier="rw"
20 int? top_level_value=null
21 lsm::attribute_modifier top_level_value__modifier="r"
22 end
23

(continues on next page)

152 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

24 # Uniquely identify top level services through their name attribute
25 index TopLevelService(name)
26

27 # Each top level service may have zero or more embedded services attached to it
28 TopLevelService.embedded_services [0:] -- EmbeddedService
29

30 entity EmbeddedService extends lsm::EmbeddedEntity:
31 """
32 An embedded service, attached to a TopLevelService instance.
33

34 :attr id: Identifier for this embedded service instance.
35 :attr embedded_value: A read-only value, automatically assigned by the api.
36 """
37 string id
38 lsm::attribute_modifier id__modifier="rw"
39 int? embedded_value=null
40 lsm::attribute_modifier embedded_value__modifier="r"
41 string[]? __lsm_key_attributes = ["id"]
42 end
43

44 # Uniquely identify embedded services through their id attribute
45 index EmbeddedService(id)
46

47 # Inherit parent entity's implementations
48 implement TopLevelService using parents
49

50 implement EmbeddedService using parents
51

52 # Create a binding to enable service creation through the service catalog
53 value_binding = lsm::ServiceEntityBindingV2(
54 service_entity="allocatorv3_demo::TopLevelService",
55 lifecycle=lsm::fsm::simple,
56 service_entity_name="value-service",
57 # V2 allocation requires passing the allocation_spec argument.
58 # The value_allocation is defined in the plugin:
59 allocation_spec="value_allocation",
60 service_identity="name",
61 service_identity_display_name="Name",
62)
63

64 # Collect all service instances
65 for assignment in lsm::all(value_binding):
66 attributes = assignment["attributes"]
67

68 service = TopLevelService(
69 instance_id=assignment["id"],
70 entity_binding=value_binding,
71 name=attributes["name"],
72 top_level_value=attributes["top_level_value"],
73 embedded_services=[
74 EmbeddedService(
75 **embedded_service
76)
77 for embedded_service in attributes["embedded_services"]
78],
79)

(continues on next page)

7.4. Allocation V3 153

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

80 end

When moving to V3 allocation, on the model side, call the allocators for the values requiring allocation:

Listing 20: main.cf (V3 allocation)

1 """
2 Inmanta LSM
3 :copyright: 2024 Inmanta
4 :contact: code@inmanta.com
5 :license: Inmanta EULA
6 """
7

8 import lsm
9 import lsm::fsm

10

11 entity TopLevelService extends lsm::ServiceEntity:
12 """
13 This service entity demonstrates how a single allocator
14 can be used for both a service entity and its embedded
15 entities.
16

17 :attr name: The name identifying the service instance.
18 :attr top_level_value: A read-only value, automatically assigned by the api.
19 """
20

21 string name
22 lsm::attribute_modifier name__modifier="rw"
23 int? top_level_value=null
24 lsm::attribute_modifier top_level_value__modifier="r"
25 end
26

27 # Uniquely identify top level services through their name attribute
28 index TopLevelService(name)
29

30 # Each top level service may have zero or more embedded services attached to it
31 TopLevelService.embedded_services [0:] -- EmbeddedService
32

33

34 entity EmbeddedService extends lsm::EmbeddedEntity:
35 """
36 An embedded service, attached to a TopLevelService instance.
37

38 :attr id: Identifier for this embedded service instance.
39 :attr embedded_value: A read-only value, automatically assigned by the api.
40 """
41 string id
42 lsm::attribute_modifier id__modifier="rw"
43 int? embedded_value=null
44 lsm::attribute_modifier embedded_value__modifier="r"
45 string[]? __lsm_key_attributes = ["id"]
46 end
47

48 # Uniquely identify embedded services through their id attribute
49 index EmbeddedService(id)
50

(continues on next page)

154 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

51 # Inherit parent entity's implementations
52 implement TopLevelService using parents
53

54 implement EmbeddedService using parents
55

56

57 # Create a binding to enable service creation through the service catalog
58 top_level_service_binding = lsm::ServiceEntityBindingV2(
59 service_entity="allocatorv3_demo::TopLevelService",
60 lifecycle=lsm::fsm::simple,
61 service_entity_name="top-level-service",
62 service_identity="name",
63 service_identity_display_name="Name",
64)
65

66

67 # Collect all service instances
68 for assignment in lsm::all(top_level_service_binding):
69 attributes = assignment["attributes"]
70 service = TopLevelService(
71 instance_id=assignment["id"],
72 entity_binding=top_level_service_binding,
73 name=attributes["name"],
74 # Allocator call
75 top_level_value=get_value(service, "top_level_value", value=1),
76 embedded_services=[
77 EmbeddedService(
78 id=embedded_service["id"],
79 # Allocator call
80 embedded_value=get_value(
81 service,
82 lsm::format(
83 "embedded_services[id={id}].embedded_value",
84 args=[],
85 kwargs=embedded_service,
86),
87 value=3,
88),
89)
90 for embedded_service in attributes["embedded_services"]
91],
92)
93 end

7.4. Allocation V3 155

Inmanta Documentation, Release 7.1.1.dev20240504011805

In-depth example

This is a more complex example ensuring uniqueness for an attribute across instances within a given range of
values:

Plugin

Baseline V2 allocation in the plugins directory:

Listing 21: __init__.py (V2 allocation)

1 """
2 Copyright 2024 Inmanta
3

4 Licensed under the Apache License, Version 2.0 (the "License");
5 you may not use this file except in compliance with the License.
6 You may obtain a copy of the License at
7

8 http://www.apache.org/licenses/LICENSE-2.0
9

10 Unless required by applicable law or agreed to in writing, software
11 distributed under the License is distributed on an "AS IS" BASIS,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 See the License for the specific language governing permissions and
14 limitations under the License.
15

16 Contact: code@inmanta.com
17 """
18

19 from inmanta_plugins.lsm.allocation import AllocationSpec, AnyUniqueInt, LSM_Allocator
20

21 # Define an AllocationSpec using the build-in LSM_Allocator allocator:
22 AllocationSpec(
23 "allocate_vlan",
24 LSM_Allocator(attribute="vlan_id", strategy=AnyUniqueInt(lower=50000,␣

↪→upper=70000)),
25)

This example will demonstrate how to use the get_first_free_integer allocator from the lsm module. Since
we are using a plugin that is already defined, no extra plugin code is required. We will simply call this plugin from
the model with the appropriate arguments.

Model

Baseline V2 allocation in the model:

Listing 22: main.cf (V2 allocation)

1 """
2 Inmanta LSM
3 :copyright: 2024 Inmanta
4 :contact: code@inmanta.com
5 :license: Inmanta EULA
6 """
7

8 import lsm
(continues on next page)

156 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

9 import lsm::fsm
10

11 entity VlanAssignment extends lsm::ServiceEntity:
12 """
13 This service entity demonstrates allocation using the LSM_Allocator
14 build in lsm.
15

16 :attr name: The name identifying the service instance.
17 :attr vlan_id: A read-only value, automatically assigned by the api.
18 """
19 string name
20 int? vlan_id=null
21 lsm::attribute_modifier vlan_id__modifier="r"
22 end
23

24 # Inherit parent entity's implementations
25 implement VlanAssignment using parents
26

27 # Create a binding to enable service creation through the service catalog
28 vlan_binding = lsm::ServiceEntityBinding(
29 service_entity="allocatorv3_demo::VlanAssignment",
30 lifecycle=lsm::fsm::simple,
31 service_entity_name="vlan-assignment",
32 # V2 allocation requires passing the allocation_spec argument.
33 # The allocate_vlan is defined in the plugin:
34 allocation_spec="allocate_vlan",
35)
36

37 # Collect all service instances
38 for assignment in lsm::all(vlan_binding):
39 VlanAssignment(
40 instance_id=assignment["id"],
41 entity_binding=vlan_binding,
42 **assignment["attributes"]
43)
44 end

When moving to V3 allocation, on the model side, call the allocators for the values requiring allocation:

Listing 23: main.cf (V3 allocation)

1 """
2 Inmanta LSM
3 :copyright: 2024 Inmanta
4 :contact: code@inmanta.com
5 :license: Inmanta EULA
6 """
7

8

9 import lsm
10 import lsm::fsm
11 import lsm::allocators
12

13

14 entity VlanAssignment extends lsm::ServiceEntity:
15 """

(continues on next page)

7.4. Allocation V3 157

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

16 This service entity demonstrates allocation using the get_first_free_integer
17 allocator build in lsm.
18

19 :attr name: The name identifying the service instance.
20 :attr vlan_id: A read-only value, automatically assigned by the api.
21 """
22

23 string name
24 int? vlan_id=null
25 lsm::attribute_modifier vlan_id__modifier="r"
26 end
27

28

29 # Inherit parent entity's implementations
30 implement VlanAssignment using parents
31

32 # Create a binding to enable service creation through the service catalog
33 vlan_binding = lsm::ServiceEntityBindingV2(
34 service_entity="allocatorv3_demo::VlanAssignment",
35 lifecycle=lsm::fsm::simple,
36 service_entity_name="vlan-assignment",
37)
38

39 # Collect all service instances
40 for assignment in lsm::all(vlan_binding):
41 service = VlanAssignment(
42 instance_id=assignment["id"],
43 entity_binding=vlan_binding,
44 name=assignment["attributes"]["name"],
45 # Allocator call
46 vlan_id=lsm::allocators::get_first_free_integer(
47 service,
48 "vlan_id",
49 range_start=50000,
50 range_end=70000,
51 # Retrieve the values already in use across services in the binding
52 # and pass them as a parameter to the allocator call
53 used_values=lsm::allocators::get_used_values(vlan_binding, "vlan_id"),
54)
55)
56 end

7.5 Embedded entities

In some situations, the attributes of a ServiceEntity contain a lot of duplication. Consider the following example:

Listing 24: main.cf

1 import lsm
2 import lsm::fsm
3

4 entity ServiceX extends lsm::ServiceEntity:
5 """
6 The API of ServiceX.

(continues on next page)

158 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

7

8 :attr service_id: A unique ID for this service.
9

10 :attr customer_router_name: The name of the router on the customer side.
11 :attr customer_router_system_ip: The system ip of the router on the customer␣

↪→side.
12 :attr customer_router_vendor: The vendor of the router on the customer side.
13 :attr customer_router_chassis: The chassis of the router on the customer side.
14

15 :attr provider_router_name: The name of the router on the provider side.
16 :attr provider_router_system_ip: The system ip of the router on the provider␣

↪→side.
17 :attr provider_router_vendor: The vendor of the router on the provider side.
18 :attr provider_router_chassis: The chassis of the router on the provider side.
19 """
20 string service_id
21

22 string customer_router_name
23 std::ipv4_address customer_router_system_ip
24 lsm::attribute_modifier customer_router_system_ip__modifier="rw+"
25 string customer_router_vendor
26 string customer_router_chassis
27

28 string provider_router_name
29 std::ipv4_address provider_router_system_ip
30 lsm::attribute_modifier provider_router_system_ip__modifier="rw+"
31 string provider_router_vendor
32 string provider_router_chassis
33 end
34

35 index ServiceX(service_id)
36

37 implement ServiceX using parents
38

39 binding = lsm::ServiceEntityBindingV2(
40 service_entity="__config__::ServiceX",
41 lifecycle=lsm::fsm::service,
42 service_entity_name="service_x",
43)
44

45 for instance in lsm::all(binding):
46 ServiceX(
47 instance_id=instance["id"],
48 entity_binding=binding,
49 **instance["attributes"],
50)
51 end

Specifying the router details multiple times, results in code that is hard to read and hard to maintain. Embedded
entities provide a mechanism to define a set of attributes in a separate entity. These attributes can be included
in a ServiceEntity or in another embedded entity via an entity relationship. The code snippet below rewrite the
above-mentioned example using the embedded entity Router:

Listing 25: main.cf

1 import lsm
(continues on next page)

7.5. Embedded entities 159

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

2 import lsm::fsm
3

4 entity ServiceX extends lsm::ServiceEntity:
5 """
6 The API of ServiceX.
7

8 :attr service_id: A unique ID for this service.
9 """

10 string service_id
11 end
12

13 index ServiceX(service_id)
14

15 ServiceX.customer_router [1] -- Router
16 ServiceX.provider_router [1] -- Router
17

18 entity Router extends lsm::EmbeddedEntity:
19 """
20 Router details.
21

22 :attr name: The name of the router.
23 :attr system_ip: The system ip of the router.
24 :attr vendor: The vendor of the router.
25 :attr chassis: The chassis of the router.
26 """
27 string name
28 std::ipv4_address system_ip
29 lsm::attribute_modifier system_ip__modifier="rw+"
30 string vendor
31 string chassis
32 end
33

34 index Router(name)
35

36 implement ServiceX using parents
37 implement Router using parents
38

39 binding = lsm::ServiceEntityBindingV2(
40 service_entity="__config__::ServiceX",
41 lifecycle=lsm::fsm::service,
42 service_entity_name="service_x",
43)
44

45 for instance in lsm::all(binding):
46 ServiceX(
47 instance_id=instance["id"],
48 entity_binding=binding,
49 service_id=instance["attributes"]["service_id"],
50 customer_router=Router(**instance["attributes"]["customer_router"]),
51 provider_router=Router(**instance["attributes"]["provider_router"]),
52)
53 end

Note, that the Router entity also defines an index on the name attribute.

160 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.5.1 Modelling embedded entities

This section describes the different parts of the model that are relevant when modelling an embedded entity.

Strict modifier enforcement

Each entity binding (lsm::ServiceEntityBinding and lsm::ServiceEntityBindingV2) has a feature flag
called strict_modifier_enforcement. This flag indicates whether attribute modifiers should be enforced re-
cursively on embedded entities or not. For new projects, it’s recommended to enable this flag. Enabling it can be
done in two different ways:

• Create a service binding using the lsm::ServiceEntityBinding entity and set the value of the attribute
strict_modifier_enforcement explicitly to true.

• Or, create a service binding using the lsm::ServiceEntityBindingV2 entity (recommended approach).
This entity has the strict_modifier_enforcement flag enabled by default.

The remainder of this section assumes the strict_modifier_enforcement flag is enabled. If your project has
strict_modifier_enforcement disabled for legacy reasons, consult the Section Legacy: Embedded entities
without strict_modifier_enforcement for more information.

Defining an embedded entity

The following constraints should be satisfied for each embedded entity defined in a model:

• The embedded entity must inherit from lsm::EmbeddedEntity.

• When a bidirectional relationship is used between the embedding entity and the embedded entity, the variable
name referencing the embedding entity should start with an underscore (See code snippet below).

• When a bidirectional relationship is used, the arity of the relationship towards the embedding entity should
be 0 or 1.

• Relation attributes, where the other side is an embedded entity, should be prefixed with an underscore when
the relation should not be included in the service definition.

• An index must be defined on an embedded entity if the relationship towards that embedded entity has an
upper arity larger than one. This index is used to uniquely identify an embedded entity in a relationship.
More information regarding this is available in section Attribute modifiers on a relationship.

• When an embedded entity is defined with the attribute modifier __r__, all sub-attributes of that embedded
entity need to have the attribute modifier set to read-only as well. More information regarding attribute
modifiers on embedded entities is available in section Attribute modifiers on a relationship.

The following code snippet gives an example of a bidirectional relationship to an embedded entity. Note that the
name of the relationship to the embedding entity starts with an underscore as required by the above-mentioned
constraints:

Listing 26: main.cf

1 import lsm
2 import lsm::fsm
3

4 entity ServiceX extends lsm::ServiceEntity:
5 """
6 The API of ServiceX.
7

8 :attr service_id: A unique ID for this service.
9 """

10 string service_id
11 end

(continues on next page)

7.5. Embedded entities 161

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

12

13 index ServiceX(service_id)
14

15 ServiceX.router [1] -- Router._service [1]
16

17 entity Router extends lsm::EmbeddedEntity:
18 """
19 Router details.
20

21 :attr name: The name of the router.
22 :attr system_ip: The system ip of the router.
23 :attr vendor: The vendor of the router.
24 :attr chassis: The chassis of the router.
25 """
26 string name
27 std::ipv4_address system_ip
28 lsm::attribute_modifier system_ip__modifier="rw+"
29 string vendor
30 string chassis
31 end
32

33 index Router(name)
34

35 implement ServiceX using parents
36 implement Router using parents
37

38 binding = lsm::ServiceEntityBindingV2(
39 service_entity="__config__::ServiceX",
40 lifecycle=lsm::fsm::service,
41 service_entity_name="service_x",
42)
43

44 for instance in lsm::all(binding):
45 ServiceX(
46 instance_id=instance["id"],
47 entity_binding=binding,
48 service_id=instance["attributes"]["service_id"],
49 router=Router(**instance["attributes"]["router"]),
50)
51 end

7.5.2 Attribute modifiers on a relationship

Attribute modifiers can also be specified on relational attributes. The -- part of the relationship definition can
be replaced with either lsm::__r__, lsm::__rw__ or lsm::__rwplus__. These attribute modifiers have the
following semantics when set on a relationship:

• __r__: The embedded entity/entities can only be set by an allocator. If an embedded entity has this attribute
modifier, all its sub-attributes should have the read-only modifier as well.

• __rw__: The embedded entities, part of the relationship, should be set on service instantiation. After cre-
ation, no embedded entities can be added or removed from the relationship anymore. Note that this doesn’t
mean that the attributes of the embedded entity cannot be updated. The latter is determined by the attribute
modifiers defined on the attributes of the embedded entity.

• __rwplus__: After service instantiation, embedded entities can be added or removed from the relationship.

162 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

When the relationship definition contains a -- instead of one of the above-mentioned keywords, the default attribute
modifier __rw__ is applied on the relationship. The code snippet below gives an example on the usage of attribute
modifiers on relationships:

Listing 27: main.cf

1 import lsm
2 import lsm::fsm
3

4 entity ServiceX extends lsm::ServiceEntity:
5 """
6 The API of ServiceX.
7

8 :attr service_id: A unique ID for this service.
9 """

10 string service_id
11 end
12

13 index ServiceX(service_id)
14

15 ServiceX.primary [1] -- SubService
16 ServiceX.secondary [0:1] lsm::__rwplus__ SubService
17

18 entity SubService extends lsm::EmbeddedEntity:
19 """
20 :attr ip: The IP address of the service
21 """
22 std::ipv4_address ip
23 end
24

25 index SubService(ip)
26

27 implement ServiceX using parents
28 implement SubService using parents
29

30 binding = lsm::ServiceEntityBindingV2(
31 service_entity="__config__::ServiceX",
32 lifecycle=lsm::fsm::service,
33 service_entity_name="service_x",
34)
35

36 for instance in lsm::all(binding):
37 service_x = ServiceX(
38 instance_id=instance["id"],
39 entity_binding=binding,
40 service_id=instance["attributes"]["service_id"],
41 primary=SubService(**instance["attributes"]["primary"]),
42)
43 if instance["attributes"]["secondary"] != null:
44 service_x.secondary=SubService(**instance["attributes"]["secondary"])
45 end
46 end

In order to enforce the above-mentioned attribute modifiers, the inmanta server needs to be able to determine
whether the embedded entities, provided in an attribute update, are an update of an existing embedded entity or a
new embedded entity is being created. For that reason, each embedded entity needs to define the set of attributes
that uniquely identify the embedded entity if the upper arity of the relationship is larger than one. This set of
attributes is defined via an index on the embedded entity. The index should satisfy the following constraints:

7.5. Embedded entities 163

Inmanta Documentation, Release 7.1.1.dev20240504011805

• At least one non-relational attribute should be included in the index.

• Each non-relational attribute, part of the index, is exposed via the north-bound API (i.e. the name of the
attribute doesn’t start with an underscore).

• The index can include no other relational attributes except for the relation to the embedding entity.

The attributes that uniquely identify an embedded entity can never be updated. As such, they cannot have the
attribute modifier __rwplus__.

If multiple indices are defined on the embedded entity that satisfy the above-mentioned constraints, one index needs
to be selected explicitly by defining the string[]? __lsm_key_attributes attribute in the embedded entity.
The default value of this attribute should contain all the attributes of the index that should be used to uniquely
identify the embedded entity.

The example below defines an embedded entity SubService with two indices that satisfy the above-mentioned
constraints. The __lsm_key_attributes attribute is used to indicate that the name attribute should be used to
uniquely identify the embedded entity.

Listing 28: main.cf

1 import lsm
2 import lsm::fsm
3

4 entity ServiceX extends lsm::ServiceEntity:
5 """
6 The API of ServiceX.
7

8 :attr service_id: A unique ID for this service.
9 """

10 string service_id
11 end
12

13 index ServiceX(service_id)
14

15 ServiceX.primary [1] -- SubService
16 ServiceX.secondary [0:1] lsm::__rwplus__ SubService
17

18 entity SubService extends lsm::EmbeddedEntity:
19 """
20 :attr name: The name of the sub-service
21 :attr ip: The IP address of the service
22 """
23 string name
24 std::ipv4_address ip
25 string[]? __lsm_key_attributes = ["name"]
26 end
27

28 index SubService(name)
29 index SubService(ip)
30

31 implement ServiceX using parents
32 implement SubService using parents
33

34 binding = lsm::ServiceEntityBindingV2(
35 service_entity="__config__::ServiceX",
36 lifecycle=lsm::fsm::service,
37 service_entity_name="service_x",
38)
39

(continues on next page)

164 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

40 for instance in lsm::all(binding):
41 service_x = ServiceX(
42 instance_id=instance["id"],
43 entity_binding=binding,
44 service_id=instance["attributes"]["service_id"],
45 primary=SubService(**instance["attributes"]["primary"]),
46)
47 if instance["attributes"]["secondary"] != null:
48 service_x.secondary=SubService(**instance["attributes"]["secondary"])
49 end
50 end

If the upper arity of the relationship towards an embedded entity is one, it’s not required to define an index on the
embedded entity. In that case, the embedded entity will always have the same identity, no matter what the values
of its attributes are. This means that there will be no difference in behavior whether the attribute modifier is set to
rw or rw+. If an index is defined on the embedded entity, the attribute modifiers will be enforced in the same way
as for relationships with an upper arity larger than one.

7.5.3 Legacy: Embedded entities without strict modifier enforcement

When the strict_modifier_enforcement flag is disabled on a service entity binding, the attribute modifiers
defined on embedded entities are not enforced recursively. In that case, only the attribute modifiers defined on top-
level service attributes are enforced. The following meaning applies to attribute modifiers associated with top-level
relational attributes to embedded entities:

• __r__: The embedded entity/entities can only be set by an allocator.

• __rw__: The embedded entity/entities should be set on service instantiation. Afterwards the relationship ob-
ject cannot be altered anymore. This means it will be impossible to add/remove entities from the relationship
as well as modify any of the attributes of the embedded entity in the relationship.

• __rwplus__: After service instantiation, embedded entities can be updated and embedded entities can be
added/removed from the relationship.

The modelling rules that apply when the strict_modifier_enforcement flag is disabled are less strict com-
pared to the rules defined in Defining an embedded entity. The following changes apply:

• No index should be defined on an embedded entity to indicate the set of attributes that uniquely identify that
embedded entity. There is also no need to set the __lsm_key_attributes attribute either.

• When the attribute modifier on an embedded entity is set to __r__, it’s not required to set the attribute
modifiers of all sub-attribute to read-only as well.

7.6 Inter-Service Relations

In some situations, it might be useful to specify relations between services. In the model, an inter-service-relation
is indicated using a relation with the lsm::__service__ annotation. One can also specify Attribute modifiers on
a relationship. Consider the following example:

Listing 29: main.cf

1 import lsm
2 import lsm::fsm
3

4 entity Parent extends lsm::ServiceEntity:
5 """
6 Definition Parent

(continues on next page)

7.6. Inter-Service Relations 165

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

7

8 :attr name: The name of the parent
9 """

10 string name
11 end
12

13 index Parent(instance_id)
14

15 Child.parent_entity [1] lsm::__service__, lsm::__rwplus__ Parent
16

17 entity Child extends lsm::ServiceEntity:
18 """
19 Definition Child
20

21 :attr name: The name of the child
22 """
23 string name
24 end
25

26 index Child(instance_id)
27

28 implement Parent using parents
29 implement Child using parents
30

31 binding_parent = lsm::ServiceEntityBinding(
32 service_entity="__config__::Parent",
33 lifecycle=lsm::fsm::service_with_delete_validate,
34 service_entity_name="parent_service",
35)
36

37 binding_child = lsm::ServiceEntityBinding(
38 service_entity="__config__::Child",
39 lifecycle=lsm::fsm::service_with_delete_validate,
40 service_entity_name="child_service",
41)

Here, an inter-service-relation is indicated for service Child in field parent_entity with arity 1 and modifier
rw+.

7.6.1 delete-validating state

Using inter-service-relations can introduce some difficulties with deleting of instances. If we consider the previous
example, deleting an instance of a Parent can make the configuration invalid if the instance is part of an inter-
service-relation with a Child instance. The solution to deal with this, is to use an intermediate validation state.
Some pre-constructed lifecycles also exist in the lsm module with additional validation states. Those lifecycles
are:

• service_with_delete_validate

• service_with_deallocation_and_delete_validate

• simple_with_delete_validate

• simple_with_deallocation_v2_and_delete_validate

and use following validation states:

• delete_validating_creating

• delete_validating_failed

166 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

• delete_validating_up

• delete_validating_update_failed

To create a custom validation state, create a State with the validate_self attribute set to null.

If the compilation succeeds the deletion is accepted, if it fails, this means we are trying to delete an instance that is
still in use in an inter-service relation. Lsm can then accordingly move the state of the service back to the original
state or proceed with the delete operation.

7.7 Partial Compiles

Partial compilation is an approach to speed up compilation when the Service Inventory contains many instances.

Ordinarily, LSM re-compiles all instances on every update. This means that as the inventory grows, the compiles
become slower. Partial compiles allow LSM to re-compile only those instances that are relevant to the current
service instance, avoiding any slowdown.

7.7.1 Implementation guidelines

1. for every lsm::ServiceEntity,

1. make sure to collect all resources it contains in the relation owned_resources

2. make sure to always select the parent implementations (implement . . . using parents)

2. for every Inter Service Relation

1. indicate if this is the relation to the owner by setting lsm::ServiceEntityBinding.
relation_to_owner and lsm::ServiceEntityBinding.owner.

7.7.2 Supported scenarios

Partial compiles are possible when

1. Service Instances are unrelated: service instances don’t share any resources and don’t depend on each other
in any way. This only requires correctly setting owned_resources.

2. Services form groups under a common owner.

• Instances within the group can freely depend on each other and share resources, but nothing is shared
across groups.

• One specific instance is designated as the common owner of the group.

• Instances can not be moved to another group. The model should prevent this type of update.

• This additionally requires indicating what the owner of any service is, by set-
ting lsm::ServiceEntityBinding.owner and lsm::ServiceEntityBinding.
relation_to_owner. This does not immediately have to be the root owner, the ownership
hierarchy is allowed to form a tree with intermediate owners below the root owner.

3. Service instances and groups can depend on shared resources, that are identical for all service instances and
groups.

4. Any combination of the above

7.7. Partial Compiles 167

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.7.3 How it works for unrelated services

For unrelated services, LSM expands on the normal resources set based partial compiles by automatically creating
a single resource set for each service instance.

To add resources to the instance’s resource set, simply add them to its lsm::ServiceBase.owned_resources
relation and make sure to select the parents implementation for your service entities. LSM will then make sure
to populate the resource set and to correctly trigger related compiles and exports.

7.7.4 Example with Inter Service Relations

As an example, consider the following model for managing ports and routers. Both are independent services, but
a port can only be managed in combination with its router and all its siblings. (This is not in general true, we often
manage ports without managing the entire router, but we use it as an example.)

This model is not much different from normal Inter Service Relations, except for lines 29, 38, 58-59.

Listing 30: main.cf

1 import lsm
2 import lsm::fsm
3 import std::testing
4

5 entity Router extends lsm::ServiceEntity:
6 """
7 A service for managing routers
8 """
9 string mgmt_ip

10 end
11

12 index Router(instance_id)
13

14 entity Port extends lsm::ServiceEntity:
15 """
16 A service for managing ports on routers
17 """
18 string name
19 end
20

21 index Port(instance_id)
22

23 Port.router [1] lsm::__service__, lsm::__rwplus__ Router
24 """ An Inter Service Relation between Router and Port"""
25

26 implementation router_config for Router:
27 """ Add a dummy resource to the router to represent actual configuration """
28 self.resources += std::testing::NullResource(name=self.mgmt_ip)
29 self.owned_resources += self.resources # We own all our resources and nothing else
30 end
31

32 implementation port_config for Port:
33 """ Add a dummy resource to the Port to represent actual configuration """
34 self.resources += std::testing::NullResource(
35 name="{{self.router.mgmt_ip}}-{{self.name}}",
36 requires = self.router.resources
37)
38 self.owned_resources += self.resources # We own all our resources and nothing else
39 end

(continues on next page)

168 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

40

41 implement Router using router_config, parents
42 implement Port using port_config, parents
43

44 # Service binding for Router
45 binding_router = lsm::ServiceEntityBinding(
46 service_entity="__config__::Router",
47 lifecycle=lsm::fsm::simple_with_delete_validate,
48 service_entity_name="router",
49 service_identity="mgmt_ip",
50)
51

52 # Service binding for Port
53 binding_port = lsm::ServiceEntityBinding(
54 service_entity="__config__::Port",
55 lifecycle=lsm::fsm::simple_with_delete_validate,
56 service_entity_name="port",
57 service_identity="name",
58 relation_to_owner="router", # required for Partial Compile
59 owner=binding_router, # required for Partial Compile
60)
61

62 # Normal Service unrolling
63 for instance in lsm::all(binding_router):
64 Router(
65 instance_id = instance["id"],
66 entity_binding = binding_router,
67 **instance["attributes"],
68)
69 end
70

71 for instance in lsm::all(binding_port):
72 Port(
73 instance_id = instance["id"],
74 entity_binding = binding_port,
75 name = instance["attributes"]["name"],
76 router = Router[instance_id=instance["attributes"]["router"]]
77)
78 end

7.7.5 How it works

To better understand how this works, there are two things to consider:

1. how to divide the resources into resource sets

2. how to get the correct instances into the model

7.7. Partial Compiles 169

Inmanta Documentation, Release 7.1.1.dev20240504011805

Resource sets

The key mechanism behind partial compiles are ResourceSets: all resources in the desired state are divided into
groups. When building a new desired state, instead of replacing the entire desired state, we only replace a specific
ResourceSet. Resources in a ResourceSet can not depend on Resources in other ResourceSets.

To make this work, we have to assign every Service Instance to a ResourceSet, such that the set has no relations
to any other ResourceSet.

In practice, we do this by putting all Resources in the ResourceSet of the owning entity.

ResourceSet for Router r1(id=0) ResourceSet for Router r2(id=3)

NullResource(name=r1)

LifecycleTransfer(id=0)NullResource(name=r1-eth0)

LifecycleTransfer(id=2)

NullResource(name=r2)

LifecycleTransfer(id=3)NullResource(name=r2-eth0)

LifecycleTransfer(id=4)

Fig. 1: Resource Sets for the Router example with 2 Routers with each 1 port. Arrows represent the requires
relation.

In addition to the ResourceSets used by individual services, there are also Resources that are not in any set.
These Resources can be shared by multiple services, with the limitation that any compile that produces them, has
to produce them exactly the same. For more information see Partial Compiles.

Service Instance Selection

To have efficiency gains when recompiling, it is important to only build the model for all Service Instances that are
in the ResourceSet we want to update and nothing else.

This selection is done automatically within lsm::all, based on the relations set between the service bindings as
explained above.

The underlying mechanism is that when we recompile for a state change on any Service Instance, we first search
its owner by traversing lsm::ServiceEntityBinding.relation_to_owner until we reach a single owner.
Then we traverse back down the lsm::ServiceEntityBinding.relation_to_owner until we have all chil-
dren. lsm::all will only return these children and nothing else.

7.7.6 Limitations

1. When doing normal compiles, the model can very effectively find conflicts between services (e.g.
using indexes), because it has an overview of all instances.

When using partial compile, conflicts between groups can not be detected, because the compiler never
sees them together. This means that the model must be designed to be conflict free or rely on an
(external) inventory to avoid conflicts. This is why we always advice to run models in full compile
mode until performance becomes an issue: it gives the model time to mature and to detect subtle
conflicts.

2. Complex topologies (with multiple parents or cross-relations) are currently not supported out of the
box.

However, complex interdependencies between service instances are often an operation risk as well.
Overly entangled services are hard to reason about, debug and fix. While it is possible to develop more

170 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

complex topologies using the guidelines set out in Partial Compiles, it may be preferable to simplify
the service design for less interdependence.

For more details, see limitation section in the core documentation

7.7.7 Further Reading

• Partial Compiles

7.8 Troubleshooting

This page provides information on how to troubleshoot certain issues with Inmanta LSM in an efficient way.

7.8.1 Deployment failure

This section describes what should be done when one of the resources of a certain service instance fails. First we
explain how deployment failure can be detected. The second section describes how a root cause analysis can be
done via the Web Console, the CLI and the API.

Detect deployment failure

The easiest way to detect deployment failure is by looking at the state of a service instance. When the lifecycle of
a service instance is modelled in such a way that the service instance enters a certain state when failure occurs, it
will be easy to detect failure by looking at the state of the service instance. In the figure below, the service instance
entered the failure state which indicates deployment failure.

Determine the root cause of the deployment failure

The root cause of a deployment failure can be examined via three different interfaces: the Web Console, the Inmanta
client and the rest API. Each of the sections below discuss the procedure for a specific interface.

Web Console

The resources that should be deployed to trigger a resource-based transfer for a specific service instance, can be
obtained via the inventory of that service instance. The figure below shows an entry in the service inventory which
contains service instances of the service type vlan-assignment. The service instance is in the state failed
which indicates that a deployment failure has occurred.

7.8. Troubleshooting 171

Inmanta Documentation, Release 7.1.1.dev20240504011805

Click on the Show Resources button to get an overview of the different resources which are part of the resource-
based transfer. This overview shows each resource, together with its deployment state. The example below only
contains a single resource with the deployment state failed.

When a resource ends up in the failed state, more information on the root cause of the failure can be obtained
via the Jump To Details button. This button opens the Inmanta Dashboard and shows all the details of the failed
resource, including the action log. The figure below shows the action log for the failed resource.

Each action in the action log can contains several log entries. Open the logs for the latest deploy action by clicking
on the arrow in front of the resource action. These log entries are produced by the orchestrator itself as well as by
the handler performing the deploy operation for that specific resource. The figure below shows the log entries for
the deploy action.

172 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

The log entry with the log level ERROR gives information about what went wrong during the deployment of the
resource. Click on the magnifying glass in front of the log entry to get a full stack trace of the error.

7.8. Troubleshooting 173

Inmanta Documentation, Release 7.1.1.dev20240504011805

Inmanta client

The lsm_services_diagnose API method returns a diagnosis for a given service instance. It contains among others
an overview of errors during the validation compile that caused the rejection.

Rest API

The http://<host>:<port>/lsm/v1/service_inventory/<service_entity_name>/<instance_id>/diagnose endpoint
returns a diagnosis similar to the one described in the previous section.

7.8.2 Validation failure

If a service instance does not move through the expected lifecycle states but instead enters a rejected state, this
means a validation failure occurred. This section describes how to detect and find the cause for validation failures.

Detect validation failure

When a validation failure occurs for a service instance, it will enter a rejected state. Each lifecycle transfer may have
an associated rejected state, the convention is to include “rejected” in the name of the state. All lifecycles defined
in this module follow this convention. Example states are rejected, update_rejected and update_rejected_failed.

Determine the cause of the validation failure

This section documents two ways to find the exception that caused the validation compile to fail. The first uses the
Inmanta client from Python code, the second uses the REST API directly. The general procedure is the following:
first, find the latest event (according to the timestamp field) for the current version with a compile id. Then use that
id to pull in the compile report. Then, for the error message look at the report’s compile data. For a trace look in
the report for the error stream for the compile stage that failed (return code other than zero).

Inmanta client

The lsm_services_diagnose API method returns a diagnosis for a given service instance. It contains among others
an overview of relevant resource failures.

Rest API

The http://<host>:<port>/lsm/v1/service_inventory/<service_entity_name>/<instance_id>/diagnose endpoint
returns a diagnosis similar to the one described in the previous section.

7.9 Limitations

This section describes some limitations of the lsm module.

174 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.9.1 A ServiceEntity cannot contain resource in the undefined state

The resources attribute of a ServiceEntity cannot contain resources which are in the deployment state
undefined. If the resources attribute does contain such a resource, the lifecycle state machine will get stuck in
its current state and the deployment of the service will hang.

7.10 Lifecycle

7.10.1 Lifecycle State Labels

Each state in the lifecycle has a label attribute, which is used by the UI to mark service instances in these states
visually, according to the labels.

The possible values are:

• info: This is the default label, it represents states the instance goes through normally, which don’t require
special attention.

• success: This label should be used for states when there are no problems with the instance, and it’s stable in
this state.

• warning: The warning label should be applied for states where the instance requires attention, because it
might have run into some problems.

• danger: The danger label represents the situation when there are serious problems with the instance.

7.10.2 Lifecycle construction

When creating a new lifecycle, it is important to know where validation states should be added in order to avoid
invalid lifecycles.

Creating/deleting and exporting/not-exporting states

If services are guaranteed to be independent, the validation states can be ommited. If one service depends on
another, they could conflict when creating/exporting. If an Entity Child has an inter_service_relation to another
Entity Parent, than the Parent instance should be created first. Otherwise Child will have a dangling reference.
Another way they could come into conflict is if they use any kind of identifier: Multiple instances could be created
with the same identifier. Conflicts could also arise when deleting/not-exporting: If the Parent instance used in
a Child is deleted, Child will have a reference to something that no longer exist, which will result in an invalid
desired state (see delete-validating state).

7.11 Attribute and entity metadata

This section describes the metadata fields that can be associated with service entities, embedded entities and its
attributes and how these metadata fields can be set in the model.

7.10. Lifecycle 175

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.11.1 Attribute description

Definition

The attribute description metadata is useful to provide textual information about attributes. This text will be dis-
played in the service catalog view of the web console.

Usage

To add a description to an attribute, create a metadata attribute with type string and whose name is the attribute’s
name extended with the suffix “__description”.

Example

entity Interface :
string interface_name
string interface_name__description="The name of the interface"

end

A detailed example can be found here.

7.11.2 Attribute modifier

Definition

Adding the attribute modifier metadata lets the compiler know if:

• This attribute should be provided by an end-user or set by the orchestrator.

• This attribute’s value is allowed to change after creation.

Usage

The modifier itself is defined like a regular attribute, with a few caveats:

• it should be of type lsm::attribute_modifier.

• its name should extend the decorated attribute’s name with the suffix “__modifier”.

• its value should be one of the supported values.

Example

entity Interface :
string interface_name
lsm::attribute_modifier interface_name__modifier="rw+"

end

A detailed example can be found here.

176 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

Supported values

• r: This attribute can only be set by an allocator.

• rw: This attribute can be set on service instantiation. It cannot be altered anymore afterwards.

• rw+: This attribute can be set freely during any phase of the lifecycle.

Attributes modifiers can also be specified on relational attributes.

7.11.3 Annotations

Definition

Annotations are key-value pairs that can be associated with an entity (service entity or embedded entity) or an
attribute (simple attribute or relational attribute). These annotations don’t influence the behavior of LSM or the
Inmanta Service Orchestrator itself, but are intended to pass meta data to other components. For example, they can
be used to pass on visualization meta-data to the the web-console to improve the user-experience.

Annotations on entities

Annotations can be attached to an entity using the __annotations attribute. This attribute has the type dict and
requires a default value that defines the annotations. Each key-value pair in the dictionary contains respectively the
name and the value of the annotation. The value of an annotation can be any of the simple types (string, float, int,
bool), lists and dicts. Note: These values are the default values of an attribute, therefore they must be constants
and cannot include varables, attribute access or plugins.

Example

The example below illustrates how the annotation annotation=value can be set on on a service entity. Annota-
tions can be set on embedded entities in the same way.

entity Interface extends lsm::ServiceEntity:
string interface_name
dict __annotations = {"annotation": "value"}

end

Annotations on simple attributes

Annotations can be attached to simple (non-relational) attributes by defining an attribute of type dict, with a name
<attribute>__annotations, where <attribute> is the name of the attribute the annotations belong to. This
attribute needs a default value containing the attributes. The values of the elements in the dictionary must be
strings.

7.11. Attribute and entity metadata 177

Inmanta Documentation, Release 7.1.1.dev20240504011805

Example

The example below shows how the annotation annotation=value is set on the attribute interface_name. An-
notations can be set on simple attributes of embedded entities in the same way.

entity Interface extends lsm::ServiceEntity:
string interface_name
dict interface_name__annotations = {"annotation": "value"}

end

Annotations on relational attributes

Annotations can be attached to a relational attribute by replacing the -- part of the relationship definition with
an instance of the lsm::RelationAnnotations entity. This entity has a dict attribute annotations that repre-
sents the annotations that should be set on the relational attribute. The values of this dictionary must be strings.
By convention the name of the lsm::RelationAnnotations instance should be prefixed and suffixed with two
underscores. This improves the readability of the relationship definition.

Example

The example below illustrates how the annotation annotation=value can be attached to the relational attribute
ports.

entity Router extends lsm::ServiceEntity:
string name

end

entity Port extends lsm::EmbeddedEntity:
number id

end

__annotations__ = lsm::RelationAnnotations(
annotations={"annotation": "value"}

)
Router.ports [0:] __annotations__ Port._router [1]

7.12 Validation types

By default, the compiler validates the types of the attributes of a service instance. For certain types, type checking
is done at the API level, prior to compilation. This provides a more interactive feedback to the operator since
validation is performed before firing up the compile process. Type validation is done at the API level for the
following types:

• Primitive types: int, number, string, bool, dict and list.

• Certain types defined via the typedef statement.

The std module already defines many commonly used types for which validation is performed at the API level (e.g.,
ip, url, date, . . .). The section below defines for which typedef statement validation is done at the API level.

178 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.12.1 Supported forms

Enumeration

Syntax

typedef <attr> as <type> matching self in <enumeration>

Examples

typedef colour as string matching self in ["red", "green", "blue"]
typedef bundle_size as number matching self in [1, 10, 100]

Regular expressions

Syntax

typedef <attr> as <type> matching <pattern>

Example

typedef lowercase as string matching /^[a-z]+$/

Number constraints

Syntax

typedef <attr> as <type> matching self <cmp> <value> [(or | and) <comparison_2> ...]
typedef <attr> as <type> matching <value> <cmp> self [(or | and) <comparison_2> ...]

Where:

• <cmp> is one of <, <=, >, >=

• <value> is any number

Example

typedef port_number as int matching self > 1023 and self <= 65535

7.12. Validation types 179

Inmanta Documentation, Release 7.1.1.dev20240504011805

std::validate_type()

The std::validate_type() function allows for finer grained type definition.

These three forms are supported:

typedef <attr> as <type> matching std::validate_type(<parameters>)
typedef <attr> as <type> matching std::validate_type(<parameters>) == true
typedef <attr> as <type> matching true == std::validate_type(<parameters>)

Example

typedef my_type as int matching true == std::validate_type("pydantic.conint", self, {
↪→"gt": 0, "lt": 10})

7.13 Service Identity

For each Service Entity, it’s possible to define a Service Identity. This is an attribute of the Service, and it
can be used to identify and query the instances belonging to this service, in case using the default UUIDs is not
desirable.

7.13.1 Specifying an identity

In order to use a Service Identity, the service_identity field of a Service Entity should be set, and point
to an attribute of said Service. It’s also possible to define a display name for a service entity (using the
service_identity_display_name field), which can be used by the frontend to show these values.

There are certain rules concerning Service Identities. The attribute, that is used as an identity:

• should have an rw modifier

• should not be optional

• its type should be either string or int (or their constrained variants)

• its values should be unique (with regards to the service entity and environment)

An example of how the identity can be defined in the model:

entity TestService extends lsm::ServiceEntity:
string service_id

end

implement TestService using std::none

binding = lsm::ServiceEntityBinding(
service_entity="__config__::TestService",
lifecycle=lsm::fsm::simple,
service_entity_name="{service_entity}",
service_identity="service_id",
service_identity_display_name="Service ID"

)

180 Chapter 7. Inmanta Lifecycle Service Manager

../../reference/modules/std.html#std.validate_type

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.13.2 Adding service identity to an existing entity

Adding a Service Identity to an existing Service is possible, with certain constraints:

• It’s not allowed to change or delete an existing identity

• If the values of a proposed identity are not unique with regards to the existing instances, the update will be
rejected

7.13.3 Querying service instances using their service identity attribute

To use the service identity for querying, it can be specified as the service_id parameter to for the GET instance
endpoint according to the pattern <service_identity>=<identity_value>, instead of a UUID. For example:
/service_inventory/test_entity/order_id=1234

7.14 State Transfer Transactional Behavior

This document provides the highlights of how the transactional and logging behavior is intended and implemented.

Trigger Validate Compile Server State Transfer

TX

Compile Done

TX

TX

LOG On Err

LOG

LOG

LOG

LOG

TX

TX

_transfer

_transfer

Three important aspects are taken into account

7.14. State Transfer Transactional Behavior 181

Inmanta Documentation, Release 7.1.1.dev20240504011805

1. API behavior: Async style, a valid request is accepted with a 200 return but this does not imply a successful
transfer. To verify if a transfer is successful, study the event log.

2. Event Log: The event log is the primary mechanism to provide feedback to operators/users. It logs all triggers
and all state transfers. Errors while starting a validation are also logged, as they abort the flow.

3. Transactions: the state transfer itself is a transaction, the associated event logging is performed in a parent
transaction.

• In case of success, both the log line and state transfer are present.

• In case of transition failure, the sub transaction is aborted and failure is logged in the parent transaction.

• In case of orchestrator failure, either log and state transfer are present or completely absent.

In the scenario, where the server crashes after an api_set_state has returned success, but before it was executed,
the api_set_state operation is lost. The log needs to be checked to ensure transfer

7.14.1 Self transitions

A self transition with no action is not executed, as the state is not changed in any way.

If we would make self transition increment the state version, we would get stuck in a ‘recompile storm’ by resource
based transaction that are triggered by repair runs.

7.14.2 Auto transition

Auto transitions are triggered after the state transfer transaction is committed. If the server fails right after the
transfer, it is lost.

At server startup, the auto transitions are recovered. (i.e. all instances are checked)

This recovery has to take into account that validations are ALSO recovered. To this effect, the validation correlation
ID on auto transfers are uuid3(instanceid, intancestateversion)

7.14.3 Operations

promote is only valid if there is a candidate rollback is only valid if there is a rollback set

7.14.4 Logging

For each event

1- event arrival is logged if the event is accepted (i.e. returns 200)

7.15 Service catalog

The service catalog contains all defined service entities. A service entity models a service offered by the infras-
tructure. A service entity is the definition of the service: its attributes and the lifecycle of the service. A service
entity is created by marking an inmanta entity in a service model as a service entity and associate it with a service
lifecycle. The orchestration layer will take care of defining and maintaining the definition in the service catalog.

A service entity models the following properties for a service:

• The name of the service entity

• A list of attributes that have a name, a type (number, string, . . .) and a modifier. This modifier
determines whether the attribute is:

– r / readonly: readonly from the client perspective and allocated server side by the LSM

182 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

– rw / read-write: Attributes can be set at creation time, but are readonly after the creation

– rw+ / read-write always: Attribute can be set at creation time and modified when the service state
allows it

• The State machine that defines the lifecycle of the service.

For each service entity the lifecycle service manager will create an REST API endpoint on the service inventory
to perform create, read, update and delete (CRUD) service instances of service entities.

7.15.1 Creating service entities

Service entities are entities that extend lsm::ServiceEntity We define attributes for the service entity the same
way as for entities. We can also define a modifier for the attribute. If no modifier is defined for an attribute, it will
be rw by default. Here is an example of an entity definition where the modifier of the address attribute is set to
rw+.

1 import lsm
2 import lsm::fsm
3 import ip
4

5 entity InterfaceIPAssignment extends lsm::ServiceEntity:
6 """
7 Interface details.
8

9 :attr service_id: A unique ID for this service.
10

11 :attr router_ip: The IP address of the SR linux router that should be␣
↪→configured.

12 :attr router_name: The name of the SR linux router that should be configured.
13 :attr interface_name: The name of the interface of the router that should be␣

↪→configured.
14 :attr address: The IP-address to assign to the given interface.
15 """
16 string service_id
17

18 string router_ip
19 string router_name
20 string interface_name
21

22 string address
23 lsm::attribute_modifier address__modifier="rw+"
24

25 end
26

27 index InterfaceIPAssignment(service_id)
28

29 implement InterfaceIPAssignment using parents

We also need to add a lifecycle and a name to the service. This is done by creating an instance of the
ServiceEntityBinding entity:

25 binding = lsm::ServiceEntityBindingV2(
26 service_entity="__config__::InterfaceIPAssignment",
27 lifecycle=lsm::fsm::service,
28 service_entity_name="service_simple",
29)

It’s also possible to define a service identity for a service. For more information, see Service Identity.

7.15. Service catalog 183

Inmanta Documentation, Release 7.1.1.dev20240504011805

7.16 Service Inventory

The service inventory provides an inventory with all service instances per service entity defined in the catalog. The
inventory provides operations to create and delete the service instance and to update the attributes of the service
instance. Additionally, it governs the lifecycle of the instance as defined in the lifecycle registered in the service
catalog.

7.16.1 CRUD operations

The service inventory exposes CRUD operations on service instances in the inventory through a RESTful API:

• GET /lsm/v1/service_inventory/<service_entity>: List all instances of a service entity

• POST /lsm/v1/service_inventory/<service_entity>: Create a new service entity

• GET /lsm/v1/service_inventory/<service_entity>/<service_id>: Get the current state of the
service instance with id service_id

• PATCH /lsm/v1/service_inventory/<service_entity>/<service_id>: Update the attributes of
the service instance with id service_id

• DELETE /lsm/v1/service_inventory/<service_entity>/<service_id>: Delete the service in-
stance with id service_id

• POST /lsm/v1/services/<service_type>/<service_id>/state: Request a state transfer for the ser-
vice instance with id service_id

The state machine attached to the lifecycle will determine whether the API call is successful or not.

7.17 Lifecycle Manager

7.17.1 State machine

The lifecycle of service instance is governed by a state machine. A state machine is represented as a directed graph:
the nodes represent the different service states and the edges represent the possible transfers that are allowed. The
states determine how the service instance is treated in the orchestration engine and the transfers determine what
operations are possible on a service instance.

Each service instance is in a state defined in the lifecycle state machine attached to the service entity. The state de-
fines how the orchestration engine handles that specific service instance in its refinement process. The orchestration
engine can refine a full orchestration model in two modes:

• validation: It validates the orchestration model but does not generate a resource model for the resource
controller.

• production: It validates the orchestration model and generates a resource model that the resource controller
deploys and enforces on the managed infrastructure.

The value of the model_state attribute of the state determines how the service instance is handled by the orches-
tration engine:

• inactive: never include this instance in the orchestration model.

• candidate: include the instance in validation mode. In validation mode the candidate set of attributes are
used. Only this candidate and all designed and active instances are included in the orchestration model.

• designed: this indicates a candidate is accepted and is queued to become active in the model. It is included
in validation mode but its resources are not yet pushed to the resource controller. The orchestration engine
uses the candidate attribute set.

• active: include in both modes (validate and production). The orchestration engine uses the active attribute
set.

184 Chapter 7. Inmanta Lifecycle Service Manager

Inmanta Documentation, Release 7.1.1.dev20240504011805

Once a service instance goes to active the lifecycle should also support updates. A service instance has three sets
of attributes to support this: candidate, active and rollback. When the service instance is in candidate and designed
mode but it has attributes in the active set, they are included in production mode with their active attribute set. The
target_operation and error_operation action on state transfers control the contents of these attribute sets. These
operations are discussed later on.

Transfers between states determine how the lifecycle of the service instance reacts on external events. Each transfer
has a source state, a target state and an error state. The following events can trigger a state transfer:

• the creation of the service instance: The state of the new service instance is set to the start state defined in
the state machine. Set attributes provided with the API call are stored in the candidate_attributes set of the
instance.

• auto: This transfer is automatically performed when the lifecycle arrives in the source state. Auto transfers
can be disabled by adding a configuration option.

• api set state call: When a set state API call is performed with matching source and target states

• on_update: Transfers marked as on_update are executed when a PATCH is performed on a service instance.
The update attributes are stored based on the target_operation or error_operation attribute.

• on_delete: Transfers marked as on_delete are executed when a DELETE is performed on a service instance.

• resource based: This transfer is triggered when the orchestrator finishes deploying the resources that this
service instance consists off.

The auto and api set state call can set the validation attribute to true. When this attribute is true, the orchestration
engine refines the model in validation mode. When the validation succeeds the state transfers to the target state, if
the validation fails the state transfers to the error state.

On each transfer the lifecycle manager can apply operations to the three attribute sets. These operations can be
defined on a transfer to target with target_operation or to error with error_operation. On creation and update
the attributes provided through the API are stored in candidate_attributes. For all other transitions the following
operations are available:

• clear <setname>: Clear the given attribute set. Setname is one of the following: candidate, active or
rollback

• promote: Promote the values in candidate to active and active to rollback.

• rollback: Do a roll back of the attributes by setting the values from rollback to active and active to candi-
date.

On every state transfer the version of the service instance is incremented.

7.18 Patterns

• Validating with intermediary state

• Batched with on error serial

7.19 Glossary

lifecycle
A formal description of all the states a service instance can be in, between creation and deletion and the
possible transfers between the states.

service entity
In the Inmanta lifecycle service manager multiple service entities are registered from an orchestration model.
A service entity defines the attributes of a service instance and the lifecycle state machine.

service instance
The lifecycle manager manages the lifeycle of service instance.

7.18. Patterns 185

Inmanta Documentation, Release 7.1.1.dev20240504011805

state
A service instance is always in a state defined in the lifecycle state machine. This state determines how the
service instance behaves.

state machine
The lifecycle of a service is modelled as a state machine. This state machine consists of states the service
can be in and transfers from a source state to a destination state.

transfer
A state transfer from one state to another. Transfers are used to connect events with a state transfer.

trigger
A trigger is an external event that causes a service instance to transfer to a next state in its lifecycle. A trigger
can be an external API call or the orchestrator finishing a deploy of the resources the service consists of.

7.20 Dict Path Library

This extension also uses the Dict Path library. This library can be used to extract or modify specific elements from
an arbitrary location in a nested dictionary-based data structure.

7.21 Partial Compiles

Partial compiles are an advanced feature that allow increased scaling in the number of services. Instead of triggering
compiles for the full model whenever a service instance is created, updated or has a state transfer, only the part of
the model relevant for that service instance is recompiled.

LSM expands on the normal resources set based partial compiles by automatically creating a single resource set for
each service instance. To add resources to the instance’s resource set, simply add them to its owned_resources
relation and make sure to select the parents implementation for your service entities. LSM will then make sure
to populate the resource set and to correctly trigger related compiles and exports.

For more advanced scenarios, refer to the lsm partial compile section.

For a more generic introduction to partial compiles (without lsm), including resource set semantics, modelling
guidelines and how to approach testing, refer to the generic partial compiles section.

Finally, to enable lsm’s partial compiles on the server, set the lsm_partial_compile environment setting to true.

186 Chapter 7. Inmanta Lifecycle Service Manager

CHAPTER

EIGHT

ADMINISTRATOR DOCUMENTATION

8.1 Operational Procedures

This document describes the best practices for various operational procedures.

Note: issue templates for all procedures are available at the bottom of this page

8.1.1 Project Release for Production

This process describes the steps to prepare an inmanta project for production release.

For small projects relying exclusively on public modules and Python dependencies, the default pip config, which
pulls packages from https://pypi.org/ can be used. If the project requires private packages, then, for secu-
rity reasons, the default pip config, which pulls packages from https://pypi.org/ should not be used and all
packages should be hosted in an internal, curated python repository (like nexus or devpi). See PEP 708 for more
information. See the Configure pip index section for more information on how to set the project’s pip configuration.

Context

• The project development and testing is complete

• All modules have been properly released (See Releasing and distributing modules for the procedure).

• The project is in a git repo, with a specific branch dedicated to production releases

• The project is checked out on disk.

• All modules are checked out on the correct, tagged commit.

Procedure

1. Check modules install mode:
• For v1 modules (if any): ensure that install_mode in project.yml is set to release.

• For v2 modules (if any): ensure that pip.pre is not set in project.yml.

2. Freeze all modules with:

inmanta -vv -X project freeze --recursive --operator "=="

This will cause the project.yml file to be updated with constraints that only allow this project to work with this
exact set of module versions. This ensures that no unwanted updates can ‘leak’ into the production environment.

3. Verify that all modules are frozen to the correct version.

Open project.yml and verify that all module versions are frozen to the expected versions

187

https://peps.python.org/pep-0708/#motivation

Inmanta Documentation, Release 7.1.1.dev20240504011805

4. Commit this change.

git commit -a

5. Push to the release branch.

git push

8.1.2 Upgrade of service model on the orchestrator

This process describes how to safely take an existing project from one version to the next.

Context

• The orchestrator has the project already deployed and running

• The project is released (as described above)

Pre-Upgrade steps

1. Verify that environment safety settings are on (this should always be the case)

• protected_environment = True

2. Temporarily disable auto_deploy

• auto_deploy = False

3. Click ‘recompile’ to verify that no new deploy would start.

• A new version will appear but it will not start to deploy

4. Inspect the current state of the latest deployed version, verify no failures are happening and the deploy looks
healthy

5. (Optional) Perform a dryrun. Wait for the dryrun to complete and take note of all changes detected by the
dryrun. Ideally there should be none.

Upgrade procedure

1. Click Update project & recompile

• A new version will appear but it will not start to deploy

2. Click Perform dry run on the new version

• The dryrun report will open

• Wait for the dryrun to finish

• Inspect any changes found by the dryrun, determine if they are expected. If unexpected things are
present, go to the abort procedure.

3. If all is OK, click deploy to make the changes effective

188 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Post Upgrade procedure

1. Re-enable auto_deploy

• auto_deploy = True

Upgrade abort/revert

1. Delete the bad (latest) version

2. Push a revert commit onto the release branch (git revert HEAD; git push)

3. Go through the Upgrade procedure again to make this revert effective

8.1.3 Deployment of a new service model to the orchestrator

This process describes how to safely deploy a new model to the orchestrator.

Context

• The orchestrator has an environment set up for the project, but it has not been deployed yet.

• The project is released (as described above)

Procedure

1. Cross check all settings in the environment settings tab with the development team.

2. Verify that environment safety settings are on (should always be the case)

• protected_environment = True

3. Temporarily disable auto_deploy

• auto_deploy = False

4. Click ‘recompile’ to install the project.

• A new version will appear but it will not start to deploy

• This may take a while as the project has to be installed.

• In case of problems, consult the Compile Reports

5. Verify that the resources in this first version are as expected.

6. Click deploy to make the changes effective

• Keep a close eye on progress and problems that may arise.

• In case of trouble, hit the emergency stop. Resuming after a stop is very easy and stopping gives you the
time to investigate.

7. Verify that automation setting are on

• agent_trigger_method_on_auto_deploy = push_incremental_deploy

• auto_deploy = true

• push_on_auto_deploy = true

• server_compile = true

8. If this model uses LSM, perform initial tests of all services via the API.

8.1. Operational Procedures 189

Inmanta Documentation, Release 7.1.1.dev20240504011805

Extra careful deploy procedure

For models that are considered risky, it is possible to enable the model in a more gradual way. The general idea
is to disengage all features on the orchestrator that make the agents perform unsupervised deployments. Then the
agents can be activated by hand, one-by-one.

This procedure only works when all agents are autostarted by the server.

1. Take note of the following settings

• autostart_agent_deploy_interval

• autostart_agent_repair_interval

2. Disable spontaneous deployment

• autostart_agent_deploy_interval = 0

• autostart_agent_repair_interval = 0

• auto_deploy = True

• push_on_auto_deploy = False

3. Click ‘recompile’ to install the project.

• A new version will appear

• It will go to the deploying state

• But no resources will be deployed

4. In the agent tab, click deploy on agent on the ‘internal’ agent. Press force repair in the dropdown menu.

• All agents will come online

5. Perform a dryrun, to verify there are no undesirable effects.

6. Click deploy on agent/force repair on each agent. Verify results.

7. Ensure all environment setting are set correctly

• agent_trigger_method_on_auto_deploy = push_incremental_deploy

• auto_deploy = true

• push_on_auto_deploy = true

• server_compile = true

• autostart_agent_deploy_interval

• autostart_agent_repair_interval

8.1.4 Issue templates

For convenient inclusion in issue tickets, this section provides ready made markdown templates.

190 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Project Release for Production

* [] Verify in `project.yml` that `install_mode` is set to `release`.
* [] Freeze all modules with `inmanta -vv -X project freeze --recursive --operator
↪→"=="`
* [] Verify that all modules are frozen to the correct version
* [] Commit this change (`git commit -a`)
* [] Push to the release branch (`git push`)

Upgrade of service model on the orchestrator

* Pre-Upgrade steps:

1. Verify that environment safety settings are on (this should always be the case)

* [] `protected_environment = True`

2. Temporarily disable auto_deploy

* [] `auto_deploy = False`

3. [] Click ‘recompile’ to verify that no new deploy would start.

* A new version will appear but it will not start to deploy

4. [] Inspect the current state of the latest active version, verify no failures are␣
↪→happening and the deploy looks healthy
5. [] (Optional) Perform a dryrun. Wait for the dryrun to complete and take note of␣
↪→all changes detected by the dryrun. Ideally there should be none.

* Upgrade procedure

1. [] Click `Update and recompile`

* A new version will appear but it will not start to deploy

2. [] Click dryrun on the new version

* The dryrun report will open
* Wait for the dryrun to finish
* [] Inspect any changes found by the dryrun, determine if they are expected. If␣

↪→unexpected things are present, go to the abort procedure.
3. [] If all is OK, click deploy to make the changes effective

* Post Upgrade procedure

1. Re-enable auto_deploy

* [] `auto_deploy = True`

* Upgrade abort/revert

1. [] Delete the bad (latest) version
2. [] Push a revert commit onto the release branch (`git commit revert HEAD; git␣
↪→push`)
3. [] Click `Update and recompile`

(continues on next page)

8.1. Operational Procedures 191

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

* A new version will appear but it will not start to deploy

4. [] Click dryrun on the new version

* The dryrun report will open
* Wait for the dryrun to finish
* [] Inspect any changes found by the dryrun, this should be identical to the␣

↪→dryrun before the upgrade. If this is not the case, hit the emergency stop button␣
↪→and and contact support.

8.2 Diagnosing problems

When an unexpected problem arises with an inmanta environment, you might want to work directly on the environ-
ment on the orchestrator host to diagnose it. The inmanta-workon command, installed by the RPM, provides that
functionality. inmanta-workon myenvironment puts you in the environment’s project directory and activates
its Python venv. If you don’t know the name of the environment by heart, inmanta-workon --list gives an
overview of all environments on the server.

For more details, see inmanta-workon --help.

Note: If you didn’t install inmanta from RPM, you can manually source the inmanta-workon-register.
sh script to get access to the inmanta-workon command. You can find the script in the misc directory in the
inmanta-core git repository.

8.3 Configuration

Note: The documentation of the configuration options themselves can be found in the Inmanta configuration
reference.

8.3.1 Inmanta server and Inmanta agent

The Inmanta server and the Inmanta agent, started via systemd, will read their configuration from the following
locations:

1. /etc/inmanta/inmanta.cfg

2. /etc/inmanta/inmanta.d/*.cfg

3. environment variables

The configuration options specified in the /etc/inmanta/inmanta.d/ directory override the configuration op-
tions specified in /etc/inmanta/inmanta.cfg. If the directory /etc/inmanta/inmanta.d/ contains two files
with the same configuration option, the conflict is resolved using the alphabetical order of the filenames. Filenames
which appear later in the alfabetical order override the configuration options from their predecessors in that order.

After having read the configuration files, inmanta will read environment variables. The environment variables
overwrite any other types of configuration, if set. All settings can be set using environment variables with the
following convention:

INMANTA_{section.name}_{setting.name}

192 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Keep in mind that everything should be in ALL CAPS and that any dashes in the setting names must be replaced
by underscores.

8.3.2 Inmanta CLI tool

The inmanta CLI tool reads its configuration at the following locations:

1. /etc/inmanta/inmanta.cfg

2. /etc/inmanta/inmanta.d/*.cfg (override using the --config-dir option)

3. ~/.inmanta.cfg

4. .inmanta

5. .inmanta.cfg

6. The config file specified on the CLI using the -c options

7. Environment variables

The inmanta CLI tool searches for the .inmanta and .inmanta.cfg files in the directory where the CLI com-
mand is executed.

Configuration files which are ranked lower in the above-mentioned list override the configuration options specified
by their predecessors. If the directory /etc/inmanta/inmanta.d/ contains two files with the same configuration
option, the conflict is resolved using the alphabetical order of the filenames. Filenames which appear later in the
alphabetical order override the configuration options from their predecessors in that order.

The number 2 (/etc/inmanta/inmanta.d/*.cfg) in the above-mentioned list can be overridden using the
--config-dir option of the inmanta command. More information about these options can be found in the
inmanta command reference

8.4 HA setup

This page describes how to deploy an Inmanta server in a HA setup and how to perform a failover when required.

8.4.1 Setup a HA PostgreSQL cluster

The Inmanta server stores its state in a PostgreSQL database. As such, the PostgreSQL database should be deployed
in a high available setup, to ensure the durability of the state of the Inmanta Orchestrator. This page describes how
to setup a two node PosgreSQL cluster, consisting of a master node and a warm standby. The master node performs
synchronous replication to the standby node. When the master node fails, the standby can be promoted to the new
master node by performing a manual action.

This setup has a number of properties:

• It ensure durability by only returning operations like API calls when both database instances has confirmed
that the changes have been stored on disk.

• It is possible to use a tool such as pgpool to loadbalance read-only database queries to the standby node.
However, this is out of scope of this manual.

• It does not provide any additionaly availability, it even slighly reduces it: both database servers need to be
up and responsive to process write queries. If the standby node is down, the master node will block on any
write query. Read queries continue to be served until the database pool is exhausted.

For almost all types of deployments it provides a good trade-off between setup and operational complexity and the
availability and durability guarantees. If both durability and higher availability are required, a setup with at least
3 databases is required. This is out of scope for this documentation. Please contact support for assistance on this
topic.

8.4. HA setup 193

Inmanta Documentation, Release 7.1.1.dev20240504011805

Prerequisites

• Master node: The master node has been setup according to step 2 and step 3 of the Inmanta installation
documentation.

• Standby node: The standby node should only have a PostgreSQL installation, so only step 2 of the Inmanta
installation documentation should be executed.

Configure the master node

Login on the master node and perform the following changes in the /var/lib/pgsql/data/postgresql.conf
file:

Adjust the listen address as such that the standby node
can connect to the master node.
listen_addresses = '*'

Increase the wal_level to the required level for data replication
wal_level = replica

Only report success to the client when the transaction has been
flushed to permanent storage
synchronous_commit = on

Force synchronous replication to the standby node. The application_name
uniquely identifies the standby instance and can be freely chosen as long
as it only consists of printable ASCII characters.
synchronous_standby_names = 'inmanta'

Make sure that no queries can be executed on the standby
node while it is in recovery mode.
hot_standby = off

Execute the commands mentioned below on the master node. These commands do two thing:

• They create a replication user with replication and login privileges. The standby node will use this user to
connect to the master node.

• They create a new replication slot, named replication. This replication slot will make sure that sufficient
data is retained on the master node to synchronize the standby node with the master node.

$ sudo su - postgres -c 'psql'
$ CREATE USER replication WITH REPLICATION LOGIN PASSWORD '<password-replication-user>
↪→';
$ SELECT * FROM pg_create_physical_replication_slot('replication');
$ \q

Add the lines mentioned below to the /var/lib/pgsql/data/pg_hba.conf file. This will make sure that the
replication user can be used to setup a replication connection from the standby node to the master. Since, the
standby node can become the master node, both hosts should be add to the file.

host replication replication <ip-master-node>/32 md5
host replication replication <ip-standby-node>/32 md5

Restart the postgresql service to activate the configuration changes.

$ sudo systemctl restart postgresql

194 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Configure the standby node

The standby gets configured by creating a backup of the master node and restoring it on the standby node. The
commands mentioned below create a backup in the /tmp/backup directory. This command will prompt for the
password of the replication user. By setting the -R option, a standby.signal and a postgresql.auto.conf
file will be added to the backup. The presence of the former will make the PostgreSQL server start as a standby. The
latter contains replication-specific configuration settings. Those will be processed after the postgresql.conf file
is processed.

$ sudo su - postgres -c 'pg_basebackup -h <ip-master-node> -U replication -X stream -
↪→R -D /tmp/backup -S replication -W'

On the standby node, clear the content of the /var/lib/pgsql/data directory and replace it with the content of
the backup created on the master node. The postgresql.auto.conf file needs to be adjusted as such that it has
the application_name parameter in the primary_conninfo setting. This application_name should match
the name configured in the synchronous_standby_names setting of the postgresql.conf file of the master
node.

primary_conninfo = 'user=replication password=<password> channel_binding=prefer host=
↪→<password> port=5432 sslmode=prefer sslcompression=0 ssl_min_protocol_version=TLSv1.
↪→2 gssencmode=prefer krbsrvname=postgres target_session_attrs=any application_
↪→name=inmanta'
primary_slot_name = 'replication'

Comment out, the synchronous_standby_names setting in the postgresql.conf file of the standby node. This
will ensure that the standby node acts fully independently when it is promoted to a master node. Finally, start and
enable the PostgreSQL service on the standby node.

$ sudo systemctl start postgresql
$ sudo systemctl enable postgresql

Monitoring

This setup requires both database to be up to be up and functional. It is highly recommended to monitor this
the availability of the database and the replication status. For most monitoring systems (such as nagios/icinga or
promotheus/alertmanager) there are plugins avilable to do this in an efficient manner.

8.4.2 Failover PostgreSQL

This section describes the action required to recover from a failed PostgreSQL master node.

Promote a standby node to the new master node

When the master node fails, the standby node can be promoted to become the new master node. After this failover,
the new master will acts as a fully independent instance, i.e. no replication will happen to a standby instance.

Execute the following command on the standby instance to promote it to a new master node:

$ sudo su - postgres -c 'pg_ctl promote -D /var/lib/pgsql/data/'

This command will remove the standby.signal file. It’s also recommended to cleanup the postgresql.auto.
conf file by executing the following commands:

$ sudo rm -f /var/lib/pgsql/data/postgresql.auto.conf
$ sudo systemctl reload postgresql

8.4. HA setup 195

Inmanta Documentation, Release 7.1.1.dev20240504011805

The old master node can be reconfigured to become the new standby node, by executing the step described in the
next section.

Add a standby node to a newly promoted master node

This section explains how a standby can be add to a master node, which was created from a promoted standby node.

First, add a replication slot on the new master node by executing following commands:

$ sudo su - postgres -c 'psql'
$ SELECT * FROM pg_create_physical_replication_slot('replication');
$ \q

Then, configure the new standby instance by following the step mentioned in Configure the standby node. When
the standby is up, the master node perform asynchronous replication to the standby node. The master node needs
to be reconfigured to perform synchronous replication. This is done by adding the line mentioned below the
postgresql.conf file of the master node. The application_name has to match the application_name set in
the postgresql.auto.conf file of the standby node.

synchronous_standby_names = 'inmanta'

Finally, reload the configuration of the master node using the following command:

$ sudo systemctl reload postgresql

8.4.3 Failover an Inmanta server

This section describes different ways to failover an Inmanta server.

Failover an Inmanta server to the warm standby PostgreSQL instance

This section describes how to failover an Inmanta server to a new PostgreSQL master node when the previous
master node has failed.

First, stop the orchestrator by stopping the inmanta-server service.

$ sudo systemctl stop inmanta-server

Promote the standby node to a master node by following the procedure mentioned in Section Promote a standby
node to the new master node. When the promotion is finished, the Inmanta server can be reconfigured to start using
the new master node. Do this by adjusting database.host setting the /etc/inmanta/inmanta.d/database.
cfg file:

[database]
host=<ip-address-new-master-node>
name=inmanta
username=inmanta
password=<password>

Now, start the Inmanta orchestrator again:

$ sudo systemctl start inmanta-server

196 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Start a new orchestrator on warm standby PostgreSQL instance

This section describes what should be done to recover when the Inmanta server and the PostgreSQL master node
fail simultaneously. It is also possible to failover the Inmanta server when the PostgreSQL master node has not
failed.

Before starting the failover process, it’s important to ensure that the original Inmanta server is fully disabled. This
is required to prevent the situation where two orchestrators are performing configuration changes on the same
infrastructure simultaneously. Disabling the Inmanta orchestrator can be done by stopping the machine running
the Inmanta server or disabling the inmanta-server service using the following commands:

$ sudo systemctl stop inmanta-server
$ sudo systemctl disable inmanta-server

The following step should only be executed when the PostgreSQL master node has failed.

Next, promote the standby PostgreSQL node to the new master node using the procedure in Section Promote a
standby node to the new master node. When the (new) master node is up, a new Inmanta server can be installed
according the procedure mention in the Install Inmanta section. In the /etc/inmanta/inmanta.d/database.
cfg configuration file, the database.host setting should contain the IP address of the new PostgreSQL master
node.

When the Inmanta server is up and running, a recompile should be done for each existing configuration model.

8.5 Operational Procedures With LSM

This document describes the best practices for various operational procedures, when using Lifecycle and Service
Management. These procedures are an extension to the ones described in Operational Procedures.

Note: issue templates for all procedures are available at the bottom of this page

8.5.1 Upgrade of service model on the orchestrator

This process describes how to safely take an existing project from one version to the next.

Context

• The orchestrator has the project already deployed and running

• The project is released (as described here: Project Release for Production)

Pre-Upgrade steps

1. Determine if this update in any way affects the service definition. If the update doesn’t change the lifecycle
or any aspect of the schema of the north bound api, flow the procedure here: Upgrade of service model on
the orchestrator. Otherwise, go to the next step.

2. Determine if the update changes the structure of existing instances in the service inventory (i.e. add or remove
fields). If this is the case, a database backup is required to revert the update.

3. Ensure you have shell access to the orchestrator.

4. Verify with the development team what the correct entry point is for exporting the API definition. Export-
ing the api definition requires the model to compile. Often, the model requires a correct API definition to
compile. To break this cycle, developers have to provide an alternative entry point into the code (other than
main.cf) that loads only the definitions. We will assume this file is called loader.cf

8.5. Operational Procedures With LSM 197

Inmanta Documentation, Release 7.1.1.dev20240504011805

5. Verify that environment safety settings are on (this should always be the case)

• protected_environment = True

6. Temporarily disable auto_deploy

• auto_deploy = False

4. Click ‘recompile’ to verify that no new deploy would start.

• A new version will appear but it will not start to deploy

5. Inspect the current state of the latest deployed version, verify no failures are happening and the deploy looks
healthy

6. (Optional) Perform a dryrun. Wait for the dryrun to complete and take note of all changes detected by the
dryrun. Ideally there should be none.

7. Block out all north-bound api calls (in the north-bound load balancer or firewall). This is to prevent instance
changes during the update.

8. Pause all agents, to prevent state transitions during the update.

9. Backup the database (if required as described in step 2). A full backup is preferable (using eg pgdump). The
tables lsm_serviceentity and lsm_serviceinstance are most crucial. A schema update may cause the instances
in the database to be irreversible rewritten. This backup will ensure a way back.

Upgrade procedure

1. Instruct the orchestrator to pull in the latest version by clicking Update project & recompile

• The compiler pulls in the latest version

• This compile may fail or produce a new version, that will not start to deploy

2. Send the new service definition to the server: Log onto the orchestrator and navigate to the folder for this
environment.

If no instance updates are expected use:

inmanta-workon $envid
inmanta -vvv -X export -j /dev/null -e $envid -f loader.cf --export-plugin service_
↪→entities_exporter_strict

If instance update are expected (and you made a database backup), use:

inmanta-workon $envid
inmanta -vvv -X export -j /dev/null -e $envid -f loader.cf --export-plugin service_
↪→entities_exporter

3. Click Recompile

• The compiler will produce a new version, that will not start to deploy

4. Re-enable the agents.

5. Click Perform dry run on the new version

• The dryrun report will open

• Wait for the dryrun to finish

• Inspect any changes found by the dryrun, determine if they are expected. If unexpected things are
present, go to the abort procedure.

4. If all is OK, click deploy to make the changes effective

198 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Post Upgrade procedure

1. Re-enable auto_deploy

• auto_deploy = True

2. Allow requests to be sent to the north bound api again

Upgrade abort/revert

1. Delete the bad (latest) version produced during the update in the web-console

2. Push a revert commit onto the release branch (git revert HEAD; git push)

3. Go through the Upgrade procedure again to make this revert effective

4. If the API update is irreversible or the end-result after revert is different from the expected result, restore the
database tables lsm_serviceentity and lsm_serviceinstance.

8.5.2 Deployment of a new service model to the orchestrator

This process describes how to safely deploy a new model to the orchestrator.

Context

• The orchestrator has an environment set up for the project, but it has not been deployed yet.

• The project is released (as described above)

Procedure

1. Cross check all settings in the environment settings tab with the development team.

2. Verify with the development team what the correct entry point is for exporting the API definition. Export-
ing the api definition requires the model to compile. Often, the model requires a correct API definition to
compile. To break this cycle, developers have to provide an alternative entry point into the code (other than
main.cf) that loads only the definitions. We will assume this file is called loader.cf

3. Verify that environment safety settings are on (should always be the case)

• protected_environment = True

4. Temporarily disable auto_deploy

• auto_deploy = False

5. Click ‘recompile’ to install the project.

• To check if the compile is done, check the Compile Reports

• A new version may appear but it will not start to deploy

• This may take a while as the project has to be installed.

6. Send the new service definition to the server: Log onto the orchestrator and navigate to the folder for this
environment.

If no instance updates are expected use:

inmanta-workon $envid
inmanta -vvv -X export -j /dev/null -e $envid -f loader.cf --export-plugin service_
↪→entities_exporter_strict

1. Click Recompile

8.5. Operational Procedures With LSM 199

Inmanta Documentation, Release 7.1.1.dev20240504011805

• The compiler will produce a new version, that will not start to deploy

2. Verify that the resources in this first version are as expected.

3. Click deploy to make the changes effective

• Keep a close eye on progress and problems that may arise.

• In case of trouble, hit the emergency stop. Resuming after a stop is very easy and stopping gives you
time to investigate.

7. Verify that automation setting are on

• agent_trigger_method_on_auto_deploy = push_incremental_deploy

• auto_deploy = true

• push_on_auto_deploy = true

• server_compile = true

8. Perform initial tests of all services via the API.

8.5.3 Issue templates

For convenient inclusion in issue tickets, this section provides ready made markdown templates.

Upgrade of service model on the orchestrator

Required Information:

* [] The entry point for exporting the API definition is:
* [] The environment id is:

Pre-Upgrade steps:

1. Verify that environment safety settings are on (this should always be the case)

* [] `protected_environment = True`

2. Temporarily disable auto_deploy

* [] `auto_deploy = False`

3. [] Click ‘recompile’ to verify that no new deploy would start.

* A new version will appear but it will not start to deploy

4. [] Inspect the current state of the latest active version, verify no failures are␣
↪→happening and the deploy looks healthy
5. [] (Optional) Perform a dryrun. Wait for the dryrun to complete and take note of␣
↪→all changes detected by the dryrun. Ideally there should be none.
6. [] Block out all north-bound api calls
7. [] Pause all agents
8. [] Backup the database `pgdump`

Upgrade procedure

1. [] Click `Update and recompile`

(continues on next page)

200 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

* A new version will appear but it will not start to deploy

2. [] Send the new service definition to the server:
Log onto the orchestrator and navigate to the folder for this environment.
```sh
cd /var/lib/inmanta/$envid/
inmanta -vvv -X export -j /tmp/dump.json -e $envid -f loader.cf --export-plugin␣

↪→service_entities_exporter
```

3. [] Click `Recompile`
4. [] Re-enable the agents

5. [] Click dryrun on the new version

* The dryrun report will open
* Wait for the dryrun to finish
* [] Inspect any changes found by the dryrun, determine if they are expected. If␣

↪→unexpected things are present, go to the abort procedure.
6. [] If all is OK, click deploy to make the changes effective

Post Upgrade procedure

1. Re-enable auto_deploy

* [] `auto_deploy = True`

2. Allow requests to be sent to the north bound api again

Upgrade abort/revert

1. [] Delete the bad (latest) version
2. [] Push a revert commit onto the release branch (`git commit revert HEAD; git␣
↪→push`)
3. [] Click `Update and recompile`
4. [] Send the old service definition to the server:

Log onto the orchestrator and navigate to the folder for this environment.
```sh
cd /var/lib/inmanta/$envid/
inmanta -vvv -X export -j /tmp/dump.json -e $envid -f loader.cf --export-plugin␣

↪→service_entities_exporter
```

3. [] Click `Recompile`
4. [] Re-enable the agents
5. [] Click dryrun on the new version

* The dryrun report will open
* Wait for the dryrun to finish
* [] Inspect any changes found by the dryrun, this should be identical to the␣

↪→dryrun before the upgrade. If this is not the case, hit the emergency stop button␣
↪→and and contact support.
6. If the API update is irreversible or the end-result after revert is different from␣
↪→the expected result, restore the database tables `lsm_serviceentity` and `lsm_
↪→serviceinstance`.

8.5. Operational Procedures With LSM 201

Inmanta Documentation, Release 7.1.1.dev20240504011805

Install of service model on the orchestrator

Required Information:

* [] The entry point for exporting the API definition is:
* [] The environment id is:

Pre-Upgrade steps:

1. Verify that environment safety settings are on (this should always be the case)

* [] `protected_environment = True`

2. Temporarily disable auto_deploy

* [] `auto_deploy = False`

3. [] Click ‘recompile’ to install the project.
4. [] Send the new service definition to the server:

Log onto the orchestrator and navigate to the folder for this environment.
```sh
cd /var/lib/inmanta/$envid/
inmanta -vvv -X export -j /tmp/dump.json -e $envid -f loader.cf --export-plugin␣

↪→service_entities_exporter
```

5. [] Click `Recompile`
6. [] Verify that the resources in this first version are as expected.

7. [] Click deploy to make the changes effective
8. [] Monitor progress
9. [] Verify that automation setting are on

* `agent_trigger_method_on_auto_deploy = push_incremental_deploy`
* `auto_deploy = true`
* `push_on_auto_deploy = true`
* `server_compile = true`

10. Perform initial tests of all services via the API.

8.6 Setting up SSL and authentication

This guide explains how to enable ssl and setup authentication.

8.6.1 SSL

This section explain how to setup SSL. SSL is not strictly required for authentication but it is highly recommended.
Inmanta uses bearer tokens to authorize users and services. These tokens should be kept private and are visible in
plain-text in the request headers without SSL.

202 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

SSL: server side

Setting a private key and a public key in the server configuration enables SSL on the server. The two options to set
are server.ssl-cert-file and server.ssl-key-file.

For the autostarted agents and compiler to work, either add the CA cert to the trusted certificates of the system or
set server.ssl-ca-cert-file to the truststore.

[server]
The ssl certificate used by the server
ssl_cert_file=/etc/inmanta/server.crt
The private key used by the server, associated with the certificate
ssl_key_file=/etc/inmanta/server.key.open

The certificate chain that the compiler and agents should use to validate the␣
↪→server certificate
ssl_ca_cert_file=/etc/inmanta/server.chain
The address at which the compiler and agent should connect
Must correspond to hostname the ssl certificate is bound to
server_address=localhost

SSL: agents and compiler

When using SSL, all remote components connecting to the server need to have SSL enabled as well.

For each of the transport configurations (compiler, agent, rpc client, . . .) ssl has to be enabled:
agent_rest_transport, cmdline_rest_transport and compiler_rest_transport.

The client needs to trust the SSL certificate of the server. When a self-signed SSL cert is used on the server, either
add the CA cert to the trusted certificates of the system running the agent or configure the ssl-ca-cert-file
option in the transport configuration.

For example for an agent this is agent_rest_transport.ssl and agent_rest_transport.
ssl-ca-cert-file

Autostarted agents and compiles on the server also use SSL to communicate with the server. This requires either
for the server SSL certificate to be trusted by the OS or by setting server.ssl-ca-cert-file. The server will
use this value to set compiler_rest_transport.ssl-ca-cert-file and server.ssl-ca-cert-file for
the compiler and the agents.

8.6.2 Authentication

Inmanta authentication uses JSON Web Tokens for authentication (bearer token). Inmanta issues tokens for service
to service interaction (agent to server, compiler to server, cli to server and 3rd party API interactions). For user
interaction through the web-console Inmanta can rely on its built-in authentication provider or on a 3rd party auth
broker. Currently the web-console only supports Keycloak as 3rd party auth broker.

Inmanta expects a token of which it can validate the signature. Inmanta can verify both symmetric signatures with
HS256 and asymmetric signatures with RSA (RS256). Tokens it signs itself for other processes are always signed
using HS256. There are no key distribution issues because the server is both the signing and the validating party.

The server also provides limited authorization by checking for inmanta specific claims inside the token. All inmanta
claims are prefixed with urn:inmanta:. These claims are:

• urn:inmanta:ct A required comma delimited list of client types for which this client is authenticated.
Each API call has one or more allowed client types. The list of valid client types (ct) are:

– agent

– compiler

– api (cli, web-console, 3rd party service)

8.6. Setting up SSL and authentication 203

Inmanta Documentation, Release 7.1.1.dev20240504011805

• urn:inmanta:env An optional claim. When this claim is present the token is scoped to this inmanta
environment. All tokens that the server generates for agents and compilers have this claim present to limit
their access to the environment they belong to.

Setup server auth

The server requests authentication for all API calls when server.auth is set to true. When authentication is
enabled all other components require a valid token.

Warning: When multiple servers are used in a HA setup, each server requires the same configuration (SSL
enabled and private keys).

In the server configuration multiple token providers (issuers) can be configured (See JWT auth configuration).
Inmanta requires at least one issuer with the HS256 algorithm. The server uses this to sign tokens it issues itself.
This provider is indicated with sign set to true. Inmanta issues tokens for compilers the servers runs itself and for
autostarted agents.

Compilers, cli and agents that are not started by the server itself, require a token in their transport
configuration. This token is configured with the token option in the groups agent_rest_transport,
cmdline_rest_transport and compiler_rest_transport.

A token can be retrieved either with inmanta-cli token create or via the web-console using the tokens tab
on the settings page.

Setup the built-in authentication provider of the Inmanta server (See Built-in authentication provider) or configure
an external issuer (See External authentication providers) for web-console access to bootstrap access to the create
token api call. When no external issuer is available and web-console access is not required, the inmanta-cli
token bootstrap command can be used to create a token that has access to everything. However, it expires after
3600s for security reasons.

For this command to function, it requires the issuers configuration with sign=true to be available for the cli com-
mand.

JWT auth configuration

The server searches for configuration sections that start with auth_jwt_, after the last _ an id has to be present.
This section expects the following keys:

• algorithm: The algorithm used for this key. Only HS256 and RS256 are supported.

• sign: Whether the server can use this key to sign JWT it issues. Only one section may have this set to true.

• client_types: The client types from the urn:inmanta:ct claim that can be validated and/or signed with this
key.

• key: The secret key used by symmetric algorithms such as HS256. Generate the key with a secure prng with
minimal length equal to the length of the HMAC (For HS256 == 256). The key should be a urlsafe base64
encoded bytestring without padding. (see below of a command to generate such a key)

• expire: The default expire for tokens issued with this key (when sign = true). Use 0 for tokens that do not
expire.

• issuer: The url of the issuer that should match for tokens to be valid (also used to sign this). The default value
is https://localhost:8888/ This value is used to match auth_jwt_* sections configuration with JWT tokens.
Make sure this is unique.

• audience: The audience for tokens, as per RFC this should match or the token is rejected.

• jwks_uri: The uri to the public key information. This is required for algorithm RS256. The keys are loaded
the first time a token needs to be verified after a server restart. There is not key refresh mechanism.

204 Chapter 8. Administrator documentation

https://localhost:8888/

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 1: Generating a new token in the web-console.

8.6. Setting up SSL and authentication 205

Inmanta Documentation, Release 7.1.1.dev20240504011805

• jwks_request_timeout: The timeout for the request to the ‘jwks_uri’, in seconds. If not provided, the default
value of 30 seconds will be used.

An example configuration is:

[auth_jwt_default]
algorithm=HS256
sign=true
client_types=agent,compiler
key=rID3kG4OwGpajIsxnGDhat4UFcMkyFZQc1y3oKQTPRs
expire=0
issuer=https://localhost:8888/
audience=https://localhost:8888/

To generate a secure symmetric key and encode it correctly use the following command:

openssl rand 32 | python3 -c "import sys; import base64; print(base64.urlsafe_
↪→b64encode(sys.stdin.buffer.read()).decode().rstrip('='));"

8.6.3 Built-in authentication provider

The Inmanta server has a built-in authentication provider. This provider stores the authentication and authorization
information into the PostgreSQL database. As such, there is no need to rely on a 3rd party auth broker. The
sections below describe how to enable the built-in authentication provider and how to create the initial admin user.
Additional users can then be created via the API or through the web console.

Step 1: Enable authentication

Ensure that the server.auth configuration option is enabled and that the server.auth-method configuration
option is set to database. This means that the /etc/inmanta/inmanta.d/server.cfg file should contains the
following:

[server]
auth=true
auth-method=database
...

Step 2: Generate the JWT configuration

Run the /opt/inmanta/bin/inmanta-initial-user-setup command on the orchestrator server. This com-
mand will output a generated JWT configuration if no JWT configuration is already in-place on the server.

$ /opt/inmanta/bin/inmanta-initial-user-setup
This command should be execute locally on the orchestrator you want to configure. Are␣
↪→you running this command locally? [y/N]: y
Server authentication: enabled
Server authentication method: database
Error: No signing config available in the configuration.
To use a new config, add the following to the configuration in /etc/inmanta/inmanta.d/
↪→auth.cfg:

[auth_jwt_default]
algorithm=HS256
sign=true
client_types=agent,compiler,api

(continues on next page)

206 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

key=NYR2LtAsKSs7TuY0D8ZIqmMaLcICC3lf_ur4FGlLUcQ
expire=0
issuer=https://localhost:8888/
audience=https://localhost:8888/

Error: Make sure signing configuration is added to the config. See the documentation␣
↪→for details.

Verify whether the hostname, in the generated configuration section, is correct and put the configuration snippet
in the location mentioned in the output of the command.

Step 3: Create the initial user

Re-run the same command again to create the initial user. The password for this new user must be at least 8
characters long.

$ /opt/inmanta/bin/inmanta-initial-user-setup
This command should be execute locally on the orchestrator you want to configure. Are␣
↪→you running this command locally? [y/N]: y
Server authentication: enabled
Server authentication method: database
Authentication signing config: found
Trying to connect to DB: inmanta (localhost:5432)
Connection to database success
What username do you want to use? [admin]:
What password do you want to use?:
User admin: created
Make sure to (re)start the orchestrator to activate all changes.

Step 4: Restart the orchestrator

Now, restart the orchestrator to activate the new configuration.

$ sudo systemctl restart inmanta-server

After the restart of the orchestrator, authentication is enabled on all API endpoints. This also means that the web-
console will ask for your credentials.

8.6.4 External authentication providers

Inmanta supports all external authentication providers that support JWT tokens with RS256 or HS256. These
providers need to add a claims that indicate the allowed client type (urn:inmanta:ct). Currently, the web-console
only has support for keycloak. However, each provider that can insert custom (private) claims should work. The
web-console now relies on the keycloak js library to implement the OAuth2 implicit flow, required to obtain a JWT.

Tip: All patches to support additional providers such as Auth0 are welcome. Alternatively contact Inmanta NV
for custom integration services.

8.6. Setting up SSL and authentication 207

Inmanta Documentation, Release 7.1.1.dev20240504011805

Keycloak configuration

The web-console has out of the box support for authentication with Keycloak. Install keycloak and create an initial
login as described in the Keycloak documentation and login with admin credentials.

This guide was made based on Keycloak 20.0

If inmanta is configured to use SSL, the authentication provider should also use SSL. Otherwise, the web-console
will not be able to fetch user information from the authentication provider.

Step 1: Optionally create a new realm

Create a new realm if you want to use keycloak for other purposes (it is an SSO solution) than Inmanta authen-
tication. Another reason to create a new realm (or not) is that the master realm also provides the credentials to
configure keycloak itself.

For example call the realm inmanta

Fig. 2: Create a new realm

208 Chapter 8. Administrator documentation

http://www.keycloak.org

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 3: Specify a name for the realm

8.6. Setting up SSL and authentication 209

Inmanta Documentation, Release 7.1.1.dev20240504011805

Step 2: Add a new client to keycloak

Make sure the correct realm is active (the name is shown in the realm selection dropdown) to which you want to
add a new client.

Fig. 4: The start page of your newly created realm.

Go to clients and click create on the right hand side of the screen.

Provide an id for the client and make sure that the client protocol is openid-connect and click save.

After clicking save, keycloak opens the configuration of the client. Modify the client to allow implicit flows and
add valid redirect URIs and valid post logout redirect URIs. As a best practice, also add the allowed web origins.
See the screenshot below as an example.

Go to the client scopes in your Client details.

Add a mapper to add custom claims to the issued tokens for the API client type. Click on adding a new mapper
and select By Configuration.

Select hardcoded claim, enter :urn:inmanta:ct as claim name and api as claim value and string as type. It
should only be added to the access token.

Add a second mapper to add inmanta to the audience (only required for Keycloak 4.6 and higher). Click add again
as in the previous step.

Fill in the following values:

• Name: inmanta-audience

• Mapper type: Audience

• Included Client Audience: inmanta

210 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 5: Clients in the master realm. Click the create button to create an inmanta client.

8.6. Setting up SSL and authentication 211

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 6: Create client screen

212 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Add to access token: on

Click save.

Step 3: Configure inmanta server

Select JSON format in the select box. This JSON string provides you with the details to configure the server
correctly to redirect web-console users to this keycloak instance and to validate the tokens issued by keycloak.

Add the keycloak configuration parameters to the web-ui section of the server configuration file. Add a configura-
tion file called /etc/inmanta/inmanta.d/keycloak.cfg. Add the oidc_realm, oidc_auth_url and oidc_client_id to the
web-ui section. Use the parameters from the installation json file created by keycloak.

[web-ui]
generic OpenID connect configuration
oidc_realm=inmanta
oidc_auth_url=http://localhost:8080
oidc_client_id=inmantaso

Warning: In a real setup, the url should contain public names instead of localhost, otherwise logins will only
work on the machine that hosts inmanta server.

Configure a auth_jwt_ block (for example auth_jwt_keycloak) and configure it to validate the tokens keycloak
issues.

8.6. Setting up SSL and authentication 213

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 7: Allow implicit flows (others may be disabled) and configure allowed callback urls of the web-console.

214 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 8: Click on inmantaso-dedicated to edit the dedicated scope and mappers.

8.6. Setting up SSL and authentication 215

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 9: Add a custom mapper to the client to include :urn:inmanta:ct

216 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 10: Add the ct claim to all access tokens for this client.

8.6. Setting up SSL and authentication 217

Inmanta Documentation, Release 7.1.1.dev20240504011805

[server]
auth=true

[auth_jwt_keycloak]
algorithm=RS256
sign=false
client_types=api
issuer=http://localhost:8080/realms/inmanta
audience=inmantaso
jwks_uri=http://keycloak:8080/realms/inmanta/protocol/openid-connect/certs
validate_cert=false

Set the algorithm to RS256, sign should be false and client_types should be limited to api only. Next set the issuer
to the correct value (watch out for the realm). Set the audience to the value of the resource key in the json file.
Finally, set the jwks_uri so the server knows how to fetch the public keys to verify the signature on the tokens.
(inmanta server needs to be able to access this url).

Both the correct url for the issuer and the jwks_uri is also defined in the openid-configuration endpoint of keycloack.
For the examples above this url is http://localhost:8080/realms/inmanta/.well-known/openid-configuration (https:
//www.keycloak.org/docs/latest/securing_apps/index.html#endpoints)

Warning: When the certificate of keycloak is not trusted by the system on which inmanta is installed, set
validate_cert to false in the auth_jwt_keycloak block for keycloak.

218 Chapter 8. Administrator documentation

http://localhost:8080/realms/inmanta/.well-known/openid-configuration
https://www.keycloak.org/docs/latest/securing_apps/index.html#endpoints
https://www.keycloak.org/docs/latest/securing_apps/index.html#endpoints

Inmanta Documentation, Release 7.1.1.dev20240504011805

Fig. 11: Show the correct configuration parameters in JSON format. (Click on the top right dropdown ‘Action’ and
pick ‘Download adapter config’.)

8.6. Setting up SSL and authentication 219

Inmanta Documentation, Release 7.1.1.dev20240504011805

8.6.5 Custom claims

Access to the orchestrator can be controlled using claim match expressions. In the section of the identity provider
that you want to restrict you can configure the claims options. This is a multiline option where each line contains
a match expression. There are two operators available:

• in for exact string match on a claim that contains a list of string values

• is for exact string match on a claim that is a string

You can use them as follows, for example each user gets two additional claims:

• my:environments which is a list of network environments the user is allowed to access. For example: lab
and prod

• my:scope which indicates the scope of automation the orchestrator does. For example: network and dc

A user is allowed to have multiple environments but they can only have one scope. So that is why the environments
is a list and scope is single string value.

On the lab orchestrator for the datacenter we can then configure it as follows:

[auth_jwt_keycloak]
algorithm=RS256
sign=false
client_types=api
issuer=http://localhost:8080/realms/inmanta
audience=inmantaso
jwks_uri=http://keycloak:8080/realms/inmanta/protocol/openid-connect/certs
validate_cert=false
claims=
lab in my:environments
my:scope is dc

This will only allow users with lab in the my:environments claim and my:scope equal to dc.

8.7 Environment variables

Environment variables can be supplied to the Inmanta server and its agents.

8.7.1 Supplying environment variables to the Inmanta server

The Inmanta server loads the environment variables specified in /etc/sysconfig/inmanta-server at startup.
The example below defines three environment variables:

OS_AUTH_URL=http://openstack.domain
OS_USERNAME=admin
OS_PASSWORD=sYOUZdhcgwctSmA

These environment variables are accessible in a configurationmodel via the std::get_env(name: "string",
default_value: "string"=None) plugin as shown in the following snippet:

1 import std
2 import openstack
3

4 provider = openstack::Provider(name="openstack",
5 connection_url=std::get_env("OS_AUTH_URL"),
6 username=std::get_env("OS_USERNAME"),

(continues on next page)

220 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

7 password=std::get_env("OS_PASSWORD"),
8 tenant="dev")

8.7.2 Supplying environment variables to an agent

A manually started agent loads the environment variables specified in /etc/sysconfig/inmanta-agent at
startup. This can be useful when a handler relies on the value of a certain environment variable.

8.8 Logging

This page describes the different logs files produced by the Inmanta server and its agents and explains what can be
configured regarding to logging.

8.8.1 Overview different log files

By default log files are collected in the directory /var/log/inmanta/. Three different types of log files exist: the
server log, the resource action logs and the agent logs. The server log and the resource action log files are produced
by the Inmanta server. The agent log files are produced by the Inmanta agents.

Server log

The server.log file contains general debugging information regarding the Inmanta server. It shows information
about actions performed by the Inmanta server (renewing parameters, purging resource action logs, etc.), API
requests received by the Inmanta server, etc.

Resource action logs

The resource action log files contain information about actions performed on a specific resource. Each en-
vironment has one resource action log file. The filename of this log file looks as follows: <server.
resource-action-log-prefix>-<environment-id>.log. The prefix can be configured with the configu-
ration option server.resource-action-log-prefix.

The resource action log file contains information about the following resource action:

• Store: A new version of a configuration model and its resources has been pushed to the Inmanta server.

• Pull: An agent pulled its resources from the Inmanta server.

• Deploy: When an agent starts and ends the deployment of a certain resource.

• Dryrun: Execute a dryrun for a certain resource.

Agent logs

One agent produces the following three log files:

• agent-<environment-id>.log: This is the main log file of an agent. It contains information about when
the agent started a deployment, which trigger caused that deployment, whether heartbeat messages are re-
ceived from the server, whether the agent is a primary agent, etc.

• agent-<environment-id>.out: This log file contains all the messages written to the standard output
stream of the resource handlers used by the agent.

• agent-<environment-id>.err: This log file contains all the messages written to the standard error stream
of the resource handlers used by the agent.

8.8. Logging 221

Inmanta Documentation, Release 7.1.1.dev20240504011805

8.8.2 Configure logging

Configuration options in Inmanta config file

The following log-related options can be set in an Inmanta config file:

• log-dir

• purge-resource-action-logs-interval

• resource-action-log-prefix

Documentation on these options can be found in the Inmanta configuration reference.

Change log levels server log

Edit the --log-file-level option in the ExecStart command of the inmanta-server service file. The inmanta-
server service file can be found at /usr/lib/systemd/system/inmanta-server.service.

[Unit]
Description=The server of the Inmanta platform
After=network.target

[Service]
Type=simple
User=inmanta
Group=inmanta
ExecStart=/usr/bin/inmanta --log-file /var/log/inmanta/server.log --log-file-level 2 -
↪→-timed-logs server
Restart=on-failure

[Install]
WantedBy=multi-user.target

The --log-file-level takes the log-level as an integer, where 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG.

Apply the changes by reloading the service file and restarting the Inmanta server:

sudo systemctl daemon-reload
sudo systemctl restart inmanta-server

Log level manually started agent

The log level of a manually started agent can be changed in the same way as changing the log level of the Inmanta
server. The service file for a Inmanta agent can be found at /usr/lib/systemd/system/inmanta-agent.
service.

Log level auto-started agents

The default log level of an auto-started agent is INFO. Currently it’s not possible to change this log level.

222 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Resource action logs

The log level of the resource action log file is DEBUG. Currently it’s not possible to change this log level.

Log level server-side compiles

The logs of a server side compile can be seen via the “Compile Reports” button in the web-console. The log level
of these logs is DEBUG. Currently, it’s not possible to change this log level.

Log level on CLI

By default logs are written to standard output when the inmanta or the inmanta-cli command is executed. The
default log level is INFO. The log level of these commands can be changed by passing the correct number of v’s
with the option -v.

• -v = warning

• -vv = info

• -vvv = debug

• -vvvv = traces

By specifying the -X option, stacktraces are also shown written to standard output when an error occurs. When
the --log-file option is specified on the commandline, logs are written to file instead of the standard output.

8.9 Performance Metering

This guide explains how to send performance metrics about the inmanta server to influxdb.

The inmanta server has a built-in pyformance instrumentation for all API endpoints and supports sending the results
to influxdb.

8.9.1 Configuration summary

To enable performance reporting, set the options as found under influxdb in the server configuration file.

For example:

[influxdb]
The hostname of the influxdb server
host = localhost
The port of the influxdb server
port = 8086
The name of the database on the influxdb server
name = inmanta
tags= environment=prod,az=a

8.9. Performance Metering 223

https://github.com/omergertel/pyformance

Inmanta Documentation, Release 7.1.1.dev20240504011805

8.9.2 Setup guide

1. To install influxdb, follow the instructions found at docs.influxdata.com.

2. Create a database to send the data to:

influx
CREATE DATABASE inmanta

3. Update the inmanta config file, add the following block

[influxdb]
The hostname of the influxdb server
host = localhost
The port of the influxdb server
port = 8086
The name of the database on the influxdb server
name = inmanta

4. Restart the inmanta server.

5. [optional] install grafana, follow the instructions found at https://grafana.com/grafana/download

6. [optional] load the inmanta dashboard found at https://grafana.com/grafana/dashboards/
10089-inmanta-api-performance/

8.9.3 Reported Metrics

This section assumes familiarity with influxdb. See here.

All metrics are reported under the measurement metrics. Different measurements are distinguished by a tag called
key.

Two main types of metrics are reported: 1. Metrics related to API performance 2. Others

API performance metrics

Each API method is reported with a key=rpc.{endpoint_name}. The endpoint_name is the server’s internal name
for the endpoint.

To know which url corresponds to which method, please consult either
• the operationId field of the OpenAPI spec or

• the method names in inmanta.protocol.methods and inmanta.protocol.methods_v2

The fields available for each API endpoint are (cfr metrics timer):

224 Chapter 8. Administrator documentation

https://docs.influxdata.com/influxdb/v1.7/introduction/install/#installing-influxdb-oss
https://grafana.com/grafana/download
https://grafana.com/grafana/dashboards/10089-inmanta-api-performance/
https://grafana.com/grafana/dashboards/10089-inmanta-api-performance/
https://docs.influxdata.com/influxdb/v1.7/concepts/key_concepts/#field-key
../_specs/openapi.json
https://metrics.dropwizard.io

Inmanta Documentation, Release 7.1.1.dev20240504011805

field type description
15m_rate float fifteen-minute exponentially-weighted moving average of the request rate
5m_rate float five-minute exponentially-weighted moving average of the request rate
1m_rate float one-minute exponentially-weighted moving average of the request rate
mean_rate float mean of the request rate
min float minimal observed request latency
50_percentile float median (50 percentile) observed request latency
75_percentile float 75 percentile observed request latency
95_percentile float 95 percentile observed request latency
99_percentile float 99 percentile observed request latency
999_percentile float 999 percentile observed request latency
max float maximal observed request latency
avg float average observed latency
std_dev float standard deviation of the observed latency
count float number of calls seen since server start
sum float total wall-time spent executing this call since server start

Other Metrics

Key Type Unit Description
self.spec.cpuint ns The result of a small CPU benchmark, executed every second. Provides a baseline

for machine performance.

8.10 Reverse proxy and Web Application Firewall

Communication between inmanta components and to the northbound API uses REST over HTTP(S). This section
describes how to move the API behind a reverse proxy and optionally enable a web Application firewall. This is
meant for all external traffic towards the orchestrator. It is not supported to proxy traffic from the compiler and
agents to the server.

This guide focuses on access to the web-console, and to the northbound API. This guide works for both the OSS
and the full version of the product.

8.10.1 Setup a reverse proxy

A reverse proxy receives the calls and proxies them to the inmanta service orchestrator API. This guide gives
examples to set this up with Apache HTTPD, but similar rules could also be applied to NGINX or other reverse
proxies. This guide assumes that the reverse proxy is installed on the same machine as the orchestrator.

1. Make sure you do not bind the orchestrator to the IP used by the proxy server so it cannot be
bypassed. If only auto started agents are used, it is recommended to set the bind-address to
localhost. See server.bind-address and server.bind-port. If you have remote agents,
make sure that either by having multiple IPs or using firewall rules that the agents can connect
directly to the orchestrator.

2. Install Apache HTTPD and make sure it is configured correctly (listen to the correct interfaces,
ports, SSL, access control, . . .)

3a. The easiest setup is to proxy all traffic directly to the orchestrator:

Proxy all requests to the orchestrator
<Location /console>

ProxyPass http://localhost:8888/
(continues on next page)

8.10. Reverse proxy and Web Application Firewall 225

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

Allow from all
Or limit access to certain users or prefixes
Allow from 10.x.x.x/24

</Location>

3b. Only proxy the calls that the orchestrator has endpoints for. Everything else will be handled by
the reverse proxy:

Web Console is a static single page application (SPA)
<Location /console>

ProxyPass http://localhost:8888/console

Limit the possible methods to only get the content
AllowMethods GET HEAD OPTIONS

Allow from all
Or limit access
Allow from 10.x.x.x/24

</Location>

Generic API: used by agents, web-console, integrations, ...
Unless detailed error reports are requested, this API should not␣
↪→be made available to
any portals or tools
<Location /api>

ProxyPass http://localhost:8888/api

Allow from all
Or limit access
Allow from 10.x.x.x/24

</Location>

LSM API: the northbound API called by tools such as customer␣
↪→portals
<Location /lsm>

ProxyPass http://localhost:8888/lsm

Allow from all
Or limit access
Allow from 10.x.x.x/24

</Location>

When only exposing the LSM API even more specific proxy rules can be used. In the next section we provide
example rules to restrict this with mod_security.

226 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

8.10.2 Web Application Firewall

This section provides configuration guidelines to enable additional filtering using mod security. These rules can
of course be ported to other types of web application firewalls.

1. Install mod_security and enable it in Apache HTTPD according to their setup instructions.

2. Optional: Enable JSON body decoding to make sure only valid JSON reaches the orchestrator.
This is available since version 2.8, however it is not enabled in the RPMS included with RHEL
and Centos. Third party repos provide versions with JSON decoding enabled or distribution such
as NGINX WAF.

JSON decoding is enabled when a similar config stanza is in the configuration:

Make sure mod security is on and it inspects the body
SecRuleEngine On
SecRequestBodyAccess On

Enable json body decoding when the content type is set to `application/
↪→json`
SecRule REQUEST_HEADERS:Content-Type "application/json" \

"id:'200001',phase:1,t:none,t:lowercase,pass,nolog,
↪→ctl:requestBodyProcessor=JSON"

3. Add the generic inmanta rules. These will make sure that if the requests goes to an API it will
only accept valid JSON. If the JSON processor is not enabled, these rules will still work, but
the protection is reduced because invalid JSON can still reach the inmanta service orchestrator
API. The rules are defined so that they will only trigger on calls to inmanta service orchestrator
endpoints.

Classify the call based on the request uri.
SecRule REQUEST_URI "@beginsWith /api/" \

"id:'200501',phase:1,setvar:'tx.inmanta_context=api'"
SecRule REQUEST_URI "@beginsWith /api/v2/docs" \

"id:'200502',phase:1,setvar:'tx.inmanta_context=docs'"
SecRule REQUEST_URI "@beginsWith /console" \

"id:'200504',phase:1,setvar:'tx.inmanta_context=static'"
SecRule REQUEST_URI "@beginsWith /lsm/" \

"id:'200510',phase:1,setvar:'tx.inmanta_context=lsm'"
SecRule REQUEST_URI "@beginsWith /lsm/v1/service_catalog_docs" \

"id:'200511',phase:1,setvar:'tx.inmanta_context=docs'"

All api and lsm calls should be json content so that the body will be␣
↪→parsed by modsec
If JSON decoding is not enabled, it will force the content type however␣
↪→mod_security does not validate
if the body is JSON
SecRule TX:INMANTA_CONTEXT "@rx api|lsm" \

"id:'200600',phase:1,deny,status:400,msg:'API and LSM only accept json␣
↪→content',chain"

SecRule REQUEST_HEADERS:Content-Type "!@rx application/json" \
"t:lowercase"

Inmanta supports unicode, however this is often used in templates that␣
↪→generate
input for other systems. This rule will validate all utf8 encodings. It␣
↪→is only enabled
when sending data to inmanta backends
SecRule TX:INMANTA_CONTEXT "!@streq ''" \

(continues on next page)

8.10. Reverse proxy and Web Application Firewall 227

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

"id:'200601',phase:1,deny,status:400,msg:'Invalid UTF provided',chain"
SecRule ARGS "@validateUtf8Encoding" \

"t:none"

This ruleset has been tested to be compatible with the OWASP core rule set. However, it does not do scoring. If an
anomaly is detected a 400 request is returned. It does not return the default 403 because this tricks our web-console
into warning the user to authenticate.

When the northbound API is only used for calls to LSM to manage service instances, mod_security can be used to
restrict access even more. The following rules ensure that only calls for service “network” are allowed and callback
management. The rules are set up in such a way that additional urls can be easily added to the ruleset:

Only allow certain paths required for the "customer portal" to function:
SecAction \
"id:300001,\

phase:1,\
nolog,\
pass,\
t:none,\
setvar:'tx.allowed_urls=|/lsm/v1/service_inventory/network| |/lsm/v1/

↪→callbacks'"

SecRule REQUEST_URI "!@withIN %{tx.allowed_urls}" \
"id:300002,phase:1,t:lowercase,deny,status:404"

When the OWASP core ruleset is enabled and particularly when JSON decoding is enabled, mod_security will
also scan for SQL and XSS attacks. Especially the latter can be useful if a customer portal uses the API directly
and the service model has free form attributes that can hold any content. In that case it may be useful to also use
mod_security to protect against for example stored XSS attacks.

8.11 Support Procedure

1. Create a support archive:
1. Using the CLI tool:

1. Log on to the orchestrator machine

2. Run one of the following commands:

• if the orchestrator is still running:

inmanta-support-tool collect-from-server

• if the orchestrator is not running:

inmanta-support-tool --config-dir /etc/inmanta/inmanta.dir␣
↪→collect-full

2. Using the web-console:

Use the Download support archive button at the right top of the Home > Status page. By click-
ing this button the support archive will be downloaded.

2. Classify the severity of the incident

228 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

Severity
Level

Service Win-
dow

File by
phone

Description

Urgent 24/7 yes Severe negative impact on operations. Unable to use or-
chestrator

High 24/7 yes Degraded ability to use the orchestrator.
Normal 5/7 Work around is available.
Low 5/7 Information request, not related to any error.

3. Create a support ticket on support.inmanta.com

1. Log in with your personal support count

2. Click ‘Submit a request’

3. Describe the problem as best a possible

4. Attach the archive created by the support tool to the support request

4. If the severity is high or urgent also contact the support phone number you have received and reference the
issue you just created.

8.12 Upgrading the orchestrator

Upgrading the orchestrator can be done either in-place or by setting up a new orchestrator next to the old one and
migrating the state from the old to the new instance. The sections below describe the upgrade procedure for each
of both situations. These procedures can be used for major and non-major version upgrades.

Note: Make sure to read the new version’s changelog for any version specific upgrade notes, before proceeding
with any of the upgrade procedures mentioned below.

8.12.1 Upgrading the orchestrator in-place

This section describes how to upgrade an orchestrator in-place.

Note: Pre-requisite
• Before upgrading the orchestrator to a new major version, make sure the old orchestrator is at the latest

version available within its major.

• Upgrades should be done one major version at a time. Upgrading from major version X to major version
X+2, should be done by upgrading from X to X+1 and then from X+1 to X+2.

1. Halt all environments (by pressing the STOP button in the web-console for each environment).

2. Create a backup of the database:

pg_dump -U <db_user> -W -h <host> <db_name> > <db_dump_file>

3. Replace the content of the /etc/yum.repos.d/inmanta.repo file with the content for the new ISO ver-
sion. This information can be obtained from the installation documentation page for the new ISO version.

4. Upgrade the Inmanta server. The orchestrator will automatically restart when the upgrade has finished. It
might take some time before the orchestrator goes up, as some database migrations will be done.

dnf update inmanta-service-orchestrator-server

5. When accessing the web console, all the environments will be visible, and still halted.

8.12. Upgrading the orchestrator 229

https://support.inmanta.com

Inmanta Documentation, Release 7.1.1.dev20240504011805

6. One environment at a time:

a. In the Desired State page of the environment, click Update project & recompile, accessible via the
dropdown of the Recompile button. (/console/desiredstate?env=<your-env-id>).

b. Resume the environment by pressing the green Resume button in the bottom left corner of the console.

Warning: Make sure the compilation has finished and was successful before moving on to the next
steps.

8.12.2 Upgrading by migrating from one orchestrator to another orchestrator

This document describes how to upgrade to a new version of the orchestrator by setting up a new orchestrator next
to the existing orchestrator and migrating all the state from the existing to the new orchestrator. This procedure
should be followed when an in-place upgrade of the orchestrator is not possible e.g. when the operating system
needs to be upgraded alongside the orchestrator.

Terminology

The procedure below describes how to migrate from one running orchestrator denoted as the ‘old orchestrator’ to
another one denoted as the ‘new orchestrator’.

Procedure

Note: Pre-requisite
• Before upgrading the orchestrator to a new major version, make sure the old orchestrator is at the latest

version available within its major.

• Upgrades should be done one major version at a time. Upgrading from major version X to major version
X+2, should be done by upgrading from X to X+1 and then from X+1 to X+2.

1. [New Orchestrator]: Make sure the desired version of the orchestrator is installed, by following the installation
instructions (see Install Inmanta) and set up a project to validate that the orchestrator is configured correctly (config,
credentials, access to packages, etc.).

2. [Old Orchestrator] Halt all environments (by pressing the STOP button in the web-console for each envi-
ronment).

3. [Old Orchestrator] Stop and disable the server:

sudo systemctl disable --now inmanta-server.service

4. [Old Orchestrator] Make a dump of the server database using pg_dump.

pg_dump -U <db_user> -W -h <host> <db_name> > <db_dump_file>

5. [New Orchestrator] Make sure the server is stopped:

sudo systemctl stop inmanta-server.service

6. [New Orchestrator] Drop the inmanta database and recreate it:

230 Chapter 8. Administrator documentation

Inmanta Documentation, Release 7.1.1.dev20240504011805

drop the database
$ psql -h <host> -U <db_user> -W
drop database <db_name>;
exit

re-create it
$ sudo -u postgres -i bash -c "createdb -O <db_user> <db_name>"

7. [New Orchestrator] Load the dump of the server database using psql.

psql -U <db_user> -W -h <host> -f <db_dump_file> <db_name>

8. [New Orchestrator] Start the orchestrator service, it might take some time before the orchestrator goes up,
as some database migration will be done:

sudo systemctl enable --now inmanta-server.service

9. [New Orchestrator] When accessing the web console, all the environments will be visible, and still halted.

10. [New Orchestrator] One environment at a time:

a. In the Desired State page of the environment, click Update project & recompile, accessible via the
dropdown of the Recompile button. (/console/desiredstate?env=<your-env-id>).

b. Resume the environment by pressing the green Resume button in the bottom left corner of the console.

Warning: Make sure the compilation has finished and was successful before moving on to the next
steps.

8.13 Inmanta Web Console

The Inmanta Web Console is a web GUI for the Inmanta Service Orchestrator.

8.13.1 Browser support

For using the web console, the last 2 versions of the Chrome, Firefox, Edge and Safari browsers are supported. For
security reasons it’s always recommended to use the latest version of these browsers.

8.13.2 Proxy

When configuring a proxy for the web-console, the url should always end in /console. The web-console uses the
/console part as an anchor. This anchor is something recognizable in the url that is always present. It is also
considered to be the root of the app. So a potential proxy would come before the anchor. And the app pages come
after the anchor. If no anchor is present in the url, we know the url is faulty. So from an app perspective, the url
has the following structure: (proxy) + (anchor) + (application defined urls)

8.13. Inmanta Web Console 231

Inmanta Documentation, Release 7.1.1.dev20240504011805

Examples

Given the input url, the application will use the following proxy + anchor.

Scenario input url proxy + anchor

Empty proxy respected /console/resources?env=abcd /console
Proxy respected /someproxy/console /someproxy/console
Faulty url ignored /someproxy /console

232 Chapter 8. Administrator documentation

CHAPTER

NINE

FREQUENTLY ASKED QUESTIONS

9.1 How do I use Inmanta with a http/https proxy?

Use the http_proxy and https_proxy environment variables to specify the proxy server to use. For the server in-
stalled from our RPMs, add the environment variable to the systemd unit file. Copy inmanta-server.service from
/lib/systemd/systemd/system to /etc/systemd/system and add the following lines to the [Service] section with the
correct proxy server details:

Environment=http_proxy=1.2.3.4:5678
Environment=https_proxy=1.2.3.4:5678

Afterwards run systemctl daemon-reload and restart the inmanta server.

9.2 I get a click related error/exception when I run inmanta-cli.

The following error is shown:

Traceback (most recent call last):
File "/usr/bin/inmanta-cli", line 11, in <module>

sys.exit(main())
File "/opt/inmanta/lib64/python3.4/site-packages/inmanta/main.py", line 871, in␣

↪→main
cmd()

File "/opt/inmanta/lib64/python3.4/site-packages/click/core.py", line 722, in __
↪→call__

return self.main(*args, **kwargs)
File "/opt/inmanta/lib64/python3.4/site-packages/click/core.py", line 676, in main

_verify_python3_env()
File "/opt/inmanta/lib64/python3.4/site-packages/click/_unicodefun.py", line 118,␣

↪→in _verify_python3_env
'for mitigation steps.' + extra)

RuntimeError: Click will abort further execution because Python 3 was configured to␣
↪→use ASCII as encoding for the environment. Consult http://click.pocoo.org/python3/
↪→for mitigation steps.

This error occurs when the locale are not set correctly. Make sure that LANG and LC_ALL are set. For example:

export LC_ALL=en_US.utf8
export LANG=en_US.utf8

233

Inmanta Documentation, Release 7.1.1.dev20240504011805

9.3 The model does not compile and exits with “could not complete
model”.

There is an upperbound on the number of iterations used in the model transformation algorithm. For large models
this might not be enough. This limit is controlled with the environment variable INMANTA_MAX_ITERATIONS
The default value is set to 10000 iterations.

234 Chapter 9. Frequently asked questions

CHAPTER

TEN

GLOSSARY

agent
The process that enforces the desired state described by resources by executing handlers. Each agent is
responsible for all resources that go to a single device or API endpoint.

configuration model
The desired state of the an environment is expressed in the configuration model. This model defines the
desired state of all resources that need to be managed by Inmanta.

desired state
The desired state expresses the state of all resources that Inmanta manages. Expressing a configuration in
function of desired state makes the orchestrator more robust to failures compared to imperative based or-
chestration. An agent uses a handler to read the current state of the a resource and derive from the difference
between current and desired state the actions required to change the state of the resource. Desired state has
the additional benefit that Inmanta can show a dry run or execution plan of what would change if a new
configuration is deployed.

Imperative solutions require scripts that execute low level commands and handle all possible failure condi-
tions. This is similar to how a 3D printer functions: a designer send the desired object (desired state) to the
3D printer software and this printer converts this to layers that need to be printed. An imperative 3D model,
would require the designer to define all layers and printer head movements.

DSL
Domain specific language. An Inmanta configuration model is written in a the Inmanta modelling DSL.

entity
Concepts in the infrastructure are modelled in the configuration with entities. An entity defines a new type
in the configuration model. See Entities.

environment
Each environment represents a target infrastructure that inmanta manages. At least one environment is re-
quired, but often multiple environments of the same infrastructure are available such as development, inte-
gration and testing.

expert feature
A feature that is stable, but requires great care and/or knowledge to use properly.

facts
A resource in an infrastructure may have multiple properties that are not managed by Inmanta but their value
is required as input in the configuration or for reporting purposes. handlers take care of extracting these facts
and reporting them back to the server. More information in the using facts section.

handler
A handler provides the interface between a resource in the model and the resource in the infrastructure. The
agent loads the handler and uses it to read the current state, discover facts and make changes to the real
resource.

infrastructure
This is what Inmanta manages. This could be virtual machines with resources in these virtual machines.
Physical servers and their os. Containers or resources at a cloud provider without any servers (e.g. “server-
less”)

235

Inmanta Documentation, Release 7.1.1.dev20240504011805

infrastructure-as-code
Wikepedia defines “Infrastructure as code” as the process of managing and provisioning computer data
centers through machine-readable definition files, rather than physical hardware configuration or interac-
tive configuration tools. Inmanta achieves this by using a desired state configuration model that is entirely
expressed in code.

instance
An instance of an entity. See also Instantiation.

main.cf
The file that defines the starting point of a configuration model. This file often only instantiates some high
level entities and imports specific module.

module
A configuration model consists of multiple configuration modules. A module provides a partial and reusable
configuration model and its related resources such as files, templates, . . . The module developer guide pro-
vides more details.

orchestration
Orchestration is the process of provisioning resources in the correct order and when they are available con-
figuring them. Inmanta support both provisioning and configuring resources but can also delegate tasks to
other (existing) tools.

plugin
A plugin is a python function that can be used in the DSL. This function recieves arguments from the config-
uration model and navigate relations and read attributes in the runtime model. Each function can also return
a value to the model. Plugins are used for complex transformation based on data in the configuration model
or to query external systems such as CMDBs or IPAM tools.

project
The management server of the Inmanta orchestrator can manage distinctive infrastructures. Each distinct
infrastructure is defined in the server as a project. Each project consists of one or more environment such as
development, integration and production.

relation
An attribute of an entity that references an other entity. Plugins, such as templates, can navigate relations.
See also Relations.

resource
Inmanta orchestrates and manages resources, of any abstraction level, in an infrastructure. Examples of
resources are: files and packages on a server, a virtual machine on a hypervisor, a managed database as a
PaaS provider, a switch port on a switch, . . .

A resource has attributes that express the desired value of a property of the resource it represents in the
infrastructure. For example the mode attribute of the the std::File resource. This attribute indicates the
desired permissions of a UNIX file.

A resource needs to have a unique identifier in an environment. This identifier needs to be derived from
attributes of the resource. This ensures that the orchestrator can (co-)manage existing resources and allows
quick recovery of the orchestrator in failure conditions. This unique identifier consists of multiple fields.
For example, std::File[vm1,path="/etc/motd"] This id contains the type of the resource, the name of
the agent and the unique id with its value for this resource. The resource designer determines how this id is
derived.

The fields in the id are:

• The first field is the type of the resource. For example: std::File

• The second field is the name of the agent that manages/groups the resource. For example: the name of
the machine on which the file is defined vm1

• The third field is the identifying attribute and the value of this attribute. For example: the path of the
file uniquely identifies a file on a machine.

resource handler
See handler

236 Chapter 10. Glossary

Inmanta Documentation, Release 7.1.1.dev20240504011805

unknown
A user always provides a complete configuration model to the orchestrator. Depending on what is already
deployed, Inmanta will determine the correct order of provisioning and configuration. Many configuration
parameters, such a the IP address of a virtual machine at a cloud provider will not be known upfront. Inmanta
marks this parameters as unknown. The state of any resource that uses such an unknown parameter becomes
undefined.

237

Inmanta Documentation, Release 7.1.1.dev20240504011805

238 Chapter 10. Glossary

CHAPTER

ELEVEN

INMANTA REFERENCE

Welcome to the Inmanta reference guide!

Here we explain all the features and options of Inmanta. If you’re just looking to get started with Inmanta, please
check out the Quickstart guide.

11.1 Command Reference

All inmanta commands and services are started by the inmanta command. This page provides an overview of all
subcommands available:

11.1.1 inmanta

usage: inmanta [-h] [-p] [-c CONFIG_FILE] [--config-dir CONFIG_DIR]
[--log-file LOG_FILE] [--logging-config LOGGING_CONFIG]
[--log-file-level {0,1,2,3,4,ERROR,WARNING,INFO,DEBUG,TRACE}]
[--timed-logs] [-v] [--warnings {warn,ignore,error}] [-X]
[--version] [--keep-logger-names]
{server,agent,compile,list-commands,help,modules,module,project,deploy,

↪→export}
...

Named Arguments

-p Profile this run of the program

Default: False

-c, --config Use this config file

--config-dir The directory containing the Inmanta configuration files

Default: “/etc/inmanta/inmanta.d”

--log-file Path to the logfile

--logging-config The path to the configuration file for the logging framework. This
is a YAML file that follows the dictionary-schema accepted by log-
ging.config.dictConfig(). All other log-related configuration arguments will
be ignored when this argument is provided.

--log-file-level Possible choices: 0, 1, 2, 3, 4, ERROR, WARNING, INFO, DEBUG, TRACE

Log level for messages going to the logfile: 0=ERROR, 1=WARNING,
2=INFO, 3=DEBUG

Default: “INFO”

239

Inmanta Documentation, Release 7.1.1.dev20240504011805

--timed-logs Add timestamps to logs

Default: False

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

Default: 0

--warnings Possible choices: warn, ignore, error

The warning behaviour. Must be one of ‘warn’, ‘ignore’, ‘error’

Default: “warn”

-X, --extended-errors Show stack traces for errors

Default: False

--version Show the version of the installed Inmanta product and the version of its sub-
components

Default: False

--keep-logger-names Display the log messages using the name of the logger that created the log
messages.

Default: False

Sub-commands

server

Start the inmanta server

inmanta server [-h] [-v] [--db-wait-time DB_WAIT_TIME]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--db-wait-time Maximum time in seconds the server will wait for the database to be up before
starting. A value of 0 means the server will not wait. If set to a negative value,
the server will wait indefinitely.

agent

Start the inmanta agent

inmanta agent [-h] [-v]

240 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

compile

Compile the project to a configuration model

inmanta compile [-h] [-v] [-e ENVIRONMENT] [-X] [--server_address SERVER]
[--server_port PORT] [--username USER] [--password PASSWORD]
[--ssl] [--ssl-ca-cert CA_CERT] [--export-compile-data]
[--export-compile-data-file EXPORT_COMPILE_DATA_FILE]
[--no-cache] [--experimental-data-trace]
[--experimental-dataflow-graphic] [-f MAIN_FILE]
[--no-strict-deps-check] [--strict-deps-check]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

-e The environment to compile this model for

-X, --extended-errors Show stack traces for compile errors

--server_address The address of the server hosting the environment

--server_port The port of the server hosting the environment

--username The username of the server

--password The password of the server

--ssl Enable SSL

Default: False

--ssl-ca-cert Certificate authority for SSL

--export-compile-data Export structured json containing compile data such as occurred errors.

Default: False

--export-compile-data-file File to export compile data to. If omitted compile_data.json is used.

--no-cache Disable caching of compiled CF files

Default: True

--experimental-data-trace Experimental data trace tool useful for debugging

Default: False

--experimental-dataflow-graphic Experimental graphic data flow visualization

Default: False

-f Main file

Default: “main.cf”

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the --strict-deps-check option.

Default: False

11.1. Command Reference 241

Inmanta Documentation, Release 7.1.1.dev20240504011805

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the --no-strict-
deps-check option.

Default: False

list-commands

Print out an overview of all commands

inmanta list-commands [-h]

help

show a help message and exit

inmanta help [-h] [subcommand]

Positional Arguments

subcommand Output help for a particular subcommand

modules (module)

Subcommand to manage modules

inmanta modules [-h] [-v] [-m [MODULE]]
{add,list,do,install,status,push,verify,commit,create,freeze,build,

↪→v1tov2,release}
...

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

-m, --module Module to apply this command to

subcommand

cmd Possible choices: add, list, do, install, status, push, verify, commit, create,
freeze, build, v1tov2, release

242 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Sub-commands

add

Add a module dependency to an Inmanta module or project. When executed on a project, the module is installed
as well. Either --v1 or --v2 has to be set.

inmanta modules add [-h] [-v] [--v1] [--v2] [--override] module_req

Positional Arguments

module_req The name of the module, optionally with a version constraint.

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--v1 Add the given module as a v1 module

Default: False

--v2 Add the given module as a V2 module

Default: False

--override Override the version constraint when the given module dependency already
exists.

Default: False

list

List all modules used in this project in a table

inmanta modules list [-h] [-v]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

do

Execute a command on all loaded modules

inmanta modules do [-h] [-v] command

11.1. Command Reference 243

Inmanta Documentation, Release 7.1.1.dev20240504011805

Positional Arguments

command the command to execute

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

install

The ‘inmanta module install’ command is no longer supported. Instead, use one of the following approaches:

1. To install a module in editable mode, use ‘pip install -e .’.

2. For a non-editable installation, first run ‘inmanta module build’ followed by ‘pip install ./dist/<dist-
package>’.

inmanta modules install [-h] [-v] [-e] [path]

Positional Arguments

path The path to the module.

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

-e, --editable Install in editable mode.

Default: False

status

Run a git status on all modules and report

inmanta modules status [-h] [-v]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

244 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

push

Run a git push on all modules and report

inmanta modules push [-h] [-v]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

verify

Verify dependencies and frozen module versions

inmanta modules verify [-h] [-v]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

commit

Commit all changes in the current module.

inmanta modules commit [-h] -m MESSAGE [-r] [--major] [--minor] [--patch]
[-v VERSION] [-a] [-t] [-n]

Named Arguments

-m, --message Commit message

-r, --release make a release

Default: True

--major make a major release

Default: False

--minor make a major release

Default: False

--patch make a major release

Default: False

-v, --version Version to use on tag

-a, --all Use commit -a

Default: False

-t, --tag Create a tag for the commit.Tags are not created for dev releases by default,
if you want to tag it, specify this flag explicitly

Default: False

11.1. Command Reference 245

Inmanta Documentation, Release 7.1.1.dev20240504011805

-n, --no-tag Don’t create a tag for the commit

Default: False

create

Create a new module

inmanta modules create [-h] [-v] [--v1] name

Positional Arguments

name The name of the module

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--v1 Create a v1 module. By default a v2 module is created.

Default: False

freeze

Freeze all version numbers in module.yml. This command is only supported on v1 modules. On v2 modules use
the pip freeze command instead.

inmanta modules freeze [-h] [-v] [-o OUTFILE] [-r] [--operator {==,~=,>=}]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

-o, --outfile File in which to put the new module.yml, default is the existing module.yml.
Use - to write to stdout.

-r, --recursive Freeze dependencies recursively. If not set, freeze_recursive option in mod-
ule.yml is used, which defaults to False

--operator Possible choices: ==, ~=, >=

Comparison operator used to freeze versions, If not set, the freeze_operator
option in module.yml is used which defaults to ~=

246 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

build

Build a Python package from a V2 module.

inmanta modules build [-h] [-v] [-o OUTPUT_DIR] [--dev] [-b] [path]

Positional Arguments

path The path to the module that should be built. By default, the current working
directory is used.

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

-o, --output-dir The directory where the Python package will be stored. Default: <mod-
ule_root>/dist

--dev Perform a development build of the module. This adds the build tag
.dev<timestamp> to the package name. The timestamp has the form
%Y%m%d%H%M%S.

Default: False

-b, --byte-code Produce a module wheel that contains only python bytecode for the plugins.

Default: False

v1tov2

Convert a V1 module to a V2 module in place

inmanta modules v1tov2 [-h] [-v]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

release

When a stable release is done, this command:

• Does a commit that changes the current version to a stable version.

• Adds Git release tag.

• Does a commit that changes the current version to a development version that is one patch increment ahead
of the released version.

When a development release is done using the --dev option, this command:

• Does a commit that updates the current version of the module to a development version that is a patch,
minor or major version ahead of the previous stable release. The size of the increment is determined by
the --revision, --patch, --minor or --major argument (--patch is the default). When a CHANGELOG.md
file is present in the root of the module directory then the version number in the changelog is also updated

11.1. Command Reference 247

Inmanta Documentation, Release 7.1.1.dev20240504011805

accordingly. The changelog file is always populated with the associated stable version and not a development
version.

inmanta modules release [-h] [-v] [--dev] [--major] [--minor] [--patch]
[--revision] [-m MESSAGE] [-c CHANGELOG_MESSAGE] [-a]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--dev Create a development version. The new version number will have the .dev0
build tag.

Default: False

--major Do a major version bump compared to the previous stable release.

Default: False

--minor Do a minor version bump compared to the previous stable release.

Default: False

--patch Do a patch version bump compared to the previous stable release.

Default: False

--revision Do a revision version bump compared to the previous stable release (only with
4 digits version).

Default: False

-m, --message Commit message

-c, --changelog-message This changelog message will be written to the changelog file. If the -m
option is not provided, this message will also be used as the commit message.

-a, --all Use commit -a

Default: False

project

Subcommand to manage the project

inmanta project [-h] [-v] {freeze,init,install,update} ...

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

248 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

subcommand

cmd Possible choices: freeze, init, install, update

Sub-commands

freeze

Set all version numbers in project.yml

inmanta project freeze [-h] [-v] [-o OUTFILE] [-r] [--operator {==,~=,>=}]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

-o, --outfile File in which to put the new project.yml, default is the existing project.yml.
Use - to write to stdout.

-r, --recursive Freeze dependencies recursively. If not set, freeze_recursive option in
project.yml is used,which defaults to False

--operator Possible choices: ==, ~=, >=

Comparison operator used to freeze versions, If not set, the freeze_operator
option in project.yml is used which defaults to ~=

init

Initialize directory structure for a project

inmanta project init [-h] [-v] --name NAME [--output-dir OUTPUT_DIR]
[--default]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--name, -n The name of the new project

--output-dir, -o Output directory path

Default: “./”

--default Use default parameters for the project generation

Default: False

11.1. Command Reference 249

Inmanta Documentation, Release 7.1.1.dev20240504011805

install

Install all modules required for this project.

This command installs missing modules in the development venv, but doesn’t update already installed modules
if that’s not required to satisfy the module version constraints. Use inmanta project update instead if the already
installed modules need to be updated to the latest compatible version.

This command might reinstall Python packages in the development venv if the currently installed versions are not
compatible with the dependencies specified by the different Inmanta modules.

inmanta project install [-h] [-v] [--no-strict-deps-check]
[--strict-deps-check]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the --strict-deps-check option.

Default: False

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the --no-strict-
deps-check option.

Default: False

update

Update all modules to the latest version compatible with the module version constraints and install missing modules.

This command might reinstall Python packages in the development venv if the currently installed versions are not
the latest compatible with the dependencies specified by the updated modules.

inmanta project update [-h] [-v] [--no-strict-deps-check]
[--strict-deps-check]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the --strict-deps-check option.

Default: False

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the --no-strict-
deps-check option.

Default: False

250 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

deploy

Deploy with a inmanta all-in-one setup

inmanta deploy [-h] [-v] [--dry-run] [-f MAIN_FILE]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

--dry-run Only report changes

Default: False

-f Main file

Default: “main.cf”

export

Export the configuration

inmanta export [-h] [-v] [-g] [-j JSON] [-e ENVIRONMENT] [-d] [--full] [-m]
[--server_address SERVER] [--server_port PORT] [--token TOKEN]
[--ssl | --no-ssl] [--ssl-ca-cert CA_CERT] [-X] [-f MAIN_FILE]
[--metadata METADATA] [--model-export]
[--export-plugin EXPORT_PLUGIN] [--export-compile-data]
[--export-compile-data-file EXPORT_COMPILE_DATA_FILE]
[--no-cache] [--partial]
[--delete-resource-set DELETE_RESOURCE_SET] [--soft-delete]
[--no-strict-deps-check] [--strict-deps-check]

Named Arguments

-v, --verbose Log level for messages going to the console. Default is warnings,-v warning,
-vv info, -vvv debug and -vvvv trace

-g Dump the dependency graph

Default: False

-j Do not submit to the server but only store the json that would have been sub-
mitted in the supplied file

-e The environment to compile this model for

-d Trigger a deploy for the exported version

Default: False

--full Make the agents execute a full deploy instead of an incremental deploy.
Should be used together with the -d option

Default: False

-m Also export the complete model

Default: False

--server_address The address of the server to submit the model to

11.1. Command Reference 251

Inmanta Documentation, Release 7.1.1.dev20240504011805

--server_port The port of the server to submit the model to

--token The token to auth to the server

--ssl, --no-ssl Enable SSL

--ssl-ca-cert Certificate authority for SSL

-X, --extended-errors Show stack traces for compile errors

-f Main file

Default: “main.cf”

--metadata JSON metadata why this compile happened. If a non-json string is passed it
is used as the ‘message’ attribute in the metadata.

--model-export Export the configuration model to the server as metadata.

Default: False

--export-plugin Only use this export plugin. This option also disables the execution of the
plugins listed in the configuration file in the export setting.

--export-compile-data Export structured json containing compile data such as occurred errors.

Default: False

--export-compile-data-file File to export compile data to. If omitted compile_data.json is used.

--no-cache Disable caching of compiled CF files

Default: True

--partial Execute a partial export. Does not upload new Python code to the server: it is
assumed to be unchanged since the last full export. Multiple partial exports
for disjunct resource sets may be performed concurrently but not concurrent
with a full export. When used in combination with the –json option, 0 is used
as a placeholder for the model version.

Default: False

--delete-resource-set Remove a resource set as part of a partial compile. This option can be pro-
vided multiple times and should always be used together with the –partial
option.

--soft-delete Use in combination with –delete-resource-set to delete these resource sets
only if they are not being exported

Default: False

--no-strict-deps-check When this option is enabled, only version conflicts in the direct dependen-
cies will result in an error. All other version conflicts will result in a warning.
This option is mutually exclusive with the --strict-deps-check option.

Default: False

--strict-deps-check When this option is enabled, a version conflict in any (transitive) dependency
will results in an error. This option is mutually exclusive with the --no-strict-
deps-check option.

Default: False

252 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.1.2 inmanta-cli

The inmanta-cli command can be used to interact with the inmanta server and agents, including managing
projects, environments, parameters and more. The following reference explains the available subcommands.

inmanta-cli

Base command

inmanta-cli [OPTIONS] COMMAND [ARGS]...

Options

--host <host>

The server hostname to connect to

--port <port>

The server port to connect to

action-log

Subcommand to view the resource action log

inmanta-cli action-log [OPTIONS] COMMAND [ARGS]...

list

List the resource action log for a specific Resource.

inmanta-cli action-log list [OPTIONS]

Options

-e, --environment <environment>

Required The ID or name of the environment to use

--rvid <rvid>

Required The resource version ID of the resource

--action <action>

Only list this resource action

Options
store | push | pull | deploy | dryrun | getfact | other

11.1. Command Reference 253

Inmanta Documentation, Release 7.1.1.dev20240504011805

show-messages

Show the log messages for a specific entry in the resource action log.

inmanta-cli action-log show-messages [OPTIONS]

Options

-e, --environment <environment>

Required The ID or name of the environment to use

--rvid <rvid>

Required The resource version ID of the resource

--action-id <action_id>

Required The ID of the resource action record

agent

Subcommand to manage agents

inmanta-cli agent [OPTIONS] COMMAND [ARGS]...

list

List agents in an environment

inmanta-cli agent list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

pause

Pause a specific agent or all agents in a given environment. A paused agent cannot execute deploy operations.

inmanta-cli agent pause [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

--agent <agent>

The name of the agent to pause.

--all

Pause all agents in the given environment

254 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

unpause

Unpause a specific agent or all agents in a given environment. A unpaused agent will be able to execute deploy
operations.

inmanta-cli agent unpause [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

--agent <agent>

The name of the agent to unpause.

--all

Unpause all agents in the given environment

environment

Subcommand to manage environments

inmanta-cli environment [OPTIONS] COMMAND [ARGS]...

create

Create a new environment

inmanta-cli environment create [OPTIONS]

Options

-n, --name <name>

Required The name of the new environment. The name should be unique for each project.

-p, --project <project>

Required The id of the project this environment belongs to

-r, --repo-url <repo_url>

The url of the repository that contains the configuration model

-b, --branch <branch>

The branch in the repository that contains the configuration model

-s, --save

Save the ID of the environment and the server to the .inmanta config file

11.1. Command Reference 255

Inmanta Documentation, Release 7.1.1.dev20240504011805

delete

Delete an existing environment

ENVIRONMENT: ID or name of the environment to delete

inmanta-cli environment delete [OPTIONS] ENVIRONMENT

Arguments

ENVIRONMENT

Required argument

list

List all environments

inmanta-cli environment list [OPTIONS]

modify

Modify an existing environment

ENVIRONMENT: ID or name of the environment to modify

inmanta-cli environment modify [OPTIONS] ENVIRONMENT

Options

-n, --name <name>

Required The name of the new environment

-r, --repo-url <repo_url>

The url of the repository that contains the configuration model

-b, --branch <branch>

The branch in the repository that contains the configuration model

Arguments

ENVIRONMENT

Required argument

256 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

recompile

Request the server to recompile the model of this environment.

ENVIRONMENT: ID or name of the environment to trigger the recompile for

inmanta-cli environment recompile [OPTIONS] ENVIRONMENT

Options

-u, --update

Update the model and its dependencies before recompiling

Default
False

Arguments

ENVIRONMENT

Required argument

save

Save the ID of the environment and the server to the .inmanta config file

ENVIRONMENT: ID or name of the environment to write the config for

inmanta-cli environment save [OPTIONS] ENVIRONMENT

Arguments

ENVIRONMENT

Required argument

setting

Subcommand to manage environment settings

inmanta-cli environment setting [OPTIONS] COMMAND [ARGS]...

delete

Delete an environment setting

inmanta-cli environment setting delete [OPTIONS]

11.1. Command Reference 257

Inmanta Documentation, Release 7.1.1.dev20240504011805

Options

-e, --environment <environment>

Required The environment to use

-k, --key <key>

Required The key to delete

get

Get an environment setting

inmanta-cli environment setting get [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

-k, --key <key>

Required The key to get

list

List settings of an environment

inmanta-cli environment setting list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

set

Adjust an environment setting

inmanta-cli environment setting set [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

-k, --key <key>

Required The key to set

-o, --value <value>

Required The value to set

258 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

show

Show details of an environment

ENVIRONMENT: ID or name of the environment to show

inmanta-cli environment show [OPTIONS] ENVIRONMENT

Options

--format <format_string>

Instead of outputting a table, use the supplied format string. Accepts Python format syntax. Supported fields
are ‘id’, ‘name’, ‘project’, ‘repo_url’, ‘repo_branch’

Arguments

ENVIRONMENT

Required argument

lsm

Command to execute action on Inmanta lsm

inmanta-cli lsm [OPTIONS] COMMAND [ARGS]...

Options

--host <host>

The server hostname to connect to

--port <port>

The server port to connect to

resources

Subcommand to manage resources

inmanta-cli lsm resources [OPTIONS] COMMAND [ARGS]...

list

List resources associated with a service instance

inmanta-cli lsm resources list [OPTIONS]

11.1. Command Reference 259

Inmanta Documentation, Release 7.1.1.dev20240504011805

Options

-e, --environment <environment>

Required The environment to use

-s, --service-entity <service_entity>

Required The name of the entity the instance belongs to

-i, --instance <instance>

Required The instance id

-v, --version <version>

Required Current version of the instance

service-entities

Subcommand to manage service entities

inmanta-cli lsm service-entities [OPTIONS] COMMAND [ARGS]...

list

List all entities

inmanta-cli lsm service-entities list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

service-instances

Subcommand to manage service instances

inmanta-cli lsm service-instances [OPTIONS] COMMAND [ARGS]...

list

List all instances of an entity

inmanta-cli lsm service-instances list [OPTIONS]

260 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Options

-e, --environment <environment>

Required The environment to use

-s, --service-entity <service_entity>

Required The name of the entity to list instances of

monitor

Monitor the deployment process of the configuration model in an environment, receiving continuous updates on
the deployment status

inmanta-cli monitor [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

param

Subcommand to manage parameters

inmanta-cli param [OPTIONS] COMMAND [ARGS]...

get

Get a parameter from an environment

inmanta-cli param get [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

--name <name>

Required The name of the parameter

--resource <resource>

The resource id of the parameter

11.1. Command Reference 261

Inmanta Documentation, Release 7.1.1.dev20240504011805

list

List parameters in an environment

inmanta-cli param list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

set

Set a parameter in an environment

inmanta-cli param set [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

--name <name>

Required The name of the parameter

--value <value>

Required The value of the parameter

project

Subcommand to manage projects

inmanta-cli project [OPTIONS] COMMAND [ARGS]...

create

Create a new project on the server

inmanta-cli project create [OPTIONS]

Options

-n, --name <name>

Required The name of the new project

262 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

delete

Delete an existing project.

PROJECT: The id or name of the project to delete

inmanta-cli project delete [OPTIONS] PROJECT

Arguments

PROJECT

Required argument

list

List all projects

inmanta-cli project list [OPTIONS]

modify

Modify an existing project.

PROJECT: The id or name of the project to modify

inmanta-cli project modify [OPTIONS] PROJECT

Options

-n, --name <name>

Required The new name of the project

Arguments

PROJECT

Required argument

show

Show the details of a single project

PROJECT: The id or name of the project to show

inmanta-cli project show [OPTIONS] PROJECT

11.1. Command Reference 263

Inmanta Documentation, Release 7.1.1.dev20240504011805

Arguments

PROJECT

Required argument

token

Subcommand to manage access tokens

inmanta-cli token [OPTIONS] COMMAND [ARGS]...

bootstrap

Generate a bootstrap token that provides access to everything. This token is only valid for 3600 seconds.

inmanta-cli token bootstrap [OPTIONS]

create

Create a new token for an environment for the specified client types

inmanta-cli token create [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use.

--api

Add client_type api to the token.

--compiler

Add client_type compiler to the token.

--agent

Add client_type agent to the token.

version

Subcommand to manage versions

inmanta-cli version [OPTIONS] COMMAND [ARGS]...

264 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

list

List versions in an environment

inmanta-cli version list [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

release

Release the specified version of the configuration model for deployment.

VERSION: Version of the model to release

inmanta-cli version release [OPTIONS] VERSION

Options

-e, --environment <environment>

Required The environment to use

-p, --push

Push the version to the deployment agents

--full

Make the agents execute a full deploy instead of an incremental deploy. Should be used together with the
–push option

Arguments

VERSION

Required argument

report

Get a report about a version, describing the involved resources, agents and actions

inmanta-cli version report [OPTIONS]

Options

-e, --environment <environment>

Required The environment to use

-i, --version <version>

Required The version to create a report from

-l

Show a detailed version of the report

11.1. Command Reference 265

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.2 Configuration Reference

This document lists all options for the inmanta server and inmanta agent.

The options are listed per config section.

11.2.1 agent_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

max-clients

Type
optional int

Default
None

The maximum number of simultaneous connections that can be open in parallel

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

ssl-ca-cert-file

Type
optional str

Default
None

CA cert file used to validate the server certificate against

266 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

token

Type
optional str

Default
None

The bearer token to use to connect to the API

11.2.2 client_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

max-clients

Type
optional int

Default
None

The maximum number of simultaneous connections that can be open in parallel

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

ssl-ca-cert-file

Type
optional str

11.2. Configuration Reference 267

Inmanta Documentation, Release 7.1.1.dev20240504011805

Default
None

CA cert file used to validate the server certificate against

token

Type
optional str

Default
None

The bearer token to use to connect to the API

11.2.3 cmdline_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

max-clients

Type
optional int

Default
None

The maximum number of simultaneous connections that can be open in parallel

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

268 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

ssl-ca-cert-file

Type
optional str

Default
None

CA cert file used to validate the server certificate against

token

Type
optional str

Default
None

The bearer token to use to connect to the API

11.2.4 compiler

cache

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
True

Enables the caching of compiled files.

dataflow-graphic-enable

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Enables graphic visualization of the data flow in the model. Requires the datatrace_enable option. Requires
graphviz.

datatrace-enable

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Enables the experimental datatrace application on top of the compiler. The application should help in iden-
tifying the cause of compilation errors during the development process.

export-compile-data

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Export structured json containing compile data such as occurred errors.

11.2. Configuration Reference 269

Inmanta Documentation, Release 7.1.1.dev20240504011805

export-compile-data-file

Type
str

Default
compile_data.json

File to export compile data to. If omitted compile_data.json is used.

11.2.5 compiler_rest_transport

host

Type
str

Default
localhost

IP address or hostname of the server

max-clients

Type
optional int

Default
None

The maximum number of simultaneous connections that can be open in parallel

port

Type
int

Default
8888

Server port

request-timeout

Type
int

Default
120

The time before a request times out in seconds

ssl

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Connect using SSL?

ssl-ca-cert-file

Type
optional str

270 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Default
None

CA cert file used to validate the server certificate against

token

Type
optional str

Default
None

The bearer token to use to connect to the API

11.2.6 config

agent-deploy-interval

Type
Time, the number of seconds represented as an integer value or a cron-like expression

Default
0

Either the number of seconds between two (incremental) deployment runs of the agent or a cron-like expres-
sion. If a cron-like expression is specified, a deploy will be run following a cron-like time-to-run specifica-
tion, interpreted in UTC. The expected format is [sec] min hour dom month dow [year] (If only 6 values are
provided, they are interpreted as min hour dom month dow year). A deploy will be requested at the scheduled
time. Note that if a cron expression is used the ‘agent_deploy_splay_time’ setting will be ignored. Set this
to 0 to disable the scheduled deploy runs.

agent-deploy-splay-time

Type
Time, the number of seconds represented as an integer value

Default
600

The splaytime added to the agent-deploy-interval. Set this to 0 to disable the splaytime.

At startup the agent will choose a random number between 0 and agent-deploy-splay-time. It will wait this
number of second before performing the first deployment run. Each subsequent repair deployment will start
agent-deploy-interval seconds after the previous one.

agent-get-resource-backoff

Type
float

Default
3

This is a load management feature. It ensures that the agent will not pull resources from the inmanta server
<agent-get-resource-backoff>*<duration-last-pull-in-seconds> seconds after the last time the agent pulled
resources from the server. Setting this option too low may result in a high load on the Inmanta server. Setting
it too high may result in long deployment times.

agent-interval

Type
Time, the number of seconds represented as an integer value

Default
600

11.2. Configuration Reference 271

Inmanta Documentation, Release 7.1.1.dev20240504011805

[DEPRECATED] The run interval of the agent. Every run-interval seconds, the agent will check the current
state of its resources against to desired state model

agent-map

Type
List of comma-separated key=value pairs

Default
None

By default the agent assumes that all agent names map to the host on which the process is executed. With
the agent map it can be mapped to other hosts. This value consists of a list of key/value pairs. The key is the
name of the agent and the format of the value is described in std::AgentConfig. When the configuration
option config.use_autostart_agent_map is set to true, this option will be ignored.

example: iaas_openstack=localhost,vm1=192.16.13.2

agent-names

Type
List of comma-separated values

Default
$node-name

Names of the agents this instance should deploy configuration for. When the configuration option con-
fig.use_autostart_agent_map is set to true, this option will be ignored.

agent-reconnect-delay

Type
int

Default
5

Time to wait after a failed heartbeat message. DO NOT SET TO 0

agent-repair-interval

Type
Time, the number of seconds represented as an integer value or a cron-like expression

Default
600

Either the number of seconds between two repair runs (full deploy) of the agent or a cron-like expression.
If a cron-like expression is specified, a repair will be run following a cron-like time-to-run specification,
interpreted in UTC. The expected format is [sec] min hour dom month dow [year] (If only 6 values are
provided, they are interpreted as min hour dom month dow year). A repair will be requested at the scheduled
time. Note that if a cron expression is used the ‘agent_repair_splay_time’ setting will be ignored. Setting
this to 0 to disable the scheduled repair runs.

agent-repair-splay-time

Type
Time, the number of seconds represented as an integer value

Default
600

The splaytime added to the agent-repair-interval. Set this to 0 to disable the splaytime.

At startup the agent will choose a random number between 0 and agent-repair-splay-time. It will wait this
number of second before performing the first repair run. Each subsequent repair deployment will start
agent-repair-interval seconds after the previous one. This option is ignored and a splay of 0 is used if
‘agent_repair_interval’ is a cron expression

272 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

agent-splay

Type
Time, the number of seconds represented as an integer value

Default
600

[DEPRECATED] The splaytime added to the runinterval. Set this to 0 to disable splaytime. At startup the
agent will choose a random number between 0 and “agent_splay. It will wait this number of second before
performing the first deploy. Each subsequent deploy will start agent-interval seconds after the previous one.

environment

Type
optional uuid

Default
None

The environment this model is associated with

export

Type
List of comma-separated values

Default
The list of exporters to use. This option is ignored when the –export-plugin option is used.

feature-file

Type
optional str

Default
None

The loacation of the inmanta feature file.

log-dir

Type
str

Default
/var/log/inmanta

The directory where the resource action log is stored and the logs of auto-started agents.

logging-config

Type
optional str

Default
None

The path to the configuration file for the logging framework. This is a YAML file that follows the dictionary-
schema accepted by logging.config.dictConfig(). All other log-related configuration options will be ignored
when this option is set.

node-name

Type
str

Default
socket.gethostname()

11.2. Configuration Reference 273

Inmanta Documentation, Release 7.1.1.dev20240504011805

Force the hostname of this machine to a specific value

server-timeout

Type
Time, the number of seconds represented as an integer value

Default
125

Amount of time to wait for a response from the server before we try to reconnect, must be larger than
server.agent-hold

state-dir

Type
str

Default
/var/lib/inmanta

The directory where the server stores its state

use-autostart-agent-map

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

If this option is set to true, the agent-map of this agent will be set the the autostart_agent_map configured on
the server. The agent_map will be kept up-to-date automatically.

11.2.7 database

connection-pool-max-size

Type
int

Default
70

Max number of connections in the pool

connection-pool-min-size

Type
int

Default
10

Number of connections the pool will be initialized with

connection-timeout

Type
float

Default
60

Connection timeout in seconds

274 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

host

Type
str

Default
localhost

Hostname or IP of the postgresql server

name

Type
str

Default
inmanta

The name of the database on the postgresql server

password

Type
str

Default
None

The password that belong to the database user

port

Type
int

Default
5432

The port of the postgresql server

username

Type
str

Default
postgres

The username to access the database in the PostgreSQL server

wait-time

Type
Time, the number of seconds represented as an integer value

Default
0

For how long the server should wait for the DB to be up before starting. If set to 0, the server won’t wait for
the DB. If set to a negative value, the server will wait forever.

11.2. Configuration Reference 275

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.2.8 deploy

environment

Type
optional str

Default
deploy

The environment name to use in the deploy

project

Type
optional str

Default
deploy

The project name to use in the deploy

11.2.9 influxdb

host

Type
str

Default
Hostname or IP of the influxdb server to send reports to

interval

Type
int

Default
30

Interval with which to report to influxdb

name

Type
str

Default
inmanta

The name of the database on the influxdb server

password

Type
str

Default
None

The password that belong to the influxdb user

276 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

port

Type
int

Default
8086

The port of the influxdb server

tags

Type
List of comma-separated key=value pairs

Default
a dict of tags to attach to all influxdb records in the form tag=value,tag=value

username

Type
str

Default
None

The username to access the database in the influxdb server

11.2.10 license

entitlement-file

Type
str

Default
/etc/inmanta/entitlement.jwe

The entitlement file to enable features in orchestrator.

license-key

Type
str

Default
/etc/inmanta/license.key

The license file to activate the orchestrator.

11.2.11 lsm.callback

logfile

Type
str

Default
callback.log

Log file for callbacks

11.2. Configuration Reference 277

Inmanta Documentation, Release 7.1.1.dev20240504011805

timeout

Type
float

Default
30.0

The request timeout for event notification callbacks in seconds

11.2.12 server

access-control-allow-origin

Type
optional str

Default
None

Configures the Access-Control-Allow-Origin setting of the http server.Defaults to not sending an Access-
Control-Allow-Origin header.

agent-hold

Type
Time, the number of seconds represented as an integer value

Default
server.agent-timeout *3/4

Maximal time the server will hold an agent heartbeat call

agent-process-purge-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

The number of seconds between two purges of old and expired agent processes. Set to zero to disable the
cleanup. see server.agent-processes-to-keep

agent-processes-to-keep

Type
int

Default
5

Keep this amount of expired agent processes for a certain hostname

agent-timeout

Type
Time, the number of seconds represented as an integer value

Default
30

Time before an agent is considered to be offline

278 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

auth

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
False

Enable authentication on the server API

auth-method

Type
str

Default
oidc

The authentication method to use: oidc or database

auto-recompile-wait

Type
Time, the number of seconds represented as an integer value

Default
10

DEPRECATED: The number of seconds to wait before the server may attempt to do a new recompile. Re-
compiles are triggered after facts updates for example.

bind-address

Type
List of comma-separated values

Default
127.0.0.1

A list of addresses on which the server will listen for connections. If this option is set, the
server_rest_transport.port option is ignored.

bind-port

Type
int

Default
8888

The port on which the server will listen for connections. If this option is set, the server_rest_transport.
port option is ignored.

cleanup-compiler-reports-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

Number of seconds between old compile report cleanups. see server.compiler-report-retention

compiler-report-retention

Type
Time, the number of seconds represented as an integer value

Default
604800

11.2. Configuration Reference 279

Inmanta Documentation, Release 7.1.1.dev20240504011805

The server regularly cleans up old compiler reports. This options specifies the number of seconds to keep
old compiler reports for. The default is seven days.

enabled-extensions

Type
List of comma-separated values

Default
Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an
iterable if specified.

A list of extensions the server must load. Core is always loaded.If an extension listed in this list is not
available, the server will refuse to start.

fact-expire

Type
Time, the number of seconds represented as an integer value

Default
3600

After how many seconds will discovered facts/parameters expire.

fact-renew

Type
time; < server.fact-expire

Default
server.fact-expire /3

After how many seconds will discovered facts/parameters be renewed? This value needs to be lower than
fact-expire

fact-resource-block

Type
Time, the number of seconds represented as an integer value

Default
60

Minimal time between subsequent requests for the same fact

purge-resource-action-logs-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

The number of seconds between resource-action log purging

purge-versions-interval

Type
Time, the number of seconds represented as an integer value

Default
3600

The number of seconds between version purging, see available_versions_to_keep.

280 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

resource-action-log-prefix

Type
str

Default
resource-actions-

File prefix in log-dir, containing the resource-action logs. The after the prefix the environment uuid and .log
is added

server-address

Type
str

Default
localhost

The public ip address of the server. This is required for example to inject the inmanta agent in virtual
machines at boot time.

ssl-ca-cert-file

Type
optional str

Default
None

The CA cert file required to validate the server ssl cert. This setting is used by the serverto correctly configure
the compiler and agents that the server starts itself. If not set and SSL is enabled, the server cert should be
verifiable with the CAs installed in the OS.

ssl-cert-file

Type
optional str

Default
None

SSL certificate file for the server key. Leave blank to disable SSL

ssl-key-file

Type
optional str

Default
None

Server private key to use for this server Leave blank to disable SSL

tz-aware-timestamps

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
True

Whether the server should return timezone aware timestamps. If False, the server will serialize timestamps
in a time zone naive way (in implicit UTC). If True, timestamps are serialized as time zone aware objects.

wait-after-param

Type
Time, the number of seconds represented as an integer value

11.2. Configuration Reference 281

Inmanta Documentation, Release 7.1.1.dev20240504011805

Default
5

Time to wait before recompile after new paramters have been received

11.2.13 server_rest_transport

port

Type
int

Default
8888

[DEPRECATED USE server.bind-port] The port on which the server listens for connections

11.2.14 unknown_handler

default

Type
str

Default
prune-agent

default method to handle unknown values

11.2.15 web-ui

console-enabled

Type
Boolean value, represented as any of true, false, on, off, yes, no, 1, 0. (Case-insensitive)

Default
True

Whether the server should host the web-console or not

console-path

Type
str

Default
/usr/share/inmanta/web-console

The path on the local file system where the web-console can be found

features

Type
List of comma-separated values

Default
A list of features that should be enabled in the web console.

282 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

oidc-auth-url

Type
str

Default
None

The auth url of the OpenID Connect server to use.

oidc-client-id

Type
str

Default
None

The OpenID Connect client id configured for this application.

oidc-realm

Type
str

Default
inmanta

The realm to use for OpenID Connect authentication.

11.3 Environment Settings Reference

This document lists all settings that can be set per environment. These changes are made through the API, the
web-console or the CLI tool.

The supported settings are:

agent_trigger_method_on_auto_deploy

Type
enum: push_incremental_deploy, push_full_deploy

Default
push_incremental_deploy

The agent trigger method to use when push_on_auto_deploy is enabled

auto_deploy

Type
bool

Default
True

When this boolean is set to true, the orchestrator will automatically release a new version that was compiled
by the orchestrator itself.

auto_full_compile

Type
str

Default
‘’

11.3. Environment Settings Reference 283

Inmanta Documentation, Release 7.1.1.dev20240504011805

Periodically run a full compile following a cron-like time-to-run specification interpreted in UTC with format
[sec] min hour dom month dow [year] (If only 6 values are provided, they are interpreted as min hour dom
month dow year). A compile will be requested at the scheduled time. The actual compilation may have to wait
in the compile queue for some time, depending on the size of the queue and the RECOMPILE_BACKOFF
environment setting. This setting has no effect when server_compile is disabled.

autostart_agent_deploy_interval

Type
str

Default
600

The deployment interval of the autostarted agents. Can be specified as a number of seconds or as a cron-like
expression. See also: config.agent-deploy-interval

autostart_agent_deploy_splay_time

Type
int

Default
10

The splay time on the deployment interval of the autostarted agents. See also: config.
agent-deploy-splay-time

autostart_agent_map

Type
dict

Default
{‘internal’: ‘local:’}

A dict with key the name of agents that should be automatically started. The value is either an empty string
or an agent map string. See also: config.agent-map

autostart_agent_repair_interval

Type
str

Default
86400

The repair interval of the autostarted agents. Can be specified as a number of seconds or as a cron-like
expression. See also: config.agent-repair-interval

autostart_agent_repair_splay_time

Type
int

Default
600

The splay time on the repair interval of the autostarted agents. See also: config.
agent-repair-splay-time

autostart_on_start

Type
bool

Default
True

284 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Automatically start agents when the server starts instead of only just in time.

available_versions_to_keep

Type
int

Default
100

The number of versions to keep stored in the database, excluding the latest released version.

enable_batched_partial_compiles

Type
bool

Default
False

Allow LSM to perform updates to service instances using a single partial compile, instead of doing a separate
compile per update and per service instance.

enable_lsm_expert_mode

Type
bool

Default
False

This setting enables lsm expert mode. When enabled, it will be possible to use the LSM expert mode API
endpoints. This bypass many of the safety checks done by the Inmanta server. Use with caution.

environment_agent_trigger_method

Type
enum: push_incremental_deploy, push_full_deploy

Default
push_incremental_deploy

The agent trigger method to use when no specific method is specified in the API call. This determines the
behavior of the ‘Promote’ button. For auto deploy, agent_trigger_method_on_auto_deploy is used.

environment_metrics_retention

Type
int

Default
8760

The number of hours that environment metrics have to be retained before they are cleaned up. Default=8760
hours (1 year). Set to 0 to disable automatic cleanups.

lsm_partial_compile

Type
bool

Default
False

When this boolean is set to true, the compilation will be done using partial compiles, else full compiles will
be done

11.3. Environment Settings Reference 285

Inmanta Documentation, Release 7.1.1.dev20240504011805

notification_retention

Type
int

Default
365

The number of days to retain notifications for

protected_environment

Type
bool

Default
False

When set to true, this environment cannot be cleared or deleted.

push_on_auto_deploy

Type
bool

Default
True

Push a new version when it has been autodeployed.

recompile_backoff

Type
positive_float

Default
0.1

The number of seconds to wait before the server may attempt to do a new recompile. Recompiles are triggered
after facts updates for example.

resource_action_logs_retention

Type
int

Default
7

The number of days to retain resource-action logs

server_compile

Type
bool

Default
True

Allow the server to compile the configuration model.

286 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.4 Compiler Configuration Reference

11.4.1 project.yml

Inside any project the compiler expects a project.yml file that defines metadata about the project, the location
to store modules, repositories where to find modules and possibly specific versions of modules.

For basic usage information, see Project creation guide.

The project.yml file defines the following settings:

class inmanta.module.ProjectMetadata(*, requires: list[str] = [], name: str, description: str | None =
None, freeze_recursive: bool = False, freeze_operator: str =
'~=', author: str | None = None, author_email: NameEmail |
None = None, license: str | None = None, copyright: str | None
= None, modulepath: list[str] = [], repo: list[ModuleRepoInfo]
= [], downloadpath: str | None = None, install_mode:
InstallMode = InstallMode.release, relation_precedence_policy:
list[str] = [], strict_deps_check: bool = True,
agent_install_dependency_modules: bool = True, pip:
ProjectPipConfig = ProjectPipConfig(index_url=None,
extra_index_url=[], pre=None, use_system_config=False))

Parameters
• name – The name of the project.

• description – (Optional) An optional description of the project

• author – (Optional) The author of the project

• author_email – (Optional) The contact email address of author

• license – (Optional) License the project is released under

• copyright – (Optional) Copyright holder name and date.

• modulepath – (Optional) This value is a list of paths where Inmanta should search for
modules.

• downloadpath – (Optional) This value determines the path where Inmanta should
download modules from repositories. This path is not automatically included in the
modulepath!

• install_mode – (Optional) [DEPRECATED] This key was used to determine what
version of a module should be selected when a module is downloaded. For more in-
formation see InstallMode. This should now be set via the pre option of the pip
section.

• repo – (Optional) A list (a yaml list) of repositories where Inmanta can find modules.
Inmanta tries each repository in the order they appear in the list. Each element of this
list requires a type and a url field. The type field can have the following values:

– git: When the type is set to git, the url field should contain a template of the Git repo
URL. Inmanta creates the git repo url by formatting {} or {0} with the name of the
module. If no formatter is present it appends the name of the module to the URL.

– package: [DEPRECATED] Setting up pip indexes should be done via the
index_urls option of the pip section. Refer to the migration guide for more in-
formation.

The old syntax, which only defines a Git URL per list entry is maintained for backward
compatibility.

11.4. Compiler Configuration Reference 287

Inmanta Documentation, Release 7.1.1.dev20240504011805

• requires – (Optional) This key can contain a list (a yaml list) of version constraints
for modules used in this project. Similar to the module, version constraints are defined
using PEP440 syntax.

• freeze_recursive – (Optional) This key determines if the freeze command will be-
have recursively or not. If freeze_recursive is set to false or not set, the current version
of all modules imported directly in the main.cf file will be set in project.yml. If it is set
to true, the versions of all modules used in this project will be set in project.yml.

• freeze_operator – (Optional) This key determines the comparison operator used by
the freeze command. Valid values are [==, ~=, >=]. Default is ‘~=’

• relation_precedence_policy – [EXPERIMENTAL FEATURE] A list of rules that
indicate the order in which the compiler should freeze lists. The following syntax should
be used to specify a rule <first-type>.<relation-name> before <then-type>.<relation-
name>. With this rule in place, the compiler will first freeze first-type.relation-name
and only then then-type.relation-name.

• strict_deps_check – Determines whether the compiler or inmanta tools that in-
stall/update module dependencies, should check the virtual environment for version con-
flicts in a strict way or not. A strict check means that all transitive dependencies will be
checked for version conflicts and that any violation will result in an error. When a non-
strict check is done, only version conflicts in a direct dependency will result in an error.
All other violations will only result in a warning message.

• agent_install_dependency_modules – [DEPRECATED] If true, when a module
declares Python dependencies on other (v2) modules, the agent will install these depen-
dency modules with pip. This option should only be enabled if the agent is configured
with the appropriate pip related environment variables. The option allows to an ex-
tent for inter-module dependencies within handler code, even if the dependency module
doesn’t have any handlers that would otherwise be considered relevant for this agent.
Care should still be taken when you use inter-module imports. The current code load-
ing mechanism does not explicitly order reloads. A general guideline is to use qualified
imports where you can (import the module rather than objects from the module). When
this is not feasible, you should be aware of Python’s reload semantics and take this into
account when making changes to handler code. Another caveat is that if the dependency
module does contain code that is relevant for the agent, it will be loaded like any other
handler code and it will be this code that is imported by any dependent modules (though
depending on the load order the very first import may use the version installed by pip).
If at some point this dependency module’s handlers cease to be relevant for this agent,
its code will remain stale. Therefore this feature should not be depended on in transient
scenarios like this.

• pip – A configuration section that holds information about the pip configuration that
should be taken into account when installing Python packages (See: inmanta.module.
ProjectPipConfig for more details).

class inmanta.module.ProjectPipConfig(*, index_url: str | None = None, extra_index_url:
Sequence[str] = [], pre: bool | None = None,
use_system_config: bool = False)

Parameters
• index_url – one pip index url for this project.

• extra_index_url – additional pip index urls for this project. This is generally only
recommended if all configured indexes are under full control of the end user to protect
against dependency confusion attacks. See the pip install documentation and PEP 708
(draft) for more information.

• pre – allow pre-releases when installing Python packages, i.e. pip –pre. If null, behaves
like false unless pip.use-system-config=true, in which case system config is respected.

288 Chapter 11. Inmanta Reference

https://www.python.org/dev/peps/pep-0440/#version-specifiers
https://docs.python.org/3/library/importlib.html#importlib.reload
https://pip.pypa.io/en/stable/cli/pip_install/
https://peps.python.org/pep-0708/
https://peps.python.org/pep-0708/

Inmanta Documentation, Release 7.1.1.dev20240504011805

• use_system_config – defaults to false. When true, sets the pip’s index url, extra index
urls and pre according to the respective settings outlined above but otherwise respect any
pip environment variables and/or config in the pip config file, including any extra-index-
urls.

If no indexes are configured in pip.index-url/pip.extra-index-url, this option falls back to
pip’s default behavior, meaning it uses the pip index url from the environment, the config
file, or PyPi, in that order.

For development, it is recommended to set this option to false, both for portability (and
related compatibility with tools like pytest-inmanta-lsm) and for security (dependency
confusion attacks could affect users that aren’t aware that inmanta installs Python pack-
ages).

See the section about setting up pip index for more information.

The code snippet below provides an example of a complete project.yml file:

name: quickstart
description: A quickstart project that installs a drupal website.
author: Inmanta
author_email: code@inmanta.com
license: Apache 2.0
copyright: Inmanta (2021)
modulepath: libs
downloadpath: libs
install_mode: release
repo:
- url: https://github.com/inmanta/
type: git

requires:
- apache ~= 0.5.2
- drupal ~= 0.7.3
- exec ~= 1.1.4
- ip ~= 1.2.1
- mysql ~= 0.6.2
- net ~= 1.0.5
- php ~= 0.3.1
- redhat ~= 0.9.2
- std ~= 3.0.2
- web ~= 0.3.3
- yum ~= 0.6.2

freeze_recursive: true
freeze_operator: ~=
pip:

index-url: https://pypi.org/simple/
extra-index-url: []
pre: false
use-system-config: false

11.4. Compiler Configuration Reference 289

Inmanta Documentation, Release 7.1.1.dev20240504011805

Configure pip index

This section explains how to configure a project-wide pip index. This index will be used to download v2 modules
and v1 modules’ dependencies. By default, a project created using the Project creation guide is configured to
install packages from https://pypi.org/simple/. The ProjectPipConfig section of the project.yml file
offers options to configure this behaviour. Some of these options are detailed below:

pip.use-system-config

This option determines the isolation level of the project’s pip config. When false (the default), any pip config set
on the system through pip config files is ignored, the PIP_INDEX_URL, PIP_EXTRA_INDEX_URL and PIP_PRE
environment variables are ignored, and pip will only look for packages in the index(es) defined in the project.yml.
When true, the orchestrator will use the system’s pip configuration for the pip-related settings except when explicitly
overriden in the project.yml (See below for more details).

Setting this to false is generally recommended, especially during development, both for portability (achieving
consistent behavior regardless of the system it runs on, which is important for reproductive testing on developer
machines, easy compatibility with Inmanta pytest extensions, and consistency between compiler and agents) and
for security (the isolation reduces the risk of dependency confusion attacks).

Setting this to true will have the following consequences:

• If no index is set in the project.yml file i.e. both index-url and extra-index-url are unset, then Pip’s
default search behaviour will be used: environment variables, pip config files and then PyPi (in that order).

• If index-url is set, this value will be used over any index defined in the system’s environment variables or
pip config files.

• If extra-index-url is set, these indexes will be used in addition to any extra index defined in the system’s
environment variables or pip config files, and passed to pip as extra indexes.

• If pre is set, it will supersede pip’s pre option set by the PIP_PRE environment variable or in pip

config file. When true, pre-release versions are allowed when installing v2 modules or v1 modules’ dependencies.

• Auto-started agents live on the same host as the server, and so they will share the pip config at the system
level.

Warning: use-system-config = true should only be used if the pip configuration is fully managed at the
system level and secure for each component of the orchestrator.

Example scenario

1) During development

Using a single pip index isolated from any system config is the recommended approach. The pre=true option
allows pip to use pre-release versions, e.g. when testing dev versions of modules published to the dev index. Here
is an example of a dev config:

pip:
index-url: https://my_repo.secure.example.com/repository/dev
extra-index-url: []
pre: true
use-system-config: false

2) In production

Using a single pip index is still the recommended approach, and the use of pre-release versions should be disabled.

290 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

For a portable project (recommended), disable use-system-config and set index-url to the secure internal
repo e.g.:

pip:
index-url: https://my_repo.secure.example.com/repository/inmanta-production
pre: false
use-system-config: false

If you prefer to manage the pip configuration at the system level, use use-system-config: true e.g.:

pip:
pre: false
use-system-config: true

Note: Any pip config set explicitly in the project config will always take precedence over the system config. For
more details see pip.use-system-config.

Pip-related settings that are not supported by the project config are not overridden.

To use a setting from the system’s pip configuration without overriding it, leave the corresponding option unset in
the project.yml file.

Note: Set up authentication towards the index using netrc. See this section for more information.

Migrate to project-wide pip config

This section is a migration guide for upgrading to inmanta-service-orchestrator 7.0.0 or inmanta 2024.
0. inmanta-core 11.0.0 introduced new options to configure pip settings for the whole project in a centralized
way. For detailed information, see here. The following code sample can be used as a baseline in the project.yml
file:

pip:
index-url: https://my_repo.secure.example.com/repository/inmanta-production
pre: false
use-system-config: false

Alternatively, if you prefer to manage the pip config at the system level, refer to this section.

All the v2 module sources currently set in a repo section of the project_yml with type package should also be
duplicated in the pip.index-url (and pip.extra-index-url if more than one index is being used).

If you want to allow pre-releases for v2 modules and other Python packages, set pip.pre = true in the project
config file. This used to be controlled by the InstallMode set at the project level or at a module level.

Make sure the agents have access to the index(es) configured at the project level.

Run a full compile after upgrading in order to export the project pip config to the server, so that it is available
for agents. This will ensure that the agents follow the pip config defined in the project. For reference, prior to
inmanta-core 11.0.0, the agents were always using their respective system’s pip config.

11.4. Compiler Configuration Reference 291

Inmanta Documentation, Release 7.1.1.dev20240504011805

Breaking changes:

• Indexes defined through the repo option with type package will be ignored.

• Dependencies for v1 modules will now be installed according to the pip config in the project configuration
file, while they previously always used the system’s pip config.

• The agent will follow the pip configuration defined in the project.yml.

• PIP_PRE is now ignored unless use-system-config is set.

• Allowing the installation of pre-release versions for v2 modules through the InstallMode is no longer
supported. Use the project.yml pip.pre section instead.

Changes relative to inmanta-2023.4 (OSS):

• pip.use_config_file is refactored into pip.use-system-config.

• An error is now raised if pip.use-system-config is false and no “primary” index is set through pip.
index-url.

• Pip environment variables are no longer ignored when pip.use-system-config is true and the corre-
sponding option from the project_yml is unset.

11.4.2 Module metadata files

The metadata of a V1 module is present in the module.yml file. V2 modules keep their metadata in the setup.cfg
file. Below sections describe each of these metadata files.

module.yml

Inside any V1 module the compiler expects a module.yml file that defines metadata about the module.

The module.yml file defines the following settings:

class inmanta.module.ModuleMetadata(*, name: str, description: str | None = None, freeze_recursive:
bool = False, freeze_operator: str = '~=', version: str, license:
str, deprecated: bool | None = None)

The code snippet below provides an example of a complete module.yml file:

name: openstack
description: A module to manage networks, routers, virtual machine, etc. on an␣
↪→Openstack cluster.
version: 3.7.1
license: Apache 2.0
compiler_version: 2020.2
requires:
- ip
- net
- platform
- ssh
- std

freeze_recursive: false
freeze_operator: ~=

292 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

setup.cfg

Inside any V2 module the compiler expects a setup.cfg file that defines metadata about the module.

The code snippet below provides an example of a complete setup.cfg file:

[metadata]
name = inmanta-module-openstack
description = A module to manage networks, routers, virtual machine, etc. on an␣
↪→Openstack cluster.
version = 3.7.1
license = Apache 2.0
compiler_version = 2020.2
freeze_recursive = false
freeze_operator = ~=

[options]
install_requires =
inmanta-modules-ip
inmanta-modules-net
inmanta-modules-platform
inmanta-modules-ssh
inmanta-modules-std

11.5 Programmatic API reference

This page describes parts of inmanta code base that provide a stable API that could be used from modules or
extensions.

Warning: Only those parts explicitly mentioned here are part of the API. They provide a stable interface.
Other parts of the containing modules provide no such guarantees.

11.5.1 Constants

class inmanta.const.LogLevel(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: str, Enum

Log levels used for various parts of the inmanta orchestrator.

CRITICAL = 'CRITICAL'

DEBUG = 'DEBUG'

ERROR = 'ERROR'

INFO = 'INFO'

TRACE = 'TRACE'

WARNING = 'WARNING'

property to_int: int

11.5. Programmatic API reference 293

Inmanta Documentation, Release 7.1.1.dev20240504011805

class inmanta.const.ResourceAction(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: str, Enum

Enumeration of all resource actions.

deploy = 'deploy'

dryrun = 'dryrun'

getfact = 'getfact'

other = 'other'

pull = 'pull'

push = 'push'

store = 'store'

inmanta_lsm.const.LSM_ENV_VARS : Sequence[str]

This sequence contains all environment variables passed to the compiler by inmanta-lsm

11.5.2 Compiler exceptions

class inmanta.ast.CompilerException(msg: str)
Bases: Exception, Exportable

Base class for exceptions generated by the compiler

class inmanta.parser.ParserException(location: Location, value: object, msg: str | None = None)
Bases: CompilerException

Exception occurring during the parsing of the code

class inmanta.ast.RuntimeException(stmt: Locatable | None, msg: str)
Bases: CompilerException

Baseclass for exceptions raised by the compiler after parsing is complete.

class inmanta.ast.ExternalException(stmt: Locatable | None, msg: str, cause: Exception)
Bases: RuntimeException

When a plugin call produces an exception that is not a RuntimeException, it is wrapped in an ExternalEx-
ception to make it conform to the expected interface

class inmanta.ast.ExplicitPluginException(stmt: Locatable | None, msg: str, cause:
PluginException)

Bases: ExternalException

Base exception for wrapping an explicit inmanta.plugins.PluginException raised from a plugin call.

11.5.3 Plugins

class inmanta.plugins.Context(resolver: Resolver, queue: QueueScheduler, owner: FunctionCall,
plugin: Plugin, result: ResultVariable)

An instance of this class is used to pass context to the plugin

get_client()→ Client

get_compiler()→ Compiler

294 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

get_data_dir()→ str
Get the path to the data dir (and create if it does not exist yet

get_environment_id()→ str

get_queue_scheduler()→ QueueScheduler

get_resolver()→ Resolver

get_sync_client()→ SyncClient

get_type(name: LocatableString)→ Type
Get a type from the configuration model.

run_sync(function: Callable[[], Awaitable[T]], timeout: int = 5)→ T
Execute the async function and return its result. This method uses this thread’s current (not running)
event loop if there is one, otherwise it creates a new one. The main use for this function is to use the
inmanta internal rpc to communicate with the server.

Parameters
• function – The async function to execute. This function should return a yieldable

object.

• timeout – A timeout for the async function.

Returns
The result of the async call.

Raises
ConnectionRefusedError – When the function timeouts this exception is raised.

inmanta.plugins.plugin(function: Callable | None = None, commands: list[str] | None = None,
emits_statements: bool = False, allow_unknown: bool = False)→ Callable

Python decorator to register functions with inmanta as plugin

Parameters
• function – The function to register with inmanta. This is the first argument when it is

used as decorator.

• commands – A list of command paths that need to be available. Inmanta raises an ex-
ception when the command is not available.

• emits_statements – Set to true if this plugin emits new statements that the compiler
should execute. This is only required for complex plugins such as integrating a template
engine.

• allow_unknown – Set to true if this plugin accepts Unknown values as valid input.

class inmanta.plugins.PluginException(message: str)
Base class for custom exceptions raised from a plugin.

class inmanta.plugins.PluginMeta(name: str, bases: tuple[type, ...], dct: dict[str, object])
Bases: type

A metaclass that keeps track of concrete plugin subclasses. This class is responsible for all plugin registration.

classmethod add_function(plugin_class: type[Plugin])→ None
Add a function plugin class

classmethod clear(inmanta_module: str | None = None)→ None
Clears registered plugin functions.

11.5. Programmatic API reference 295

Inmanta Documentation, Release 7.1.1.dev20240504011805

Parameters
inmanta_module – Clear plugin functions for a specific inmanta module. If omitted,
clears all registered plugin functions.

classmethod get_functions()→ dict[str, Type[Plugin]]
Get all functions that are registered

11.5.4 Resources

inmanta.resources.resource(name: str, id_attribute: str, agent: str)
A decorator that registers a new resource. The decorator must be applied to classes that inherit from
Resource

Parameters
• name – The name of the entity in the configuration model it creates a resources from.

For example std::File

• id_attribute – The attribute of this resource that uniquely identifies a resource on an
agent. This attribute can be mapped.

• agent – This string indicates how the agent of this resource is determined. This string
points to an attribute, but it can navigate relations (this value cannot be mapped). For
example, the agent argument could be host.name

class inmanta.resources.Resource(_id: Id)
Plugins should inherit resource from this class so a resource from a model can be serialized and deserialized.

Such as class is registered when the resource() decorator is used. Each class needs to indicate the fields
the resource will have with a class field named “fields”. A metaclass merges all fields lists from the class
itself and all superclasses. If a field it not available directly in the model object the serializer will look for
static methods in the class with the name “get_$fieldname”.

clone(**kwargs: Any)→ T
Create a clone of this resource. The given kwargs can be used to override attributes.

Returns
The cloned resource

class inmanta.resources.PurgeableResource(_id: Id)
See std::PurgeableResource for more information.

class inmanta.resources.ManagedResource(_id: Id)
See std::ManagedResource for more information.

class inmanta.resources.IgnoreResourceException

Throw this exception when a resource should not be included by the exported. Typically resources use this
to indicate that they are not managed by the orchestrator.

class inmanta.resources.Id(entity_type: str, agent_name: str, attribute: str, attribute_value: str, version:
int = 0)

A unique id that identifies a resource that is managed by an agent

classmethod parse_id(resource_id: ResourceVersionIdStr | ResourceIdStr, version: int | None =
None)→ Id

Parse the resource id and return the type, the hostname and the resource identifier.

Parameters
version – If provided, the version field of the returned Id will be set to this version.

296 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

resource_str()→ ResourceIdStr

String representation for this resource id with the following format:
<type>[<agent>,<attribute>=<value>] - type: The resource type, as defined in the configuration
model. For example std::File. - agent: The agent responsible for this resource. - attribute: The
key attribute that uniquely identifies this resource on the agent - value: The corresponding value
for this key attribute.

Returns
Returns a inmanta.data.model.ResourceIdStr

class inmanta.execute.util.Unknown(source: object)
An instance of this class is used to indicate that this value can not be determined yet.

Parameters
source – The source object that can determine the value

11.5.5 Handlers

inmanta.agent.handler.cache(func: T_FUNC | None = None, ignore: list[str] = [], timeout: int = 5000,
for_version: bool = True, cache_none: bool = True, cacheNone: bool |
None = None, call_on_delete: Callable[[Any], None] | None = None)→
T_FUNC | Callable[[T_FUNC], T_FUNC]

decorator for methods in resource handlers to provide caching

this decorator works similar to memoization: when the decorate method is called, its return value is cached,
for subsequent calls, the cached value is used instead of the actual value

The name of the method + the arguments of the method form the cache key

If an argument named version is present and for_version is True, the cache entry is flushed after this version
has been deployed If an argument named resource is present, it is assumed to be a resource and its ID is used,
without the version information

Parameters
• timeout – the number of second this cache entry should live

• for_version – if true, this value is evicted from the cache when this deploy is ready

• ignore – a list of argument names that should not be part of the cache key

• cache_none – cache returned none values

• call_on_delete – A callback function that is called when the value is removed from
the cache, with the value as argument.

inmanta.agent.handler.provider(resource_type: str, name: str)→ None
A decorator that registers a new handler.

Parameters
• resource_type – The type of the resource this handler is responsible for. For example,
std::File

• name – A name to reference this provider.

class inmanta.agent.handler.SkipResource

Bases: Exception

A handler should raise this exception when a resource should be skipped. The resource will be marked as
skipped instead of failed.

11.5. Programmatic API reference 297

Inmanta Documentation, Release 7.1.1.dev20240504011805

class inmanta.agent.handler.ResourcePurged

If the read_resource() method raises this exception, the agent will mark the current state of the resource
as purged.

class inmanta.agent.handler.HandlerContext(resource: Resource, dry_run: bool = False, action_id:
UUID | None = None, logger: Logger | None = None)

Context passed to handler methods for state related “things”

add_change(name: str, desired: object, current: object = None)→ None
Report a change of a field. This field is added to the set of updated fields

Parameters
• name – The name of the field that was updated

• desired – The desired value to which the field was updated (or should be updated)

• current – The value of the field before it was updated

add_changes(**kwargs: BaseModel | UUID | bool | int | float | datetime | str)→ None
Report a list of changes at once as kwargs

Parameters
• key – The name of the field that was updated. This field is also added to the set of

updated fields

• value – The desired value of the field.

To report the previous value of the field, use the add_change method

fields_updated(fields: str)→ None
Report that fields have been updated

is_dry_run()→ bool
Is this a dryrun?

set_fact(fact_id: str, value: str, expires: bool = True)→ None
Send a fact to the Inmanta server.

Parameters
• fact_id – The name of the fact.

• value – The actual value of the fact.

• expires – Whether this fact expires or not.

set_status(status: ResourceState)→ None
Set the status of the handler operation.

update_changes(changes: dict[str, AttributeStateChange])→ None
update_changes(changes: dict[str, dict[str, BaseModel | UUID | bool | int | float | datetime | str |

None]])→ None
update_changes(changes: dict[str, tuple[BaseModel | UUID | bool | int | float | datetime | str,

BaseModel | UUID | bool | int | float | datetime | str]])→ None
Update the changes list with changes

Parameters
changes – This should be a dict with a value a dict containing “current” and “desired”
keys

class inmanta.agent.handler.ResourceHandler(agent: inmanta.agent.agent.AgentInstance, io: IOBase
| None = None)

A class that handles resources.

298 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

_abc_impl = <_abc._abc_data object>

_diff(current: TResource, desired: TResource)→ dict[str, dict[str, Any]]
Calculate the diff between the current and desired resource state.

Parameters
• current – The current state of the resource

• desired – The desired state of the resource

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

check_facts(ctx: HandlerContext, resource: TResource)→ dict[str, object]
This method is called by the agent to query for facts. It runs pre() and post(). This method calls
facts() to do the actual querying.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to query facts for.

Returns
A dict with fact names as keys and facts values.

check_resource(ctx: HandlerContext, resource: TResource)→ TResource
Check the current state of a resource

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

Returns
A resource to represents the current state. Use the clone() to create clone of the given
resource that can be modified.

do_changes(ctx: HandlerContext, resource: TResource, changes: Mapping[str, Mapping[str, object]])
→ None

Do the changes required to bring the resource on this system in the state of the given resource.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

• changes – The changes that need to occur as reported by list_changes()

execute(ctx: HandlerContext, resource: TResource, dry_run: bool = False)→ None
Enforce a resource’s intent and inform the handler context of any relevant changes (e.g. set deployed
status, report attribute changes). Called only when all of its dependencies have successfully deployed.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to deploy.

• dry_run – If set to true, the intent is not enforced, only the set of changes it would
bring is computed.

11.5. Programmatic API reference 299

Inmanta Documentation, Release 7.1.1.dev20240504011805

list_changes(ctx: HandlerContext, resource: TResource)→ dict[str, dict[str, Any]]
Returns the changes required to bring the resource on this system in the state described in the resource
entry. This method calls check_resource()

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

class inmanta.agent.handler.CRUDHandler(agent: inmanta.agent.agent.AgentInstance, io: IOBase |
None = None)

This handler base class requires CRUD methods to be implemented: create, read, update and delete. Such a
handler only works on purgeable resources.

available(resource: TResource)→ bool
Kept for backwards compatibility, new handler implementations should never override this.

Parameters
resource – Resource for which to check whether this handler is available.

calculate_diff(ctx: HandlerContext, current: TPurgeableResource, desired: TPurgeableResource)→
dict[str, dict[str, Any]]

Calculate the diff between the current and desired resource state.

Parameters
• ctx – Context can be used to get values discovered in the read method. For example,

the id used in API calls. This context should also be used to let the handler know what
changes were made to the resource.

• current – The current state of the resource

• desired – The desired state of the resource

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

can_reload()→ bool
Can this handler reload?

Returns
Return true if this handler needs to reload on requires changes.

check_facts(ctx: HandlerContext, resource: TResource)→ dict[str, object]
This method is called by the agent to query for facts. It runs pre() and post(). This method calls
facts() to do the actual querying.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to query facts for.

Returns
A dict with fact names as keys and facts values.

check_resource(ctx: HandlerContext, resource: TResource)→ TResource
Check the current state of a resource

Parameters
• ctx – Context object to report changes and logs to the agent and server.

300 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• resource – The resource to check the current state of.

Returns
A resource to represents the current state. Use the clone() to create clone of the given
resource that can be modified.

close()→ None
Override this method to implement custom logic called by the agent on handler deactivation. i.e. when
the instantiated handler will no longer be used by the agent.

create_resource(ctx: HandlerContext, resource: TPurgeableResource)→ None
This method is called by the handler when the resource should be created.

Parameters
• context – Context can be used to get values discovered in the read method. For

example, the id used in API calls. This context should also be used to let the handler
know what changes were made to the resource.

• resource – The desired resource state.

delete_resource(ctx: HandlerContext, resource: TPurgeableResource)→ None
This method is called by the handler when the resource should be deleted.

Parameters
• ctx – Context can be used to get values discovered in the read method. For example,

the id used in API calls. This context should also be used to let the handler know what
changes were made to the resource.

• resource – The desired resource state.

deploy(ctx: HandlerContext, resource: TResource, requires: Mapping[ResourceIdStr, ResourceState])
→ None

Main entrypoint of the handler that will be called by the agent to deploy a resource on the server. The
agent calls this method for a given resource as soon as all its dependencies (requires relation) are ready.
It is always called, even when one of the dependencies failed to deploy.

Takes appropriate action based on the state of its dependencies. Calls execute iff the handler should
actually execute, i.e. enforce the intent represented by the resource. A handler may choose not to
proceed to this execution stage, e.g. when one of the resource’s dependencies failed.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to deploy

• requires – A dictionary mapping the resource id of each dependency of the given
resource to its resource state.

do_changes(ctx: HandlerContext, resource: TResource, changes: Mapping[str, Mapping[str, object]])
→ None

Do the changes required to bring the resource on this system in the state of the given resource.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

• changes – The changes that need to occur as reported by list_changes()

do_reload(ctx: HandlerContext, resource: TResource)→ None
Perform a reload of this resource.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

11.5. Programmatic API reference 301

Inmanta Documentation, Release 7.1.1.dev20240504011805

• resource – The resource to reload.

execute(ctx: HandlerContext, resource: TPurgeableResource, dry_run: bool = False)→ None
Enforce a resource’s intent and inform the handler context of any relevant changes (e.g. set deployed
status, report attribute changes). Called only when all of its dependencies have successfully deployed.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to deploy.

• dry_run – If set to true, the intent is not enforced, only the set of changes it would
bring is computed.

facts(ctx: HandlerContext, resource: TResource)→ dict[str, object]
Override this method to implement fact querying. A queried fact can be reported back in two different
ways: either via the return value of this method or by adding the fact to the HandlerContext via the
set_fact() method. pre() and post() are called before and after this method.

Parameters
• ctx – Context object to report changes, logs and facts to the agent and server.

• resource – The resource to query facts for.

Returns
A dict with fact names as keys and facts values.

get_client()→ SessionClient
Get the client instance that identifies itself with the agent session.

Returns
A client that is associated with the session of the agent that executes this handler.

get_file(hash_id: str)→ bytes | None
Retrieve a file from the fileserver identified with the given id.

Parameters
hash_id – The id of the content/file to retrieve from the server.

Returns
The content in the form of a bytestring or none is the content does not exist.

list_changes(ctx: HandlerContext, resource: TResource)→ dict[str, dict[str, Any]]
Returns the changes required to bring the resource on this system in the state described in the resource
entry. This method calls check_resource()

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource to check the current state of.

Returns
A dict with key the name of the field and value another dict with “current” and “desired”
as keys for fields that require changes.

post(ctx: HandlerContext, resource: TResource)→ None
Method executed after a handler operation. Override this method to run after an operation.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource being handled.

302 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

pre(ctx: HandlerContext, resource: TResource)→ None
Method executed before a handler operation (Facts, dryrun, real deployment, . . .) is executed. Override
this method to run before an operation.

Parameters
• ctx – Context object to report changes and logs to the agent and server.

• resource – The resource being handled.

read_resource(ctx: HandlerContext, resource: TPurgeableResource)→ None
This method reads the current state of the resource. It provides a copy of the resource that should be
deployed, the method implementation should modify the attributes of this resource to the current state.

Parameters
• ctx – Context can be used to pass value discovered in the read method to the CUD

methods. For example, the id used in API calls

• resource – A clone of the desired resource state. The read method need to set values
on this object.

Raises
• SkipResource – Raise this exception when the handler should skip this resource

• ResourcePurged – Raise this exception when the resource does not exist yet.

run_sync(func: Callable[[], Awaitable[T]])→ T
Run the given async function on the ioloop of the agent. It will block the current thread until the future
resolves.

Parameters
func – A function that returns a yieldable future.

Returns
The result of the async function.

set_cache(cache: AgentCache)→ None
The agent calls this method when it has deemed this handler suitable for a given resource. This cache
will be used for methods decorated with @cache.

Parameters
cache – The AgentCache to use.

stat_file(hash_id: str)→ bool
Check if a file exists on the server.

Parameters
hash_id – The id of the file on the server. The convention is the use the sha1sum of the
content as id.

Returns
True if the file is available on the server.

update_resource(ctx: HandlerContext, changes: dict[str, dict[str, Any]], resource:
TPurgeableResource)→ None

This method is called by the handler when the resource should be updated.

Parameters
• ctx – Context can be used to get values discovered in the read method. For example,

the id used in API calls. This context should also be used to let the handler know what
changes were made to the resource.

• changes – A map of resource attributes that should be changed. Each value is a tuple
with the current and the desired value.

11.5. Programmatic API reference 303

Inmanta Documentation, Release 7.1.1.dev20240504011805

• resource – The desired resource state.

upload_file(hash_id: str, content: bytes)→ None
Upload a file to the server

Parameters
• hash_id – The id to identify the content. The convention is to use the sha1sum of the

content to identify it.

• content – A byte string with the content

class inmanta.agent.io.local.LocalIO(uri: str, config: Dict[str, str | None])
This class provides handler IO methods

This class is part of the stable API.

chmod(path: str, permissions: str)→ None
Change the permissions

Parameters
• path (str) – The path of the file or directory to change the permission of.

• permissions (str) – An octal string with the permission to set.

chown(path: str, user: str | None = None, group: str | None = None)→ None
Change the ownership of a file.

Parameters
• path (str) – The path of the file or directory to change the ownership of.

• user (str) – The user to change to

• group (str) – The group to change to

close()→ None
Close any resources

file_exists(path: str)→ bool
Check if a given file exists

Parameters
path (str) – The path to check if it exists.

Returns
Returns true if the file exists

Return type
bool

file_stat(path: str)→ Dict[str, int | str]
Do a stat call on a file

Parameters
path (str) – The file or direct to stat

Returns
A dict with the owner, group and permissions of the given path

Return type
dict[str, str]

hash_file(path: str)→ str
Return the sha1sum of the file at path

Parameters
path (str) – The path of the file to hash the content of

304 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Returns
The sha1sum in a hex string

Return type
str

is_remote()→ bool
Are operation executed remote

Returns
Returns true if the io operations are remote.

Return type
bool

is_symlink(path: str)→ bool
Is the given path a symlink

Parameters
path (str) – The path of the symlink

Returns
Returns true if the given path points to a symlink

Return type
str

mkdir(path: str)→ None
Create a directory

Parameters
path (str) – Create this directory. The parent needs to exist.

put(path: str, content: str)→ None
Put the given content at the given path

Parameters
• path (str) – The location where to write the file

• content (bytes) – The binarystring content to write to the file.

read(path: str)→ str
Read in the file in path and return its content as string

Parameters
path (str) – The path of the file to read.

Returns
The string content of the file

Return type
string

read_binary(path: str)→ bytes
Read in the file in path and return its content as a bytestring

Parameters
path (str) – The path of the file to read.

Returns
The byte content of the file

Return type
bytes

11.5. Programmatic API reference 305

Inmanta Documentation, Release 7.1.1.dev20240504011805

readlink(path: str)→ str
Return the target of the path

Parameters
path (str) – The symlink to get the target for.

Returns
The target of the symlink

Return type
str

remove(path: str)→ None
Remove a file

Parameters
path (str) – The path of the file to remove.

rmdir(path: str)→ None
Remove a directory

Parameters
path (str) – The directory to remove

run(command: str, arguments: List[str] = [], env: Dict[str, str] | None = None, cwd: str | None = None,
timeout: int | None = None)→ Tuple[str, str, int]
Execute a command with the given argument and return the result

Parameters
• command (str) – The command to execute.

• arguments (list) – The arguments of the command

• env (dict) – A dictionary with environment variables.

• cwd (str) – The working dir to execute the command in.

• timeout (int) – The timeout for this command. This parameter is ignored if the
command is executed remotely with a python 2 interpreter.

Returns
A tuple with (stdout, stderr, returncode)

Return type
tuple

symlink(source: str, target: str)→ None
Symlink source to target

Parameters
• source (str) – Create a symlink of this path to target

• target (str) – The path of the symlink to create

306 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.5.6 Export

@inmanta.export.dependency_manager(function: Callable[[dict[str, Entity], dict[Id, Resource]], None])
→ None

Register a function that manages dependencies in the configuration model that will be deployed.

11.5.7 Attributes

class inmanta.ast.attribute.Attribute(entity: Entity, value_type: Type, name: str, location: Location,
multi: bool = False, nullable: bool = False)

The attribute base class for entity attributes.

Parameters
entity – The entity this attribute belongs to

get_type()→ Type
Get the type of this attribute.

property type: Type

Get the type of this attribute.

validate(value: object)→ None
Validate a value that is going to be assigned to this attribute. Raises a inmanta.ast.
RuntimeException if validation fails.

class inmanta.ast.attribute.RelationAttribute(entity: Entity, value_type: Type, name: str,
location: Location)

Bases: Attribute

An attribute that is a relation

11.5.8 Modules

class inmanta.module.InstallMode(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: str, Enum

The module install mode determines what version of a module should be selected when a module is down-
loaded.

master = 'master'

For V1 modules: Use the module’s master branch. For V2 modules: Equivalent to InstallMode.
prerelease

prerelease = 'prerelease'

Similar to InstallMode.release but prerelease versions are allowed as well.

release = 'release'

Only use a released version that is compatible with the current compiler and any version con-
straints defined in the requires lists for the project or any other modules (see ProjectMetadata,
ModuleV1Metadata and ModuleV2Metadata).

A module is considered released in the following situations:
• For V1 modules: There is a tag on a commit. This tag is a valid, pep440 compliant

version identifier and it’s not a
prelease version.

• For V2 modules: The python package was published on a Python package repository,
the version identifier is pep440

compliant and is not a prerelease version.

11.5. Programmatic API reference 307

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.module.INSTALL_OPTS: list[str] = ['release', 'prerelease', 'master']

List of possible module install modes, kept for backwards compatibility. New code should use InstallMode
instead.

class inmanta.module.InvalidModuleException(msg: str)
This exception is raised if a module is invalid.

class inmanta.module.InvalidMetadata(msg: str, validation_error: ValidationError | None = None)
This exception is raised if the metadata file of a project or module is invalid.

class inmanta.module.ModuleLike(path: str)
Bases: ABC, Generic[TMetadata]

Commons superclass for projects and modules, which are both versioned by git

Variables
name – The name for this module like instance, in the context of the Inmanta DSL.

abstract classmethod from_path(path: str)→ ModuleLike | None
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

property metadata: TMetadata

class inmanta.module.Module(project: Project | None, path: str)
Bases: ModuleLike[TModuleMetadata], ABC

This class models an inmanta configuration module

abstract classmethod from_path(path: str)→ Module | None
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

get_plugin_files()→ Iterator[tuple[Path, ModuleName]]
Returns a tuple (absolute_path, fq_mod_name) of all python files in this module.

unload()→ None
Unloads this module instance from the project, the registered plugins and the loaded Python modules.

inmanta.module.ModuleName = inmanta.module.ModuleName

NewType creates simple unique types with almost zero runtime overhead.

NewType(name, tp) is considered a subtype of tp by static type checkers. At runtime, NewType(name, tp)
returns a dummy callable that simply returns its argument.

Usage:

UserId = NewType('UserId', int)

def name_by_id(user_id: UserId) -> str:
...

UserId('user') # Fails type check

name_by_id(42) # Fails type check
name_by_id(UserId(42)) # OK

num = UserId(5) + 1 # type: int

class inmanta.module.ModuleV1(project: Project | None, path: str)
Bases: Module[ModuleV1Metadata], ModuleLikeWithYmlMetadataFile

308 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

classmethod from_path(path: str)→ TModule | None
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

class inmanta.module.ModuleV2(project: Project | None, path: str, is_editable_install: bool = False,
installed_version: Version | None = None)

Bases: Module[ModuleV2Metadata]

classmethod from_path(path: str)→ TModule | None
Get a concrete module like instance from a path. Returns None when no project or module is present
at the given path.

is_editable()→ bool
Returns True iff this module has been installed in editable mode.

class inmanta.module.ModuleSource

Bases: Generic[TModule]

get_installed_module(project: Project | None, module_name: str)→ TModule | None
Returns a module object for a module if it is installed.

Parameters
• project – The project associated with the module.

• module_name – The name of the module.

class inmanta.module.ModuleV2Source(urls: Sequence[str] = [])
Bases: ModuleSource[ModuleV2]

inmanta.module.Path = inmanta.module.Path

NewType creates simple unique types with almost zero runtime overhead.

NewType(name, tp) is considered a subtype of tp by static type checkers. At runtime, NewType(name, tp)
returns a dummy callable that simply returns its argument.

Usage:

UserId = NewType('UserId', int)

def name_by_id(user_id: UserId) -> str:
...

UserId('user') # Fails type check

name_by_id(42) # Fails type check
name_by_id(UserId(42)) # OK

num = UserId(5) + 1 # type: int

class inmanta.loader.PluginModuleFinder(modulepaths: list[str])
Bases: MetaPathFinder

Custom module finder which handles V1 Inmanta modules. V2 modules are handled using the standard
Python finder. This finder is stored as the last entry in meta_path, as such that the default Python Finders
detect V2 modules first.

classmethod reset()→ None
Remove the PluginModuleFinder from sys.meta_path.

inmanta.loader.unload_inmanta_plugins(inmanta_module: str | None = None)→ None
Unloads Python modules associated with inmanta modules (inmanta_plugins submodules).

11.5. Programmatic API reference 309

Inmanta Documentation, Release 7.1.1.dev20240504011805

Parameters
inmanta_module – Unload the Python modules for a specific inmanta module. If omitted,
unloads the Python modules for all inmanta modules.

11.5.9 Project

class inmanta.module.Project(path: str, autostd: bool = True, main_file: str = 'main.cf', venv_path: str |
VirtualEnv | None = None, attach_cf_cache: bool = True,
strict_deps_check: bool | None = None)

Bases: ModuleLike[ProjectMetadata], ModuleLikeWithYmlMetadataFile

An inmanta project

Variables
• modules – The collection of loaded modules for this project.

• module_source – The v2 module source for this project.

classmethod get(main_file: str = 'main.cf', strict_deps_check: bool | None = None)→ Project
Get the instance of the project

install_modules(*, bypass_module_cache: bool = False, update_dependencies: bool = False)→
None

Installs all modules, both v1 and v2.

Parameters
• bypass_module_cache – Fetch the module data from disk even if a cache entry exists.

• update_dependencies – Update all Python dependencies (recursive) to their latest
versions.

load(install: bool = False)→ None
Load this project’s AST and plugins.

Parameters
install – Whether to install the project’s modules before attempting to load it.

classmethod set(project: Project, *, clean: bool = True)→ None
Set the instance of the project.

Parameters
clean – Clean up all side effects of any previously loaded projects. Clears the registered
plugins and loaded Python plugins packages.

class inmanta.module.ProjectNotFoundException(msg: str)
Bases: CompilerException

This exception is raised when inmanta is unable to find a valid project

11.5.10 Python Environment

inmanta.env.mock_process_env(*, python_path: str | None = None, env_path: str | None = None)→ None
Overrides the process environment information. This forcefully sets the environment that is recognized as
the outer Python environment. This function should only be called when a Python environment has been set
up dynamically and this environment should be treated as if this process was spawned from it, and even then
with great care.

Parameters
• python_path – The path to the python binary. Only one of python_path and env_path

should be set.

310 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• env_path – The path to the python environment directory. Only one of python_path
and env_path should be set.

class inmanta.env.VirtualEnv(env_path: str)
Creates and uses a virtual environment for this process. This virtualenv inherits from the previously active
one.

init_env()→ None
Initialize the virtual environment.

use_virtual_env()→ None
Activate the virtual environment.

11.5.11 Variables

class inmanta.ast.variables.Reference(name: LocatableString)
This class represents a reference to a value

Variables
name – The name of the Reference as a string.

name

11.5.12 Typing

The inmanta.ast.type module contains a representation of inmanta types, as well as validation logic for those types.

class inmanta.ast.type.Type

This class is the abstract base class for all types in the Inmanta DSL that represent basic data. These are types
that are not relations. Instances of subclasses represent a type in the Inmanta language.

get_base_type()→ Type
Returns the base type for this type, i.e. the plain type without modifiers such as expressed by [] and ?
in the DSL.

is_primitive()→ bool
Returns true iff this type is a primitive type, i.e. number, string, bool.

type_string()→ str | None
Returns the type string as expressed in the Inmanta DSL, if this type can be expressed in the DSL.
Otherwise returns None.

validate(value: object | None)→ bool
Validate the given value to check if it satisfies the constraints associated with this type. Returns true iff
validation succeeds, otherwise raises a inmanta.ast.RuntimeException.

with_base_type(base_type: Type)→ Type
Returns the type formed by replacing this type’s base type with the supplied type.

class inmanta.ast.type.NullableType(element_type: Type)
Bases: Type

Represents a nullable type in the Inmanta DSL. For example NullableType(Number()) represents number?.

class inmanta.ast.type.Primitive

Bases: Type

Abstract base class representing primitive types.

11.5. Programmatic API reference 311

Inmanta Documentation, Release 7.1.1.dev20240504011805

cast(value: object | None)→ object
Cast a value to this type. If the value can not be cast, raises a inmanta.ast.RuntimeException.

class inmanta.ast.type.Number

Bases: Primitive

This class represents an integer or a float in the configuration model.

class inmanta.ast.type.Integer

Bases: Number

An instance of this class represents the int type in the configuration model.

class inmanta.ast.type.Bool

Bases: Primitive

This class represents a simple boolean that can hold true or false.

class inmanta.ast.type.String

Bases: Primitive

This class represents a string type in the configuration model.

class inmanta.ast.type.Union(types: List[Type])
Bases: Type

Instances of this class represent a union of multiple types.

class inmanta.ast.type.Literal

Bases: Union

Instances of this class represent a literal in the configuration model. A literal is a primitive or a list or dict
where all values are literals themselves.

class inmanta.ast.type.List

Bases: Type

Instances of this class represent a list type containing any types of values. This class refers to the list type
used in plugin annotations. For the list type in the Inmanta DSL, see LiteralList.

class inmanta.ast.type.TypedList(element_type: Type)
Bases: List

Instances of this class represent a list type containing any values of type element_type. For example Type-
dList(Number()) represents number[].

class inmanta.ast.type.LiteralList

Bases: TypedList

Instances of this class represent a list type containing only Literal values. This is the list type in the DSL

class inmanta.ast.type.Dict

Bases: Type

Instances of this class represent a dict type with any types of values.

class inmanta.ast.type.TypedDict(element_type: Type)
Bases: Dict

Instances of this class represent a dict type containing only values of type element_type.

class inmanta.ast.type.LiteralDict

Bases: TypedDict

Instances of this class represent a dict type containing only Literal values. This is the dict type in the DSL

312 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

class inmanta.ast.type.ConstraintType(namespace: Namespace, name: str)
Bases: NamedType

A type that is based on a primitive type but defines additional constraints on this type. These constraints
only apply on the value of the type.

inmanta.ast.type.TYPES

Maps Inmanta DSL types to their internal representation. For each key, value pair, value.type_string() is
guaranteed to return key.

Note: The type classes themselves do not represent inmanta types, their instances do. For example, the type
representation for the inmanta type number is Number(), not Number.

11.5.13 Protocol

class inmanta.protocol.common.Result(code: int = 0, result: dict[str, Any] | None = None)
A result of a method call

code

The result code of the method call.

property result: dict[str, Any] | None

11.5.14 Data

Warning: In contrast to the rest of this section, the data API interface is subject to change. It is documented
here because it is currently the only available API to interact with the data framework. A restructure of the data
framework is expected at some point. Until then, this API should be considered unstable.

inmanta.data.TBaseDocument : typing.TypeVar

TypeVar with BaseDocument bound.

class inmanta.data.BaseDocument(from_postgres: bool = False, **kwargs: object)
A base document in the database. Subclasses of this document determine collections names. This type is
mainly used to bundle query methods and generate validate and query methods for optimized DB access.
This is not a full ODM.

Fields are modelled using type annotations similar to protocol and pydantic. The following is supported:

• Attributes are defined at class level with type annotations

• Attributes do not need a default value. When no default is provided, they are marked as required.

• When a value does not have to be set: either a default value or making it optional can be used. When a
field is optional without a default value, none will be set as default value so that the field is available.

• Fields that should be ignored, can be added to __ignore_fields__ This attribute is a tuple of strings

• Fields that are part of the primary key should be added to the __primary_key__ attributes. This attribute
is a tuple of strings.

async classmethod get_by_id(doc_id: UUID, connection: Connection | None = None)→
TBaseDocument | None

Get a specific document based on its ID

Returns
An instance of this class with its fields filled from the database.

11.5. Programmatic API reference 313

Inmanta Documentation, Release 7.1.1.dev20240504011805

async classmethod get_list(*, order_by_column: str | None = None, order: str | None = None,
limit: int | None = None, offset: int | None = None, no_obj: bool | None
= None, lock: RowLockMode | None = None, connection: Connection |
None = None, **query: object)→ list[TBaseDocument]

Get a list of documents matching the filter args

class inmanta.data.Compile(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A run of the compiler

Parameters
• environment – The environment this resource is defined in

• requested – Time the compile was requested

• started – Time the compile started

• completed – Time to compile was completed

• do_export – should this compiler perform an export

• force_update – should this compile definitely update

• metadata – exporter metadata to be passed to the compiler

• requested_environment_variables – environment variables requested to be passed
to the compiler

• mergeable_environment_variables – environment variables to be passed to the
compiler. These env vars can be compacted over multiple compiles. If multiple val-
ues are compacted, they will be joined using spaces.

• used_environment_variables – environment variables passed to the compiler, None
before the compile is started

• success – was the compile successful

• handled – were all registered handlers executed?

• version – version exported by this compile

• remote_id – id as given by the requestor, used by the requestor to distinguish between
different requests

• compile_data – json data as exported by compiling with the –export-compile-data
parameter

• substitute_compile_id – id of this compile’s substitute compile, i.e. the compile
request that is similar to this one that actually got compiled.

• partial – True if the compile only contains the entities/resources for the resource sets
that should be updated

• removed_resource_sets – indicates the resource sets that should be removed from
the model

• exporter_plugin – Specific exporter plugin to use

• notify_failed_compile – if true use the notification service to notify that a compile
has failed. By default, notifications are enabled only for exporting compiles.

• failed_compile_message – Optional message to use when a notification for a failed
compile is created

• soft_delete – Prevents deletion of resources in removed_resource_sets if they are
being exported.

314 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

async classmethod get_substitute_by_id(compile_id: UUID, connection: Connection | None =
None)→ Compile | None

Get a compile’s substitute compile if it exists, otherwise get the compile by id.

Parameters
compile_id – The id of the compile for which to get the substitute compile.

Returns
The compile object for compile c2 that is the substitute of compile c1 with the given id.
If c1 does not have a substitute, returns c1 itself.

to_dto()→ CompileRun

class inmanta.data.ConfigurationModel(**kwargs: object)
Bases: BaseDocument

A specific version of the configuration model.

Parameters
• version – The version of the configuration model, represented by a unix timestamp.

• environment – The environment this configuration model is defined in

• date – The date this configuration model was created

• partial_base – If this version was calculated from a partial export, the version the
partial was applied on.

• released – Is this model released and available for deployment?

• deployed – Is this model deployed?

• result – The result of the deployment. Success or error.

• version_info – Version metadata

• total – The total number of resources

• is_suitable_for_partial_compiles – This boolean indicates whether the model
can later on be updated using a partial compile. In other words, the value is True iff no
cross resource set dependencies exist between the resources.

async classmethod get_versions(environment: UUID, start: int = 0, limit: int = 100000,
connection: Connection | None = None)→
list[ConfigurationModel]

Get all versions for an environment ordered descending

class inmanta.data.Environment(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A deployment environment of a project

Parameters
• id – A unique, machine generated id

• name – The name of the deployment environment.

• project – The project this environment belongs to.

• repo_url – The repository url that contains the configuration model code for this envi-
ronment.

• repo_branch – The repository branch that contains the configuration model code for
this environment.

11.5. Programmatic API reference 315

Inmanta Documentation, Release 7.1.1.dev20240504011805

• settings – Key/value settings for this environment. This dictionary does not neces-
sarily contain a key for every environment setting known by the server. This is done for
backwards compatibility reasons. When a setting was renamed, we need to determine
whether the old or the new setting has to be taken into account. The logic to decide that
is the following:

– When the name of the new setting is present in this settings dictionary or when the
name of the old setting is not present in the settings dictionary, use the new setting.

– Otherwise, use the setting with the old name.

• last_version – The last version number that was reserved for this environment

• description – The description of the environment

• icon – An icon for the environment

class inmanta.data.Report(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A report of a substep of compilation

Parameters
• started – when the substep started

• completed – when it ended

• command – the command that was executed

• name – The name of this step

• errstream – what was reported on system err

• outstream – what was reported on system out

class inmanta.data.Resource(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

A specific version of a resource. This entity contains the desired state of a resource.

Parameters
• environment – The environment this resource version is defined in

• rid – The id of the resource and its version

• resource – The resource for which this defines the state

• model – The configuration model (versioned) this resource state is associated with

• attributes – The state of this version of the resource

• attribute_hash – hash of the attributes, excluding requires, provides and version,
used to determine if a resource describes the same state across versions

• resource_id_value – The attribute value from the resource id

async classmethod get_resources_for_version(environment: UUID, version: int, agent: str |
None = None, no_obj: bool = False, *,
connection: Connection | None = None)→
list[Resource]

class inmanta.data.ResourceAction(from_postgres: bool = False, **kwargs: object)
Bases: BaseDocument

Log related to actions performed on a specific resource version by Inmanta.

Parameters
• environment – The environment this action belongs to.

316 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• version – The version of the configuration model this action belongs to.

• resource_version_ids – The resource version ids of the resources this action relates
to.

• action_id – This id distinguishes the actions from each other. Action ids have to be
unique per environment.

• action – The action performed on the resource

• started – When did the action start

• finished – When did the action finish

• messages – The log messages associated with this action

• status – The status of the resource when this action was finished

• changes – A dict with key the resource id and value a dict of fields -> value. Value is
a dict that can contain old and current keys and the associated values. An empty dict
indicates that the field was changed but not data was provided by the agent.

• change – The change result of an action

async classmethod get_logs_for_version(environment: UUID, version: int, action: str | None =
None, limit: int = 0, connection: Connection | None =
None)→ list[ResourceAction]

class inmanta.data.model.BaseModel

Bases: DateTimeNormalizerModel

Base class for all data objects in Inmanta

inmanta.data.model.ResourceIdStr = inmanta.data.model.ResourceIdStr

The resource id without the version

inmanta.data.model.ResourceVersionIdStr = inmanta.data.model.ResourceVersionIdStr

The resource id with the version included.

class inmanta.db.util.PGRestore(script: list[str], postgresql_client: Connection)
Bases: object

Class that offers support to restore a database dump.

This class assumes that the names of schemas, tables and columns in the dump don’t contain a dot, double
quote or whitespace character.

async inmanta.db.util.clear_database(postgresql_client: Connection)→ None
Remove all content from the database. Removes functions, tables and data types.

11.5.15 Domain conversion

This section describes methods for converting values between the plugin domain and the internal domain. This
conversion is performed automatically for plugin arguments and return values so it is only required when bypassing
the usual plugin workflow by calling internal methods directly.

class inmanta.execute.proxy.DynamicProxy

This class wraps an object and makes sure that a model is never modified by native code.

classmethod return_value(value: object)→ None | str | tuple[object, ...] | int | float | bool |
DynamicProxy

Converts a value from the internal domain to the plugin domain.

classmethod unwrap(item: object)→ object
Converts a value from the plugin domain to the internal domain.

11.5. Programmatic API reference 317

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.5.16 Rest API

The rest API is also available as a swagger spec

The (v2) API endpoints that offer paging, sorting and filtering follow a convention. They share the following
parameters:

limit
specifies the page size, so the maximum number of items returned from the query

start and first_id
These parameters define the lower limit for the page,

end and last_id
These parameters define the upper limit for the page (only one of the (start, first_id), (end, last_id) pairs
should be specified at the same time).

Note: The return value of these methods contain a links tag, with the urls of the next and prev pages, so for simply
going through the pages a client only needs to follow these links.

filter
The filter parameter is used for filtering the result set.

Filters should be specified with the syntax ?filter.<filter_key>=value.

It’s also possible to provide multiple values for the same filter, in this case results are returned, if they match
any of these filter values: ?filter.<filter_key>=value&filter.<filter_key>=value2

Multiple different filters narrow the results however (they are treated as an ‘AND’ operator). For example
?filter.<filter_key>=value&filter.<filter_key2>=value2 returns results that match both filters.

The documentation of each method describes the supported filters.

sort
The sort parameter describes how the result set should be sorted.

It should follow the pattern ?<attribute_to_sort_by>.<order>, for example ?value.desc (case insensitive).

The documentation of each method describes the supported attributes to sort by.

Module defining the v1 rest api

inmanta.protocol.methods.clear_environment(id: UUID)

Clears an environment by removing most of its associated data. This method deletes various components
associated with the specified environment from the database, including agents, compile data, parameters,
notifications, code, resources, and configuration models. However, it retains the entry in the Environment
table itself and settings are kept. The environment will be temporarily halted during the decommissioning
process.

Parameters
id – The id of the environment to be cleared.

Raises
• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods.create_environment(project_id: UUID, name: str, repository: str | None =
None, branch: str | None = None, environment_id:
UUID | None = None)

Create a new environment

Parameters
• project_id – The id of the project this environment belongs to

318 Chapter 11. Inmanta Reference

openapi.html#http://

Inmanta Documentation, Release 7.1.1.dev20240504011805

• name – The name of the environment.

• repository – Optional. The URL of the repository.

• branch – Optional. The name of the branch in the repository.

• environment_id – Optional. A unique environment id, if none an id is allocated by
the server.

inmanta.protocol.methods.create_project(name: str, project_id: UUID | None = None)
Create a new project

Parameters
• name – The name of the project

• project_id – Optional. A unique uuid, when it is not provided the server generates
one

inmanta.protocol.methods.create_token(tid: UUID, client_types: list, idempotent: bool = True)
Create or get a new token for the given client types.

Parameters
• tid – The environment id.

• client_types – The client types for which this token is valid (api, agent, compiler).

• idempotent – Optional. The token should be idempotent, meaning it does not have an
expire or issued at set, so its value will not change.

inmanta.protocol.methods.delete_environment(id: UUID)

Delete the given environment and all related data.

Parameters
id – The id of the environment to be deleted.

Raises
• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods.delete_param(tid: UUID, id: str, resource_id: str | None = None)
Delete a parameter on the server

Parameters
• tid – The id of the environment

• id – The name of the parameter

• resource_id – Optional. The resource id of the parameter

inmanta.protocol.methods.delete_project(id: UUID)

Delete the given project and all related data.

Parameters
id – The id of the project to be deleted.

inmanta.protocol.methods.delete_setting(tid: UUID, id: str)
Restore the given setting to its default value.

Parameters
• tid – The id of the environment from which the setting is to be deleted.

• id – The key of the setting to delete.

11.5. Programmatic API reference 319

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods.delete_version(tid: UUID, id: int)
Delete a particular version and resources

Parameters
• tid – The id of the environment

• id – The id of the version to retrieve

inmanta.protocol.methods.deploy(tid: UUID, agent_trigger_method: AgentTriggerMethod =
AgentTriggerMethod.push_full_deploy, agents: list | None = None)

Notify agents to perform a deploy now.

Parameters
• tid – The id of the environment.

• agent_trigger_method – Indicates whether the agents should perform a full or an
incremental deploy.

• agents – Optional, names of specific agents to trigger

inmanta.protocol.methods.diff(file_id_1: str, file_id_2: str)
Returns the diff of the files with the two given ids

Parameters
• file_id_1 – The identifier of the first file.

• file_id_2 – The identifier of the second file.

Returns
A string representing the diff between the two files.

inmanta.protocol.methods.do_dryrun(tid: UUID, id: UUID, agent: str, version: int)
Do a dryrun on an agent

Parameters
• tid – The environment id

• id – The id of the dryrun

• agent – The agent to do the dryrun for

• version – The version of the model to dryrun

inmanta.protocol.methods.dryrun_list(tid: UUID, version: int | None = None)
Get the list of dry runs for an environment. The results are sorted by dry run id.

Parameters
• tid – The id of the environment

• version – Optional. Only for this version

inmanta.protocol.methods.dryrun_report(tid: UUID, id: UUID)

Create a dryrun report

Parameters
• tid – The id of the environment

• id – The version dryrun to report

inmanta.protocol.methods.dryrun_request(tid: UUID, id: int)
Do a dryrun

Parameters
• tid – The id of the environment

320 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• id – The version of the CM to deploy

inmanta.protocol.methods.dryrun_update(tid: UUID, id: UUID, resource: str, changes: dict)
Store dryrun results at the server

Parameters
• tid – The id of the environment

• id – The version dryrun to report

• resource – The id of the resource

• changes – The required changes

inmanta.protocol.methods.get_agent_process(id: UUID)

Return a detailed report for a node

Parameters
id – The session id of the agent

Returns
The requested node

inmanta.protocol.methods.get_code(tid: UUID, id: int, resource: str)
Retrieve the source code associated with a specific version of a configuration model for a given resource in
an environment.

Parameters
• tid – The id of the environment to which the code belongs.

• id – The version number of the configuration model.

• resource – The identifier of the resource. This should be a resource ID, not a resource
version ID.

inmanta.protocol.methods.get_compile_queue(tid: UUID)→ list[CompileRun]
Get the current compiler queue on the server, ordered by increasing requested timestamp.

Parameters
tid – The id of the environment for which to retrieve the compile queue.

Returns
A list of CompileRun objects representing the current state of the compiler queue, with each
entry detailing a specific compile run.

inmanta.protocol.methods.get_environment(id: UUID, versions: int | None = None, resources: int |
None = None)

Get an environment and all versions associated.

Parameters
• id – The id of the environment to return.

• versions – Optional. If provided and greater than 0, include this many of the most re-
cent versions for this environment, ordered in descending order of their version number.
If not provided or 0, no version information is included.

• resources – Optional. If provided and greater than 0, include a summary of the re-
sources in the environment.

inmanta.protocol.methods.get_file(id: str)
Retrieve a file

Parameters
id – The id of the file to retrieve

11.5. Programmatic API reference 321

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods.get_param(tid: UUID, id: str, resource_id: str | None = None)
Get a parameter from the server.

Parameters
• tid – The id of the environment

• id – The name of the parameter

• resource_id – Optional. scope the parameter to resource (fact), if the resource id
should not contain a version, the latest version is used

Returns
Returns the following status codes:

• 200: The parameter content is returned

• 404: The parameter is not found and unable to find it because its resource is not known
to the server

• 410: The parameter has expired

• 503: The parameter is not found but its value is requested from an agent

inmanta.protocol.methods.get_parameter(tid: UUID, agent: str, resource: dict)
Get all parameters/facts known by the agents for the given resource

This method will not actually return them. This call wil register the request with the agent and return, The
agent will push the parameters back to the server when they are available.

Parameters
• tid – The environment

• agent – The agent to get the parameters from

• resource – The resource to query the parameters from

inmanta.protocol.methods.get_project(id: UUID)

Get a project and a list of the ids of all environments.

Parameters
id – The id of the project to retrieve.

inmanta.protocol.methods.get_report(id: UUID)

Get a compile report from the server

Parameters
id – The id of the compile and its reports to fetch.

inmanta.protocol.methods.get_reports(tid: UUID, start: str | None = None, end: str | None = None,
limit: int | None = None)

Return compile reports newer then start

Parameters
• tid – The id of the environment to get a report from

• start – Optional. Reports after start

• end – Optional. Reports before end

• limit – Optional. Maximum number of results, up to a maximum of 1000 If None, a
default limit (set to 1000) is applied.

inmanta.protocol.methods.get_resource(tid: UUID, id: str, logs: bool | None = None, status: bool |
None = None, log_action: ResourceAction | None = None,
log_limit: int = 0)

Return a resource with the given id.

322 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Parameters
• tid – The id of the environment this resource belongs to

• id – Get the resource with the given resource version id

• logs – Optional. Include the logs in the response

• status – Optional. Only return the status of the resource

• log_action – Optional. The log action to include, leave empty/none for all actions.
Valid actions are one of the action strings in const.ResourceAction

• log_limit – Optional. Limit the number of logs included in the response, up
to a maximum of 1000. To retrieve more entries, use /api/v2/resource_actions
(get_resource_actions()) If None, a default limit (set to 1000) is applied.

inmanta.protocol.methods.get_resources_for_agent(tid: UUID, agent: str, sid: UUID | None =
None, version: int | None = None,
incremental_deploy: bool = False)

Return the most recent state for the resources associated with agent, or the version requested

Parameters
• tid – The environment ID this resource belongs to.

• agent – The agent name.

• sid – Optional. Session id of the agent (transparently added by agent client).

• version – Optional. The version to retrieve. If none, the latest available version is
returned. With a specific version that version is returned, even if it has not been released
yet.

• incremental_deploy – Optional. Indicates whether the server should only return the
resources that changed since the previous deployment.

inmanta.protocol.methods.get_server_status()→ StatusResponse
Get the status of the server

inmanta.protocol.methods.get_setting(tid: UUID, id: str)
Get the value of a setting.

Parameters
• tid – The id of the environment.

• id – The id of the setting to retrieve.

inmanta.protocol.methods.get_state(tid: UUID, sid: UUID, agent: str)
Get the state for this agent.

Parameters
• tid – The id of the environment.

• sid – The session ID associated with this agent.

• agent – The name of the agent.

Returns
A map with key enabled and value a boolean.

inmanta.protocol.methods.get_status()

A call from the server to the agent to report its status to the server

Returns
A map with report items

11.5. Programmatic API reference 323

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods.get_version(tid: UUID, id: int, include_logs: bool | None = None, log_filter:
str | None = None, limit: int | None = None)

Get a particular version and a list of all resources in this version

Parameters
• tid – The id of the environment

• id – The id of the version to retrieve

• include_logs – Optional. If true, a log of all operations on all resources is included

• log_filter – Optional. Filter log to only include actions of the specified type

• limit – Optional. The maximal number of actions to return per resource (start-
ing from the latest), up to a maximum of 1000. To retrieve more entries, use
/api/v2/resource_actions (get_resource_actions()) If None, a default limit (set to
1000) is applied.

inmanta.protocol.methods.heartbeat(sid: UUID, tid: UUID, endpoint_names: list, nodename: str,
no_hang: bool = False)

Send a heartbeat to the server

Parameters
• sid – The session ID used by this agent at this moment

• tid – The environment this node and its agents belongs to

• endpoint_names – The names of the endpoints on this node

• nodename – The name of the node from which the heart beat comes

• no_hang – Optional. don’t use this call for long polling, but for connectivity check

also registered as API method, because it is called with an invalid SID the first time

inmanta.protocol.methods.heartbeat_reply(sid: UUID, reply_id: UUID, data: dict)
Send a reply back to the server

Parameters
• sid – The session ID used by this agent at this moment

• reply_id – The id data is a reply to

• data – The data as a response to the reply

async inmanta.protocol.methods.ignore_env(obj: Any, metadata: dict)→ Any
This mapper only adds an env all for authz

inmanta.protocol.methods.is_compiling(id: UUID)

Is a compiler running for the given environment

Parameters
id – The environment id

inmanta.protocol.methods.list_agent_processes(environment: UUID | None = None, expired: bool =
True, start: UUID | None = None, end: UUID |
None = None, limit: int | None = None)

Return a list of all nodes and the agents for these nodes

Parameters
• environment – Optional. An optional environment. If set, only the agents that belong

to this environment are returned

• expired – Optional. if true show expired processes, otherwise only living processes
are shown. True by default

324 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• start – Optional. Agent processes after start (sorted by sid in ASC)

• end – Optional. Agent processes before end (sorted by sid in ASC)

• limit – Optional. Maximum number of results, up to a maximum of 1000 If None, a
default limit (set to 1000) is applied.

Raises
• BadRequest – limit parameter can not exceed 1000

• NotFound – The given environment id does not exist!

Returns
A list of nodes

inmanta.protocol.methods.list_agents(tid: UUID, start: str | None = None, end: str | None = None,
limit: int | None = None)

List all agent for an environment

Parameters
• tid – The environment the agents are defined in

• start – Optional. Agent after start (sorted by name in ASC)

• end – Optional. Agent before end (sorted by name in ASC)

• limit – Optional. Maximum number of results, up to a maximum of 1000. If None, a
default limit (set to 1000) is applied.

Raises
• BadRequest – limit parameter can not exceed 1000

• NotFound – The given environment id does not exist!

inmanta.protocol.methods.list_environments()

Returns a list of environments. The results are sorted by (project id, environment name, environment id).

inmanta.protocol.methods.list_params(tid: UUID, query: dict = {})
List/query parameters in this environment. The results are ordered alphabetically by parameter name.

Parameters
• tid – The id of the environment

• query – Optional. A query to match against metadata

inmanta.protocol.methods.list_projects()

Returns a list of projects ordered alphabetically by name. The environments within each project are also
sorted by name.

inmanta.protocol.methods.list_settings(tid: UUID)

List the settings in the current environment ordered by name alphabetically.

Parameters
tid – The id of the environment to list settings for.

inmanta.protocol.methods.list_versions(tid: UUID, start: int | None = None, limit: int | None = None)
Returns a list of all available versions, ordered by version number, descending

Parameters
• tid – The id of the environment

• start – Optional. parameter to control the amount of results that are returned. 0 is the
latest version.

• limit – Optional. parameter to control the amount of results returned, up to a maximum
of 1000. If None, a default limit (set to 1000) is applied.

11.5. Programmatic API reference 325

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods.modify_environment(id: UUID, name: str, repository: str | None = None,
branch: str | None = None)

Modify the given environment.

Parameters
• id – The id of the environment to modify.

• name – The new name for the environment.

• repository – Optional. The URL of the repository.

• branch – Optional. The name of the branch in the repository.

If ‘repository’ or ‘branch’ is provided as None, the corresponding attribute of the environment remains
unchanged.

inmanta.protocol.methods.modify_project(id: UUID, name: str)
Modify the given project.

Parameters
• id – The id of the project to modify.

• name – The new name for the project.

inmanta.protocol.methods.notify_change(id: UUID, update: bool = True, metadata: dict = {})
Notify the server that the repository of the environment with the given id, has changed.

Parameters
• id – The id of the environment

• update – Optional. Update the model code and modules. Default value is true

• metadata – Optional. The metadata that indicates the source of the compilation trigger.

inmanta.protocol.methods.notify_change_get(id: UUID, update: bool = True)
Simplified GET version of the POST method

Parameters
• id – The id of the environment.

• update – Optional. Indicates whether to update the model code and modules. Defaults
to true.

inmanta.protocol.methods.put_version(tid: UUID, version: int, resources: list, resource_state:
dict[ResourceIdStr, Literal[ResourceState.available,
ResourceState.undefined]] = {}, unknowns: list[dict[str, UUID |
bool | int | float | datetime | str]] | None = None, version_info:
dict | None = None, compiler_version: str | None = None,
resource_sets: dict[ResourceIdStr, str | None] = {}, pip_config:
PipConfig | None = None)

Store a new version of the configuration model

The version number must be obtained through the reserve_version call

Parameters
• tid – The id of the environment

• version – The version of the configuration model

• resources – A list of all resources in the configuration model (deployable)

• resource_state – A dictionary with the initial const.ResourceState per resource id.
The ResourceState should be set to undefined when the resource depends on an unknown
or available when it doesn’t.

326 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• unknowns – Optional. A list of unknown parameters that caused the model to be incom-
plete

• version_info – Optional. Module version information

• compiler_version – Optional. version of the compiler, if not provided, this call will
return an error

• resource_sets – Optional. a dictionary describing which resource belongs to which
resource set

• pip_config – Optional. Pip config used by this version

inmanta.protocol.methods.release_version(tid: UUID, id: int, push: bool = False,
agent_trigger_method: AgentTriggerMethod | None =
None)

Release version of the configuration model for deployment.

Parameters
• tid – The id of the environment

• id – The version of the CM to deploy

• push – Notify all agents to deploy the version

• agent_trigger_method – Optional. Indicates whether the agents should perform a
full or an incremental deploy when push is true.

Returns
Returns the following status codes: 200: The version is released 404: The requested version
does not exist 409: The requested version was already released

inmanta.protocol.methods.resource_action_update(tid: UUID, resource_ids: list, action_id: UUID,
action: ResourceAction, started: datetime | None
= None, finished: datetime | None = None, status:
ResourceState | DeprecatedResourceState | None
= None, messages: list = [], changes: dict = {},
change: Change | None = None, send_events:
bool = False)

Send a resource update to the server

Parameters
• tid – The id of the environment this resource belongs to

• resource_ids – The resource with the given resource_version_id id from the agent

• action_id – A unique id to indicate the resource action that has be updated

• action – The action performed

• started – Optional. The timestamp when this action was started. When this action
(action_id) has not been saved yet, started has to be defined.

• finished – Optional. The timestamp when this action was finished. Afterwards, no
changes with the same action_id can be stored. The status field also has to be set.

• status – Optional. The current status of the resource (if known)

• messages – Optional. A list of log entries to add to this entry.

• changes – Optional. A dict of changes to this resource. The key of this dict indicates
the attributes/fields that have been changed. The value contains the new value and/or the
original value.

• change – Optional. The result of the changes

• send_events – Optional. [DEPRECATED] The value of this field is not used anymore.

11.5. Programmatic API reference 327

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods.resource_event(tid: UUID, id: str, resource: str, send_events: bool, state:
ResourceState, change: Change, changes={})

Tell an agent a resource it waits for has been updated

Parameters
• tid – The environment this agent is defined in

• id – The name of the agent

• resource – The resource ID of the resource being updated

• send_events – [DEPRECATED] The value of this field is not used anymore.

• state – State the resource acquired (deployed, skipped, canceled)

• change – The change that was made to the resource

• changes – Optional. The changes made to the resource

inmanta.protocol.methods.set_param(tid: UUID, id: str, source: ParameterSource, value: str,
resource_id: str | None = None, metadata: dict = {}, recompile:
bool = False, expires: bool | None = None)

Set a parameter on the server. If the parameter is an tracked unknown, it will trigger a recompile on the server.
Otherwise, if the value is changed and recompile is true, a recompile is also triggered. [DEPRECATED]
Please use the new endpoints /facts/<name> and /parameters/<name> instead.

Parameters
• tid – The id of the environment

• id – The name of the parameter

• source – The source of the parameter.

• value – The value of the parameter

• resource_id – Optional. Scope the parameter to resource (fact)

• metadata – Optional. Metadata about the parameter

• recompile – Optional. Whether to trigger a recompile

• expires – When setting a new parameter/fact: if set to None, then a sensible default
will be provided (i.e. False for parameter and True for fact). When updating a parameter
or fact, a None value will leave the existing value unchanged.

inmanta.protocol.methods.set_parameters(tid: UUID, parameters: list)
Set a parameter on the server

Parameters
• tid – The id of the environment

• parameters – A list of dicts with the following keys:

– id The name of the parameter

– source The source of the parameter. Valid values are defined in the ParameterSource
enum (see: inmanta/const.py)

– value The value of the parameter

– resource_id Optionally, scope the parameter to resource (fact)

– expires Defaults to true. Set to false to create a never expiring fact

– metadata metadata about the parameter

328 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods.set_setting(tid: UUID, id: str, value: UUID | bool | int | float | datetime | str
| dict[str, Any])

Set a value for a setting.

Parameters
• tid – The id of the environment.

• id – The id of the setting to set.

• value – The value to set for the setting.

inmanta.protocol.methods.set_state(agent: str, enabled: bool)
Set the state of the agent.

Parameters
• agent – The name of the agent.

• enabled – A boolean value indicating whether the agent should be paused (en-
abled=False) or unpaused (enabled=True).

inmanta.protocol.methods.stat_file(id: str)
Does the file exist

Parameters
id – The id of the file to check

inmanta.protocol.methods.stat_files(files: list)
Check which files exist in the given list

Parameters
files – A list of file ids to check

Returns
A list of files that do not exist.

inmanta.protocol.methods.trigger(tid: UUID, id: str, incremental_deploy: bool)
Request an agent to reload resources

Parameters
• tid – The environment this agent is defined in

• id – The name of the agent

• incremental_deploy – Indicates whether the agent should perform an incremental
deploy or a full deploy

inmanta.protocol.methods.trigger_agent(tid: UUID, id: str)
Request the server to reload an agent

Parameters
• tid – The environment this agent is defined in

• id – The name of the agent

Returns
The requested node

inmanta.protocol.methods.upload_code_batched(tid: UUID, id: int, resources: dict)
Upload batches of code for various resources associated with a specific version of a configuration model in
an environment.

Parameters
• tid – The id of the environment to which the code belongs.

• id – The version number of the configuration model.

11.5. Programmatic API reference 329

Inmanta Documentation, Release 7.1.1.dev20240504011805

• resources – A dictionary where each key is a string representing a resource type. For
each resource type, the value is a dictionary. This nested dictionary’s keys are file names,
and each key maps to a tuple. This tuple contains three elements: the file name, the
module name, and a list of requirements.

The endpoint validates that all provided file references are valid and checks for conflicts with existing code
entries.

inmanta.protocol.methods.upload_file(id: str, content: str)
Upload a new file

Parameters
• id – The id of the file

• content – The base64 encoded content of the file

Module defining the v2 rest api

inmanta.protocol.methods_v2.add_user(username: str, password: str)→ User
Add a new user to the system

Parameters
• username – The username of the new user. The username cannot be an empty string.

• password – The password of this new user. The password should be at least 8 characters
long.

Raises
• Conflict – Raised when there is already a user with this user_name

• BadRequest – Raised when server authentication is not enabled

inmanta.protocol.methods_v2.agent_action(tid: UUID, name: str, action: AgentAction)→ None
Execute an action on an agent

Parameters
• tid – The environment this agent is defined in.

• name – The name of the agent.

• action – The type of action that should be executed on an agent. Pause and unpause can
only be used when the environment is not halted, while the on_resume actions can only
be used when the environment is halted. * pause: A paused agent cannot execute any
deploy operations. * unpause: A unpaused agent will be able to execute deploy opera-
tions. * keep_paused_on_resume: The agent will still be paused when the environment
is resumed * unpause_on_resume: The agent will be unpaused when the environment is
resumed

Raises
Forbidden – The given environment has been halted and the action is pause/unpause, or
the environment is not halted and the action is related to the on_resume behavior

inmanta.protocol.methods_v2.all_agents_action(tid: UUID, action: AgentAction)→ None
Execute an action on all agents in the given environment.

Parameters
• tid – The environment of the agents.

• action – The type of action that should be executed on the agents. Pause and unpause
can only be used when the environment is not halted, while the on_resume actions can
only be used when the environment is halted. * pause: A paused agent cannot execute
any deploy operations. * unpause: A unpaused agent will be able to execute deploy

330 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

operations. * keep_paused_on_resume: The agents will still be paused when the en-
vironment is resumed * unpause_on_resume: The agents will be unpaused when the
environment is resumed

Raises
Forbidden – The given environment has been halted and the action is pause/unpause, or
the environment is not halted and the action is related to the on_resume behavior

inmanta.protocol.methods_v2.compile_details(tid: UUID, id: UUID)→ CompileDetails

Parameters
• tid – The id of the environment in which the compilation process occurred.

• id – The id of the compile for which the details are being requested.

Returns
The details of a compile

Raises
NotFound – This exception is raised when the referenced environment or compile is not
found

inmanta.protocol.methods_v2.delete_user(username: str)→ None
Delete a user from the system with given username.

Parameters
username – The username to delete

Raises
• NotFound – Raised when the user does not exist

• BadRequest – Raised when server authentication is not enabled

inmanta.protocol.methods_v2.discovered_resource_create(tid: UUID, discovered_resource_id: str,
**kwargs: object)→ None

create a discovered resource.

Parameters
• tid – The id of the environment this resource belongs to

• discovered_resource_id – The id of the discovered_resource

• **kwargs – The following arguments are supported: values: The values associated with
the discovered_resource

inmanta.protocol.methods_v2.discovered_resource_create_batch(tid: UUID,
discovered_resources:
list[DiscoveredResource])→
None

create multiple discovered resource in the DB :param tid: The id of the environment this resource belongs
to :param discovered_resources: List of discovered_resources containing the discovered_resource_id and
values for each resource

inmanta.protocol.methods_v2.discovered_resources_get(tid: UUID, discovered_resource_id:
ResourceIdStr)→ DiscoveredResource

Get a single discovered resource.

Parameters
• tid – the id of the environment in which to get the discovered resource.

• discovered_resource_id – The id of the discovered resource

11.5. Programmatic API reference 331

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods_v2.discovered_resources_get_batch(tid: UUID, limit: int | None =
None, start: str | None = None,
end: str | None = None, sort: str =
'discovered_resource_id.asc')→
list[DiscoveredResource]

Parameters
• tid – The id of the environment this resource belongs to

• limit – Limit the number of instances that are returned

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• sort – Return the results sorted according to the parameter value. The following sorting
attributes are supported: ‘discovered_resource_id’. The following orders are supported:
‘asc’, ‘desc’

Returns
A list of all matching released resources

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.dryrun_trigger(tid: UUID, version: int)→ UUID
Trigger a new dryrun

Parameters
• tid – The id of the environment

• version – The version of the configuration model to execute the dryrun for

Raises
NotFound – This exception is raised when the referenced environment or version is not found

Returns
The id of the new dryrun

inmanta.protocol.methods_v2.environment_clear(id: UUID)→ None
Clear all data from this environment. The environment will be temporarily halted during the decommission-
ing process.

Parameters
id – The uuid of the environment.

Raises
• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods_v2.environment_create(project_id: UUID, name: str, repository: str |
None = None, branch: str | None = None,
environment_id: UUID | None = None,
description: str = '', icon: str = '')→ Environment

Create a new environment

Parameters
• project_id – The id of the project this environment belongs to

332 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• name – The name of the environment. The name should be unique for each project.

• repository – The url (in git form) of the repository

• branch – The name of the branch in the repository

• environment_id – A unique environment id, if none an id is allocated by the server

• description – The description of the environment, maximum 255 characters

• icon – The data-url of the icon of the environment. It should follow the pattern <mime-
type>;base64,<image>, where <mime-type> is one of: ‘image/png’, ‘image/jpeg’, ‘im-
age/webp’, ‘image/svg+xml’, and <image> is the image in the format matching the speci-
fied mime-type, and base64 encoded. The length of the whole string should be maximum
64 kb.

Raises
BadRequest – When the parameters supplied are not valid.

inmanta.protocol.methods_v2.environment_create_token(tid: UUID, client_types: list[str],
idempotent: bool = True)→ str

Create or get a new token for the given client types. Tokens generated with this call are scoped to the current
environment.

Parameters
• tid – The environment id

• client_types – The client types for which this token is valid (api, agent, compiler)

• idempotent – The token should be idempotent, such tokens do not have an expire or
issued at set so their value will not change.

inmanta.protocol.methods_v2.environment_delete(id: UUID)→ None
Delete the given environment and all related data.

Parameters
id – The uuid of the environment.

Raises
• NotFound – The given environment doesn’t exist.

• Forbidden – The given environment is protected.

inmanta.protocol.methods_v2.environment_get(id: UUID, details: bool = False)→ Environment
Get an environment and all versions associated

Parameters
• id – The id of the environment to return

• details – Whether to include the icon and description of the environment

inmanta.protocol.methods_v2.environment_list(details: bool = False)→ list[Environment]
Returns a list of environments

Parameters
details – Whether to include the icon and description of the environments in the results

inmanta.protocol.methods_v2.environment_modify(id: UUID, name: str, repository: str | None =
None, branch: str | None = None, project_id:
UUID | None = None, description: str | None =
None, icon: str | None = None)→ Environment

Modify the given environment The optional parameters that are unspecified will be left unchanged by the
update.

Parameters

11.5. Programmatic API reference 333

Inmanta Documentation, Release 7.1.1.dev20240504011805

• id – The id of the environment

• name – The name of the environment

• repository – The url (in git form) of the repository

• branch – The name of the branch in the repository

• project_id – The id of the project the environment belongs to

• description – The description of the environment, maximum 255 characters

• icon – The data-url of the icon of the environment. It should follow the pattern <mime-
type>;base64,<image> , where <mime-type> is one of: ‘image/png’, ‘image/jpeg’, ‘im-
age/webp’, ‘image/svg+xml’, and <image> is the image in the format matching the speci-
fied mime-type, and base64 encoded. The length of the whole string should be maximum
64 kb. The icon can be removed by setting this parameter to an empty string.

Raises
• BadRequest – When the parameters supplied are not valid.

• NotFound – The given environment doesn’t exist.

inmanta.protocol.methods_v2.environment_setting_delete(tid: UUID, id: str)→
ReturnValue[None]

Reset the given setting to its default value.

Parameters
• tid – The id of the environment from which the setting is to be deleted.

• id – The identifier of the setting to be deleted.

inmanta.protocol.methods_v2.environment_setting_get(tid: UUID, id: str)→
EnvironmentSettingsReponse

Retrieve a specific setting from an environment’s configuration.

Parameters
• tid – The id of the environment from which the setting is being retrieved.

• id – The id of the setting to be retrieved.

inmanta.protocol.methods_v2.environment_settings_list(tid: UUID)→
EnvironmentSettingsReponse

List the settings in the current environment ordered by name alphabetically.

Parameters
tid – The id of the environment for which the list of settings is being requested.

inmanta.protocol.methods_v2.environment_settings_set(tid: UUID, id: str, value: bool | int | float |
str | dict[str, str | int | bool])→
ReturnValue[None]

Set a specific setting in an environment’s configuration.

Parameters
• tid – The id of the environment where the setting is to be set or updated.

• id – The id of the setting to be set or updated.

• value – The new value for the setting.

inmanta.protocol.methods_v2.get_agent_process_details(tid: UUID, id: UUID, report: bool =
False)→ AgentProcess

Get the details of an agent process

Parameters

334 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• tid – Id of the environment

• id – The id of the specific agent process

• report – Whether to include a report from the agent or not

Returns
The details of an agent process

Raises
NotFound – This exception is raised when the referenced environment or agent process is
not found

inmanta.protocol.methods_v2.get_agents(tid: UUID, limit: int | None = None, start: datetime | bool |
str | None = None, end: datetime | bool | str | None = None,
first_id: str | None = None, last_id: str | None = None, filter:
dict[str, list[str]] | None = None, sort: str = 'name.asc')→
list[Agent]

Get all of the agents in the given environment

Parameters
• tid – The id of the environment the agents should belong to.

• limit – Limit the number of agents that are returned.

• start – The lower limit for the order by column (exclusive).

• first_id – The name to use as a continuation token for paging, in combination with
the ‘start’ value, because the order by column might contain non-unique values.

• last_id – The name to use as a continuation token for paging, in combination with the
‘end’ value, because the order by column might contain non-unique values. Only one of
‘start’ and ‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned agents. Filtering by ‘name’, ‘process_name’ and
‘status’ is supported.

• sort – Return the results sorted according to the parameter value. Sorting by ‘name’,
‘process_name’, ‘status’, ‘paused’ and ‘last_failover’ is supported. The following orders
are supported: ‘asc’, ‘desc’

Returns
A list of all matching agents

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_all_facts(tid: UUID, limit: int | None = None, first_id: UUID |
None = None, last_id: UUID | None = None, start: str |
None = None, end: str | None = None, filter: dict[str,
list[str]] | None = None, sort: str = 'name.asc')→
list[Fact]

List the facts in an environment.

Parameters
• tid – The id of the environment

• limit – Limit the number of facts that are returned

• first_id – The fact id to use as a continuation token for paging, in combination with
the ‘start’ value, because the order by column might contain non-unique values

11.5. Programmatic API reference 335

Inmanta Documentation, Release 7.1.1.dev20240504011805

• last_id – The fact id to use as a continuation token for paging, in combination with
the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned facts. The following options are available: name:
filter by the name of the fact resource_id: filter by the resource_id of the fact expires:
filter on whether the fact expires or not

• sort – Return the results sorted according to the parameter value. The following sorting
attributes are supported: ‘name’, ‘resource_id’. The following orders are supported:
‘asc’, ‘desc’

Returns
A list of all matching facts

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_api_docs(format: ApiDocsFormat | None =
ApiDocsFormat.swagger)→ ReturnValue[OpenAPI | str]

Get the OpenAPI definition of the API

Parameters
format – Use ‘openapi’ to get the schema in json format, leave empty or use ‘swagger’ to
get the Swagger-UI view

inmanta.protocol.methods_v2.get_compile_data(id: UUID)→ CompileData | None
Get the compile data for the given compile request.

Parameters
id – The id of the compile.

inmanta.protocol.methods_v2.get_compile_reports(tid: UUID, limit: int | None = None, first_id:
UUID | None = None, last_id: UUID | None =
None, start: datetime | None = None, end:
datetime | None = None, filter: dict[str, list[str]] |
None = None, sort: str = 'requested.desc')→
list[CompileReport]

Get the compile reports from an environment.

Parameters
• tid – The id of the environment

• limit – Limit the number of instances that are returned

• first_id – The id to use as a continuation token for paging, in combination with the
‘start’ value, because the order by column might contain non-unique values

• last_id – The id to use as a continuation token for paging, in combination with the
‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

336 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• filter – Filter the list of returned compile reports. Filters should be specified with
the syntax ?filter.<filter_key>=value, for example ?filter.success=True It’s also possi-
ble to provide multiple values for the same filter, in this case resources are returned,
if they match any of these filter values. For example: ?filter.requested=ge:2021-08-
18T09:21:30.568353&filter.requested=lt:2021-08-18T10:21:30.568353 returns com-
pile reports that were requested between the specified dates. Multiple different filters
narrow the results however (they are treated as an ‘AND’ operator). For example ?fil-
ter.success=True&filter.completed=True returns compile reports that are completed and
successful. The following options are available: success: whether the compile was suc-
cessful or not started: whether the compile has been started or not completed: whether
the compile has been completed or not

requested: return the logs matching the timestamp constraints. Valid constraints
are of the form

”<lt|le|gt|ge>:<x>”. The expected format is YYYY-MM-DDTHH:mm:ss.ssssss,
so an ISO-8601 datetime string, in UTC timezone. Specifying mi-
croseconds is optional. For example: ?filter.requested=ge:2021-08-
18T09:21:30.568353&filter.requested=lt:2021-08-18T10:21:30. Multiple con-
straints can be specified, in which case only compile reports that match all constraints
will be returned.

• sort – Return the results sorted according to the parameter value. It should follow
the pattern ?sort=<attribute_to_sort_by>.<order>, for example ?sort=requested.desc
(case insensitive). Only sorting by the requested timestamp is supported. The following
orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching compile reports

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_diff_of_versions(tid: UUID, from_version: int, to_version: int)
→ list[ResourceDiff]

Compare two versions of desired states, and provide the difference between them, with regard to their re-
sources and the attributes of these resources. Resources that are the same in both versions are not mentioned
in the results.

A resource diff describes whether the resource was ‘added’, ‘modified’ or ‘deleted’, and what the values of
their attributes were in the versions. The values are also returned in a stringified, easy to compare way, which
can be used to calculate a git diff -like summary of the changes.

Parameters
• tid – The id of the environment

• from_version – The (lower) version number to compare

• to_version – The other (higher) version number to compare

Returns
The resource diffs between from_version and to_version

Raises
• NotFound – This exception is raised when the referenced environment or versions are

not found

• BadRequest – When the version parameters are not valid

inmanta.protocol.methods_v2.get_dryrun_diff(tid: UUID, version: int, report_id: UUID)→
DryRunReport

11.5. Programmatic API reference 337

Inmanta Documentation, Release 7.1.1.dev20240504011805

Get the report of a dryrun, describing the changes a deployment would make, with the difference between
the current and target states provided in a form similar to the desired state diff endpoint.

Parameters
• tid – The id of the environment

• version – The version of the configuration model the dryrun belongs to

• report_id – The dryrun id to calculate the diff for

Raises
NotFound – This exception is raised when the referenced environment or version is not found

Returns
The dryrun report, with a summary and the list of differences.

inmanta.protocol.methods_v2.get_environment_metrics(tid: UUID, metrics: list[str], start_interval:
datetime, end_interval: datetime,
nb_datapoints: int, round_timestamps: bool
= False)→ EnvironmentMetricsResult

Obtain metrics about the given environment for the given time interval.

Parameters
• tid – The id of the environment for which the metrics have to be collected.

• metrics – List of names of metrics that have to be returned.

• start_interval – The start of the time window for which the metrics should be re-
turned.

• end_interval – The end of the time window for which the metrics should be returned.

• nb_datapoints – The amount of datapoint that will be returned within the given time
interval for each metric.

• round_timestamps – If this parameter is set to True, the timestamps in the reply will be
rounded to a full hour. All time windows in the reply will have an equal size. To achieve
this the start_interval, end_interval and nb_datapoint in the reply may differ from the
ones requested.

– The start_interval may be smaller than requested

– The end_interval may be larger than requested

– The nb_datapoints may be larger than requested

Raises
• BadRequest – start_interval >= end_interval

• BadRequest – nb_datapoints < 0

• BadRequest – The provided metrics list is an empty list.

• BadRequest – The start_interval and end_interval are not separated from each other by
at least nb_datapoints minutes separated from each other.

• BadRequest – The round_timestamps parameter is set to True and the amount of hours
between start_interval and end_interval is less than the requested number of datapoints.

inmanta.protocol.methods_v2.get_fact(tid: UUID, rid: ResourceIdStr, id: UUID)→ Fact
Get one specific fact :param tid: The id of the environment :param rid: The id of the resource :param id: The
id of the fact :return: A specific fact corresponding to the id :raise NotFound: This status code is returned
when the referenced environment or fact is not found

338 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods_v2.get_facts(tid: UUID, rid: ResourceIdStr)→ list[Fact]
Get the facts related to a specific resource. The results are sorted alphabetically by name. :param tid: The id
of the environment :param rid: Id of the resource :return: The facts related to this resource :raise NotFound:
This status code is returned when the referenced environment is not found

inmanta.protocol.methods_v2.get_notification(tid: UUID, notification_id: UUID)→ Notification
Get a single notification

Parameters
• tid – The id of the environment

• notification_id – The id of the notification

Returns
The notification with the specified id

Raises
NotFound – When the referenced environment or notification is not found

inmanta.protocol.methods_v2.get_parameters(tid: UUID, limit: int | None = None, first_id: UUID |
None = None, last_id: UUID | None = None, start:
datetime | str | None = None, end: datetime | str | None
= None, filter: dict[str, list[str]] | None = None, sort: str
= 'name.asc')→ list[Parameter]

List the parameters in an environment

Parameters
• tid – The id of the environment

• limit – Limit the number of parameters that are returned

• first_id – The parameter id to use as a continuation token for paging, in combination
with the ‘start’ value, because the order by column might contain non-unique values

• last_id – The parameter id to use as a continuation token for paging, in combination
with the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned parameters.

The following options are available:
– name: filter by the name of the parameter

– source: filter by the source of the parameter

– updated: filter by the updated time of the parameter

• sort – Return the results sorted according to the parameter value. The following sort-
ing attributes are supported: ‘name’, ‘source’, ‘updated’. The following orders are sup-
ported: ‘asc’, ‘desc’

Returns
A list of all matching parameters

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

11.5. Programmatic API reference 339

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods_v2.get_pip_config(tid: UUID, version: int)→ PipConfig | None
Get the pip config for the given version

Parameters
• tid – The id of the environment

• version – The id of the model version

Raises
NotFound – Raised when the version or environment is not found

inmanta.protocol.methods_v2.get_resource_actions(tid: UUID, resource_type: str | None = None,
agent: str | None = None, attribute: str | None =
None, attribute_value: str | None = None,
log_severity: str | None = None, limit: int | None
= 0, action_id: UUID | None = None,
first_timestamp: datetime | None = None,
last_timestamp: datetime | None = None,
exclude_changes: list[Change] | None = None)
→ ReturnValue[list[ResourceAction]]

Return resource actions matching the search criteria.

Parameters
• tid – The id of the environment this resource belongs to

• resource_type – The resource entity type that should be queried

• agent – Agent name that is used to filter the results

• attribute – Attribute name used for filtering

• attribute_value – Attribute value used for filtering. Attribute and attribute value
should be supplied together.

• log_severity – Only include ResourceActions which have a log message with this
severity.

• limit – Limit the number of resource actions included in the response, up to 1000

• action_id – Start the query from this action_id. To be used in combination with either
the first or last timestamp.

• first_timestamp – Limit the results to resource actions that started later than the value
of this parameter (exclusive)

• last_timestamp – Limit the results to resource actions that started earlier than the
value of this parameter (exclusive). Only the first_timestamp or last_timestamp param-
eter should be supplied

• exclude_changes – only return ResourceActions where the change type is different
from the one in this list.

Returns
The list of matching Resource Actions. The order is ascending if first_timestamp is provided,
otherwise descending. If a limit is specified, also return links to the next and previous pages.
The “next” page refers to actions that started earlier, while the “prev” page refers to actions
that started later.

Raises
BadRequest – When the supplied parameters are not valid.

inmanta.protocol.methods_v2.get_resource_events(tid: UUID, rvid: ResourceVersionIdStr,
exclude_change: Change | None = None)→
dict[ResourceIdStr, list[ResourceAction]]

340 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Return relevant events for a resource, i.e. all deploy actions for each of its dependencies since this resources’
last successful deploy or all deploy actions if this resources hasn’t been deployed before. The resource actions
are sorted in descending order according to their started timestamp. If exclude_change is set, exclude all
resource actions with this specific type of change.

This method searches through all versions of this resource. This method should only be called when a deploy
is in progress.

Parameters
• tid – The id of the environment this resource belongs to

• rvid – The id of the resource to get events for.

• exclude_change – Exclude all resource actions with this specific type of change.

Raises
BadRequest – When this endpoint in called while the resource with the given resource
version is not in the deploying state.

inmanta.protocol.methods_v2.get_resources_in_version(tid: UUID, version: int, limit: int | None =
None, first_id: ResourceVersionIdStr |
None = None, last_id:
ResourceVersionIdStr | None = None, start:
str | None = None, end: str | None = None,
filter: dict[str, list[str]] | None = None,
sort: str = 'resource_type.desc')→
list[VersionedResource]

Get the resources that belong to a specific version.

Parameters
• tid – The id of the environment

• version – The version number

• limit – Limit the number of resources that are returned

• first_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘start’ value, because the order by column might contain non-unique
values

• last_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘end’ value, because the order by column might contain non-unique
values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned resources. The following options are available: agent:
filter by the agent name of the resource resource_type: filter by the type of the resource
resource_id_value: filter by the attribute values of the resource

• sort – Return the results sorted according to the parameter value. The following sorting
attributes are supported: ‘resource_type’, ‘agent’, ‘resource_id_value’. The following
orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching resources

Raises
• NotFound – This exception is raised when the referenced environment is not found

11.5. Programmatic API reference 341

Inmanta Documentation, Release 7.1.1.dev20240504011805

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.get_source_code(tid: UUID, version: int, resource_type: str)→
list[Source]

Get the code for the given version and the given resource :param tid: The id of the environment :param
version: The id of the model version :param resource_type: The type name of the resource :raises NotFound:
Raised when the version or type is not found

inmanta.protocol.methods_v2.halt_environment(tid: UUID)→ None
Halt all orchestrator operations for an environment. The environment will enter a state where all agents are
paused and can not be unpaused. Incoming compile requests will still be queued but compilation will halt.
Normal operation can be restored using the resume_environment endpoint.

Parameters
tid – The environment id

Raises
NotFound – The given environment doesn’t exist.

inmanta.protocol.methods_v2.list_desired_state_versions(tid: UUID, limit: int | None = None,
start: int | None = None, end: int |
None = None, filter: dict[str, list[str]] |
None = None, sort: str =
'version.desc')→
list[DesiredStateVersion]

Get the desired state versions from an environment.

Parameters
• tid – The id of the environment

• limit – Limit the number of versions that are returned

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned desired state versions. Filtering by ‘version’ range,
‘date’ range and ‘status’ is supported.

• sort – Return the results sorted according to the parameter value. Only sorting by
‘version’ is supported. The following orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching compile reports

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.list_dryruns(tid: UUID, version: int)→ list[DryRun]
Query a list of dry runs for a specific version

Parameters
• tid – The id of the environment

• version – The configuration model version to return dryruns for

Raises
NotFound – This exception is raised when the referenced environment or version is not found

Returns
The list of dryruns for the specified version in descending order by date

342 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.protocol.methods_v2.list_notifications(tid: UUID, limit: int | None = None, first_id:
UUID | None = None, last_id: UUID | None =
None, start: datetime | None = None, end: datetime
| None = None, filter: dict[str, list[str]] | None =
None, sort: str = 'created.desc')→
list[Notification]

List the notifications in an environment.

Parameters
• tid – The id of the environment

• limit – Limit the number of notifications that are returned

• first_id – The notification id to use as a continuation token for paging, in combination
with the ‘start’ value, because the order by column might contain non-unique values

• last_id – The notification id to use as a continuation token for paging, in combination
with the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned notifications. The following options are available:
read: Whether the notification was read or not cleared: Whether the notification was
cleared or not severity: Filter by the severity field of the notifications title: Filter by the
title of the notifications message: Filter by the message of the notifications

• sort – Return the results sorted according to the parameter value. Only sorting by the
‘created’ date is supported. The following orders are supported: ‘asc’, ‘desc’

Returns
A list of all matching notifications

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering or paging are not valid

inmanta.protocol.methods_v2.list_users()→ list[User]
List all users

Returns
A list of all users

inmanta.protocol.methods_v2.login(username: str, password: str)→ ReturnValue[LoginReturn]
Login a user. When the login succeeds an authentication header is returned with the Bearer token set.

Parameters
• username – The user to login

• password – The password of this user

Raises
UnauthorizedException – Raised when the login failed or if server authentication is not
enabled

inmanta.protocol.methods_v2.project_create(name: str, project_id: UUID | None = None)→ Project
Create a new project

Parameters
• name – The name of the project

11.5. Programmatic API reference 343

Inmanta Documentation, Release 7.1.1.dev20240504011805

• project_id – A unique uuid, when it is not provided the server generates one

inmanta.protocol.methods_v2.project_delete(id: UUID)→ None
Delete the given project and all related data

Parameters
id – The id of the project to be deleted.

inmanta.protocol.methods_v2.project_get(id: UUID, environment_details: bool = False)→ Project
Get a project and a list of the environments under this project

Parameters
• id – The id for which the project’s details are being requested.

• environment_details – Whether to include the icon and description of the environ-
ments in the results

inmanta.protocol.methods_v2.project_list(environment_details: bool = False)→ list[Project]
Returns a list of projects ordered alphabetically by name. The environments within each project are also
sorted by name.

Parameters
environment_details – Whether to include the icon and description of the environments
in the results

inmanta.protocol.methods_v2.project_modify(id: UUID, name: str)→ Project
Rename the given project

Parameters
• id – The id of the project to be modified.

• name – The new name for the project. This string value will replace the current name of
the project.

inmanta.protocol.methods_v2.promote_desired_state_version(tid: UUID, version: int,
trigger_method:
PromoteTriggerMethod | None =
None)→ None

Promote a desired state version, making it the active version in the environment.

Parameters
• tid – The id of the environment

• version – The number of the version to promote

• trigger_method – If set to ‘push_incremental_deploy’ or ‘push_full_deploy’, the
agents will perform an incremental or full deploy, respectively. If set to ‘no_push’, the
new version is not pushed to the agents. If the parameter is not set (or set to null), the
new version is pushed and the environment setting ‘environment_agent_trigger_method’
decides if the deploy should be full or incremental

inmanta.protocol.methods_v2.put_partial(tid: UUID, resource_state: dict[ResourceIdStr,
Literal[ResourceState.available, ResourceState.undefined]] |
None = None, unknowns: list[dict[str, UUID | bool | int |
float | datetime | str]] | None = None, resource_sets:
dict[ResourceIdStr, str | None] | None = None,
removed_resource_sets: list[str] | None = None, pip_config:
PipConfig | None = None, **kwargs: object)→
ReturnValue[int]

Store a new version of the configuration model after a partial recompile. The partial is applied on top of the
latest version. Dynamically acquires a new version and serializes concurrent calls. Python code for the new
version is copied from the base version.

344 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Concurrent put_partial calls are safe from race conditions provided that their resource sets are disjunct. A
put_version call concurrent with a put_partial is not guaranteed to be safe. It is the caller’s responsibility
to appropriately serialize them with respect to one another. The caller must ensure the reserve_version +
put_version operation is atomic with respect to put_partial. In other words, put_partial must not be called in
the window between reserve_version and put_version. If not respected, either the full or the partial export
might be immediately stale, and future exports will only be applied on top of the non-stale one.

Parameters
• tid – The id of the environment

• resource_state – A dictionary with the initial const.ResourceState per resource id.
The ResourceState should be set to undefined when the resource depends on an unknown
or available when it doesn’t.

• unknowns – A list of unknown parameters that caused the model to be incomplete

• resource_sets – a dictionary describing which resources belong to which resource
set

• removed_resource_sets – a list of resource_sets that should be deleted from the
model

• **kwargs – The following arguments are supported: * resources: a list of resource
objects. Since the version is not known yet resource versions should be set to 0. *
version_info: Model version information

• pip_config – Pip config used by this version

Returns
The newly stored version number.

inmanta.protocol.methods_v2.reserve_version(tid: UUID)→ int
Reserve a version number in this environment.

Parameters
tid – The id of the environment in which the version number is to be reserved.

inmanta.protocol.methods_v2.resource_deploy_done(tid: UUID, rvid: ResourceVersionIdStr,
action_id: UUID, status: ResourceState,
messages: list[LogLine] = [], changes: dict[str,
AttributeStateChange] = {}, change: Change |
None = None)→ None

Report to the server that an agent has finished the deployment of a certain resource.

Parameters
• tid – The id of the environment the resource belongs to

• rvid – The resource version id of the resource for which the deployment is finished.

• action_id – A unique ID associated with this resource deployment action. This should
be the same ID that was passed to the /resource/<resource_id>/deploy/start API call.

• status – The current status of the resource (if known)

• messages – A list of log entries produced by the deployment action.

• changes – A dict of changes to this resource. The key of this dict indicates the at-
tributes/fields that have been changed. The value contains the new value and/or the
original value.

• change – The type of change that was done the given resource.

inmanta.protocol.methods_v2.resource_deploy_start(tid: UUID, rvid: ResourceVersionIdStr,
action_id: UUID)→
dict[ResourceVersionIdStr, ResourceState]

Report to the server that the agent will start the deployment of the given resource.

11.5. Programmatic API reference 345

Inmanta Documentation, Release 7.1.1.dev20240504011805

Parameters
• tid – The id of the environment the resource belongs to

• rvid – The resource version id of the resource for which the deployment will start

• action_id – A unique id used to track the action of this deployment

Returns
A dict mapping the resource version id of each dependency of resource_id to the last deploy-
ment status of that resource.

inmanta.protocol.methods_v2.resource_details(tid: UUID, rid: ResourceIdStr)→
ReleasedResourceDetails

Parameters
• tid – The id of the environment from which the resource’s details are being requested.

• rid – The unique identifier (ResourceIdStr) of the resource. This value specifies the
particular resource for which detailed information is being requested.

Returns
The details of the latest released version of a resource

Raises
NotFound – This exception is raised when the referenced environment or resource is not
found

inmanta.protocol.methods_v2.resource_did_dependency_change(tid: UUID, rvid:
ResourceVersionIdStr)→ bool

Returns True iff this resources’ events indicate a change in its dependencies since the resource’s last deploy-
ment.

This method searches through all versions of this resource. This method should only be called when a deploy
is in progress.

Parameters
• tid – The id of the environment this resource belongs to

• rvid – The id of the resource.

Raises
BadRequest – When this endpoint in called while the resource with the given resource
version is not in the deploying state.

inmanta.protocol.methods_v2.resource_history(tid: UUID, rid: ResourceIdStr, limit: int | None =
None, first_id: str | None = None, last_id: str | None
= None, start: datetime | None = None, end: datetime
| None = None, sort: str = 'date.desc')→
list[ResourceHistory]

Parameters
• tid – The id of the environment this resource belongs to

• rid – The id of the resource

• limit – Limit the number of instances that are returned

• first_id – The attribute_hash to use as a continuation token for paging, in combination
with the ‘start’ value, because the order by column might contain non-unique values

• last_id – The attribute_hash to use as a continuation token for paging, in combination
with the ‘end’ value, because the order by column might contain non-unique values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

346 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• sort – Return the results sorted according to the parameter value. It should follow
the pattern <attribute_to_sort_by>.<order>, for example date.desc (case insensitive).
Sorting by date is supported. The following orders are supported: ‘asc’, ‘desc’

Returns
The history of a resource, according to its attributes

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for sorting or paging are not valid

inmanta.protocol.methods_v2.resource_list(tid: UUID, limit: int | None = None, first_id:
ResourceVersionIdStr | None = None, last_id:
ResourceVersionIdStr | None = None, start: str | None =
None, end: str | None = None, filter: dict[str, list[str]] |
None = None, sort: str = 'resource_type.desc',
deploy_summary: bool = False)→
list[LatestReleasedResource]

Parameters
• tid – The id of the environment this resource belongs to

• limit – Limit the number of instances that are returned

• first_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘start’ value, because the order by column might contain non-unique
values

• last_id – The resource_version_id to use as a continuation token for paging, in com-
bination with the ‘end’ value, because the order by column might contain non-unique
values

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned resources. Filters should be specified with the syntax
?filter.<filter_key>=value, for example ?filter.status=deployed It’s also possible to pro-
vide multiple values for the same filter, in this case resources are returned, if they match
any of these filter values. For example: ?filter.status=deployed&filter.status=available
returns instances with either of the statuses deployed or available. Multiple different
filters narrow the results however (they are treated as an ‘AND’ operator). For exam-
ple filter.status=deployed&filter.agent=internal returns resources with ‘deployed’ sta-
tus, where the ‘agent’ is set to ‘internal_agent’. The following options are available:
agent: filter by the agent of the resource resource_type: filter by the type of the resource
resource_id_value: filter by the attribute values of the resource status: filter by the cur-
rent status of the resource. For status filters it’s also possible to invert the condition with
‘!’, for example filter.status=!orphaned will return all the resources that are not in ‘or-
phaned’ state The values for the ‘agent’, ‘resource_type’ and ‘value’ filters are matched
partially.

• sort – Return the results sorted according to the parameter value. It should follow
the pattern <attribute_to_sort_by>.<order>, for example resource_type.desc (case in-
sensitive). The following sorting attributes are supported: ‘resource_type’, ‘agent’, ‘re-
source_id_value’, ‘status’. The following orders are supported: ‘asc’, ‘desc’

• deploy_summary – If set to true, returns a summary of the deployment status of the
resources in the environment in the metadata, describing how many resources are in

11.5. Programmatic API reference 347

Inmanta Documentation, Release 7.1.1.dev20240504011805

each state as well as the total number of resources. The summary does not take into
account the current filters or paging parameters. Orphaned resources are not included
in the summary

Returns
A list of all matching released resources

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.resource_logs(tid: UUID, rid: ResourceIdStr, limit: int | None = None,
start: datetime | None = None, end: datetime | None =
None, filter: dict[str, list[str]] | None = None, sort: str =
'timestamp.desc')→ list[ResourceLog]

Get the logs of a specific resource.

Parameters
• tid – The id of the environment this resource belongs to

• rid – The id of the resource

• limit – Limit the number of instances that are returned

• start – The lower limit for the order by column (exclusive). Only one of ‘start’ and
‘end’ should be specified at the same time.

• end – The upper limit for the order by column (exclusive). Only one of ‘start’ and ‘end’
should be specified at the same time.

• filter – Filter the list of returned logs. Filters should be specified with the syntax ?fil-
ter.<filter_key>=value, for example ?filter.minimal_log_level=INFO. It’s also possible
to provide multiple values for the same filter, in this case resources are returned, if they
match any of these filter values.

For example: ?filter.action=pull&filter.action=deploy returns logs with ei-
ther of the actions pull or deploy. Multiple different filters narrow the re-
sults however (they are treated as an ‘AND’ operator). For example fil-
ter.minimal_log_level=INFO&filter.action=deploy returns logs with ‘deploy’ action,
where the ‘log_level’ is at least ‘INFO’.

The following options are available:
– action: filter by the action of the log

– timestamp: return the logs matching the timestamp constraints. Valid con-
straints are of the form “<lt|le|gt|ge>:<x>”. The expected format is YYYY-MM-
DDTHH:mm:ss.ssssss, so an ISO-8601 datetime string, in UTC timezone.

For example: ?filter.timestamp=ge:2021-08-18T09:21:30.568353&filter.timestamp=lt:2021-
08-18T10:21:30.568353. Multiple constraints can be specified, in which case only
log messages that match all constraints will be returned.

– message: filter by the content of the log messages. Partial matches are allowed.
(case-insensitive)

– minimal_log_level: filter by the log level of the log messages. The filter specifies
the minimal level, so messages with either this level, or a higher severity level are
going to be included in the result.

For example, for filter.minimal_log_level=INFO, the log messages with level INFO,
WARNING, ERROR, CRITICAL all match the query.

348 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• sort – Return the results sorted according to the parameter value. It should follow
the pattern <attribute_to_sort_by>.<order>, for example timestamp.desc (case insen-
sitive). Only sorting by timestamp is supported. The following orders are supported:
‘asc’, ‘desc’

Returns
A list of all matching resource logs

Raises
• NotFound – This exception is raised when the referenced environment is not found

• BadRequest – When the parameters used for filtering, sorting or paging are not valid

inmanta.protocol.methods_v2.resources_status(tid: UUID, version: int, rids: list[ResourceIdStr])→
dict[ResourceIdStr, ResourceState]

Get the deployment status for a batch of resource ids

Parameters
• tid – The id of the environment the resources belong to

• version – Version of the model to get the status for

• rids – List of resource ids to fetch the status for.

inmanta.protocol.methods_v2.resume_environment(tid: UUID)→ None
Resume all orchestrator operations for an environment. Resumes normal environment operation and un-
pauses all agents that were active when the environment was halted.

Parameters
tid – The environment id

Raises
NotFound – The given environment doesn’t exist.

inmanta.protocol.methods_v2.set_fact(tid: UUID, name: str, source: ParameterSource, value: str,
resource_id: str, metadata: dict[str, str] | None = None,
recompile: bool = False, expires: bool | None = True)→
ReturnValue[Fact]

Set a fact on the server. If the fact is a tracked unknown, it will trigger a recompile on the server. Otherwise,
if the value is changed and recompile is true, a recompile is also triggered.

Parameters
• tid – The id of the environment

• name – The name of the fact

• source – The source of the fact

• value – The value of the fact

• resource_id – The resource this fact belongs to

• metadata – Optional. Metadata about the fact

• recompile – Optional. Whether to trigger a recompile if the value of the fact changed.

• expires – Optional. If the fact should expire or not. By default, facts expire.

inmanta.protocol.methods_v2.set_parameter(tid: UUID, name: str, source: ParameterSource, value:
str, metadata: dict[str, str] | None = None, recompile:
bool = False)→ ReturnValue[Parameter]

Set a parameter on the server. If the parameter is an tracked unknown, it will trigger a recompile on the
server. Otherwise, if the value is changed and recompile is true, a recompile is also triggered.

Parameters

11.5. Programmatic API reference 349

Inmanta Documentation, Release 7.1.1.dev20240504011805

• tid – The id of the environment

• name – The name of the parameter

• source – The source of the parameter.

• value – The value of the parameter

• metadata – Optional. Metadata about the parameter

• recompile – Optional. Whether to trigger a recompile if the value of the parameter
changed.

inmanta.protocol.methods_v2.set_password(username: str, password: str)→ None
Change the password of a user

Parameters
• username – The username of the user

• password – The password of this new user. The password should be at least 8 characters
long.

Raises
• NotFound – Raised when the user does not exist

• BadRequest – Raised when server authentication is not enabled

inmanta.protocol.methods_v2.update_agent_map(agent_map: dict[str, str])→ None
Notify an agent about the fact that the autostart_agent_map has been updated.

Parameters
agent_map – The content of the new autostart_agent_map

inmanta.protocol.methods_v2.update_notification(tid: UUID, notification_id: UUID, read: bool |
None = None, cleared: bool | None = None)→
Notification

Update a notification by setting its flags

Parameters
• tid – The id of the environment

• notification_id – The id of the notification to update

• read – Whether the notification has been read

• cleared – Whether the notification has been cleared

Returns
The updated notification

Raises
NotFound – When the referenced environment or notification is not found

inmanta.protocol.methods_v2.versioned_resource_details(tid: UUID, version: int, rid:
ResourceIdStr)→
VersionedResourceDetails

Parameters
• tid – The id of the environment

• version – The version number of the resource

• rid – The id of the resource

Returns
The details of a specific version of a resource

350 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Raises
NotFound – This exception is raised when the referenced environment or resource is not
found

11.5.17 Server

class inmanta.server.extensions.ApplicationContext

Bases: object

class inmanta.server.bootloader.InmantaBootloader(configure_logging: bool = False)
Bases: object

The inmanta bootloader is responsible for: - discovering extensions - loading extensions - loading core and
extension slices - starting the server and its slices in the correct order

11.6 Inmanta Compile Data Reference

This page documents the compile data output when compiling with the –export-compile-data flag. The structure
of this JSON is defined by inmanta.data.model.CompileData which inherits from pydantic.BaseModel.
To produce the JSON representation of the object, model.json() is called. See the pydantic documentation for more
information on how exactly a JSON is generated from a model.

class inmanta.data.model.CompileData(*, errors: list[Error])
Bases: BaseModel

Top level structure of compiler data to be exported.

errors: list[Error]

All errors occurred while trying to compile.

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'use_enum_values': True}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'errors':
FieldInfo(annotation=list[Error], required=True)}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

class inmanta.ast.export.Error(*, category: ErrorCategory = ErrorCategory.runtime, type: str,
message: str, location: Location | None = None, **extra_data: Any)

Bases: BaseModel

Error occurred while trying to compile.

category: ErrorCategory

Category of this error.

location: Location | None

Location where this error occurred.

message: str

Error message.

11.6. Inmanta Compile Data Reference 351

https://docs.pydantic.dev/1.10/usage/exporting_models/#modeljson

Inmanta Documentation, Release 7.1.1.dev20240504011805

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'extra': 'allow', 'validate_assignment':
True}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'category':
FieldInfo(annotation=ErrorCategory, required=False,
default=<ErrorCategory.runtime: 'runtime_error'>), 'location':
FieldInfo(annotation=Union[Location, NoneType], required=False, default=None),
'message': FieldInfo(annotation=str, required=True), 'type':
FieldInfo(annotation=str, required=True)}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

type: str

Fully qualified name of the actual exception.

class inmanta.ast.export.ErrorCategory(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: str, Enum

Category of an error.

parser = 'parse_error'

Error occurred while parsing.

plugin = 'plugin_exception'

A plugin explicitly raised an inmanta.plugins.PluginException.

runtime = 'runtime_error'

Error occurred after parsing.

class inmanta.ast.export.Location(*, uri: str, range: Range)
Bases: BaseModel

Location in a file. Based on the LSP spec 3.15

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'range':
FieldInfo(annotation=Range, required=True), 'uri': FieldInfo(annotation=str,
required=True)}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

range: Range

uri: str

352 Chapter 11. Inmanta Reference

https://microsoft.github.io/language-server-protocol/specifications/specification-3-15/#location

Inmanta Documentation, Release 7.1.1.dev20240504011805

class inmanta.ast.export.Range(*, start: Position, end: Position)
Bases: BaseModel

Range in a file. Based on the LSP spec 3.15

end: Position

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'end':
FieldInfo(annotation=Position, required=True), 'start':
FieldInfo(annotation=Position, required=True)}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

start: Position

class inmanta.ast.export.Position(*, line: int, character: int)
Bases: BaseModel

Position in a file. Based on the LSP spec 3.15

character: int

line: int

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [Config-
Dict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'character':
FieldInfo(annotation=int, required=True), 'line': FieldInfo(annotation=int,
required=True)}

Metadata about the fields defined on the model, mapping of field names to [Field-
Info][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

11.7 Inmanta modules

11.7.1 Module apt

• License: Apache 2.0

• Version: 0.4.25

• This module requires compiler version 2017.1 or higher

• Upstream project: https://github.com/inmanta/apt.git

11.7. Inmanta modules 353

https://microsoft.github.io/language-server-protocol/specifications/specification-3-15/#range
https://microsoft.github.io/language-server-protocol/specifications/specification-3-15/#position
https://github.com/inmanta/apt.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

Entities

entity apt::Repository

Parents: std::Entity

An apt repository

attribute string name

attribute string base_url

attribute string release

attribute string repo

attribute bool trusted=false

relation std::Host host [1]
other end: std::Host.repository [0:*]

The following implementations are defined for this entity:

• apt::simpleRepo

The following implements statements select implementations for this entity:

• apt::simpleRepo constraint true

Implementations

implementation apt::simpleRepo

Handlers

class apt.AptPackage

A Package handler that uses apt

• Handler name apt

• Handler for entity std::Package

11.7.2 Module aws

• License: Apache 2.0

• Version: 4.0.2

• This module requires compiler version 2017.2 or higher

• Upstream project: https://github.com/inmanta/aws.git

354 Chapter 11. Inmanta Reference

https://github.com/inmanta/aws.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

Typedefs

typedef aws::direction

• Base type string

• Type constraint ((self == 'ingress') or (self == 'egress'))

typedef aws::instance_tenancy

• Base type string

• Type constraint /^(default|dedicated|host)$/

typedef aws::protocol

• Base type string

• Type constraint (self in ['tcp', 'udp', 'icmp', 'sctp', 'all'])

Entities

entity aws::AWSResource

Parents: std::PurgeableResource, std::ManagedResource

relation aws::Provider provider [1]

entity aws::ELB

Parents: aws::AWSResource

An ELB load balancer

attribute string name

attribute string security_group='default'

attribute std::port listen_port=80

attribute std::port dest_port=80

attribute string protocol='http'

relation aws::VirtualMachine instances [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::GroupRule

Parents: aws::SecurityRule

relation aws::SecurityGroup remote_group [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::IPrule

Parents: aws::SecurityRule

attribute std::ipv4_network remote_prefix

The following implements statements select implementations for this entity:

• std::none constraint true

11.7. Inmanta modules 355

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity aws::InternetGateway

Parents: aws::AWSResource

An Internet gateway for use with a VPC.

attribute string name

relation aws::VPC vpc [0:1]
other end: aws::VPC.internet_gateway [0:1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::Provider

Parents: std::Entity

The configuration to access Amazon Web Services

attribute string name

attribute string region

attribute string availability_zone

attribute string? access_key=null

attribute string? secret_key=null

attribute bool auto_agent=true

The following implementations are defined for this entity:

• aws::agentConfig

The following implements statements select implementations for this entity:

• std::none constraint true

• aws::agentConfig constraint auto_agent

entity aws::Route

Parents: aws::AWSResource

A route entry in the main VPC routing table

attribute std::ipv4_network destination

The destination route

attribute std::ipv4_address nexthop
The private ip associated with a ENI in the VPC.

relation aws::VPC vpc [1]
other end: aws::VPC.routes [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::SecurityGroup

Parents: aws::AWSResource

attribute string description=''

attribute string name

attribute bool manage_all=true

356 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute int retries=10
A security group can only be deleted when it is no longer in use. The API confirms the delete of a
virtual machine for example, but it might still be in progress. This results in a failure to delete the
security group. To speed up deployments, the handler can retry this number of times before skipping
the resource.

attribute int wait=5
The number of seconds to wait between retries.

relation aws::SecurityRule rules [0:*]
other end: aws::SecurityRule.group [1]

relation aws::VPC vpc [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::SecurityRule

Parents: std::Entity

A filter rule in the a security group

attribute aws::protocol ip_protocol
The type of ip protocol to allow. Currently this support tcp/udp/icmp/sctp or all

attribute std::port port_min=0

attribute std::port port_max=0

attribute std::port port=0

attribute aws::direction direction

relation aws::SecurityGroup group [1]
other end: aws::SecurityGroup.rules [0:*]

entity aws::Subnet

Parents: aws::AWSResource

A subnet in a vpc

attribute string name

The name of the subnet. Inmanta uses this name to idenfiy the subnet. It is set as the name tag on the
subnet resource.

attribute string? availability_zone=null
The Availability Zone for the subnet.

attribute std::ipv4_network cidr_block

The IPv4 network range for the VPC, in CIDR notation. For example, 10.0.0.0/24.

attribute bool map_public_ip_on_launch=false
Specify true to indicate that network interfaces created in the specified subnet should be assigned a
public IPv4 address. This includes a network interface that’s created when launching an instance into
the subnet (the instance therefore receives a public IPv4 address).

relation aws::VPC vpc [1]
The VPC the subnet is created in.

other end: aws::VPC.subnets [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

11.7. Inmanta modules 357

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity aws::VMAttributes

Parents: std::Entity

attribute string flavor

attribute string image

attribute string user_data

attribute string? subnet_id=null

attribute bool source_dest_check=true

attribute bool ebs_optimized=false

attribute bool ignore_extra_volumes=false

attribute bool ignore_wrong_image=false

attribute int root_volume_size=16

attribute string root_volume_type='gp2'

entity aws::VPC

Parents: aws::AWSResource

A VPC on Amazon

attribute string name

The name of the VPC. Inmanta uses this name to idenfiy the vpc. It is set as the name tag on the vpc
resource.

attribute std::ipv4_network cidr_block

The IPv4 network range for the VPC, in CIDR notation. For example, 10.0.0.0/16.

attribute aws::instance_tenancy instance_tenancy='default'
The tenancy options for instances launched into the VPC. For default , instances are launched with
shared tenancy by default. You can launch instances with any tenancy into a shared tenancy VPC.
For dedicated , instances are launched as dedicated tenancy instances by default. You can only launch
instances with a tenancy of dedicated or host into a dedicated tenancy VPC.

attribute bool enableDnsHostnames=false

attribute bool enableDnsSupport=false

relation aws::Subnet subnets [0:*]
The VPC the subnet is created in.

other end: aws::Subnet.vpc [1]

relation aws::InternetGateway internet_gateway [0:1]
other end: aws::InternetGateway.vpc [0:1]

relation aws::Route routes [0:*]
other end: aws::Route.vpc [1]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::VirtualMachine

Parents: aws::VMAttributes, aws::AWSResource

This entity represents a virtual machine that is hosted on an IaaS

358 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute string name

attribute dict tags={}

relation ssh::Key public_key [1]

relation aws::Subnet subnet [0:1]
Boot the vm in this subnet. Either use this relation or provide a subnet id directly.

relation aws::SecurityGroup security_groups [0:*]
The security groups that apply to this vm. If no group is supplied the default security group will be
applied by EC2

relation aws::Volume volumes [0:*]
other end: aws::Volume.vm [0:1]

The following implementations are defined for this entity:

• aws::req

The following implements statements select implementations for this entity:

• aws::req constraint true

entity aws::Volume

Parents: aws::AWSResource

attribute string name

attribute string attachmentpoint='/dev/sdb'

attribute string availability_zone

attribute bool encrypted=false

attribute int size=10

attribute string volume_type='gp2'

attribute dict tags={}

relation aws::VirtualMachine vm [0:1]
other end: aws::VirtualMachine.volumes [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::analytics::ElasticSearch

Parents: aws::AWSResource

Amazon Elasticsearch Service (Amazon ES) is a managed service that makes it easy to create a domain and
deploy, operate, and scale Elasticsearch clusters in the AWS Cloud.

attribute string domain_name

attribute string elasticsearch_version

attribute string instance_type

attribute number instance_count=1

attribute bool dedicated_master_enabled=false

attribute bool zone_awareness_enabled=false

11.7. Inmanta modules 359

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute string dedicated_master_type=''

attribute number dedicated_master_count=1

attribute bool ebs_enabled=true

attribute string volume_type='gp2'

attribute number volume_size

attribute string access_policies

attribute number automated_snapshot_start_hour=0

The following implements statements select implementations for this entity:

• std::none constraint true

entity aws::database::RDS

Parents: aws::AWSResource

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate,
and scale a relational database in the cloud.

attribute string name

attribute number allocated_storage=10

attribute string flavor='db.t2.small'

attribute string engine='mysql'

attribute string engine_version='5.7.17'

attribute string master_user_name='root'

attribute string master_user_password

attribute string subnet_group

attribute std::port port=3306

attribute bool public=false

attribute dict tags={}

The following implements statements select implementations for this entity:

• std::none constraint true

Implementations

implementation aws::agentConfig

implementation aws::req

360 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Plugins

aws.elbid(name: 'string')→ 'string'

aws.get_api_id(provider: 'aws::Provider', api_name: 'string')→ 'string'

Resources

class aws.ELB

Amazon Elastic loadbalancer

• Resource for entity aws::ELB

• Id attribute name

• Agent name provider.name

• Handlers aws.ELBHandler

class aws.InternetGateway

• Resource for entity aws::InternetGateway

• Id attribute name

• Agent name provider.name

• Handlers aws.InternetGatewayHandler

class aws.Route

• Resource for entity aws::Route

• Id attribute destination

• Agent name provider.name

• Handlers aws.RouteHandler

class aws.SecurityGroup

A security group in an OpenStack tenant

• Resource for entity aws::SecurityGroup

• Id attribute name

• Agent name provider.name

• Handlers aws.SecurityGroupHandler

class aws.Subnet

• Resource for entity aws::Subnet

• Id attribute name

• Agent name provider.name

• Handlers aws.SubnetHandler

class aws.VPC

• Resource for entity aws::VPC

• Id attribute name

• Agent name provider.name

11.7. Inmanta modules 361

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Handlers aws.VPCHandler

class aws.VirtualMachine

• Resource for entity aws::VirtualMachine

• Id attribute name

• Agent name provider.name

• Handlers aws.VirtualMachineHandler

class aws.Volume

• Resource for entity aws::Volume

• Id attribute name

• Agent name provider.name

• Handlers aws.VolumeHandler

class aws.ElasticSearch

• Resource for entity aws::analytics::ElasticSearch

• Id attribute domain_name

• Agent name provider.name

• Handlers aws.ElasticSearchHandler

class aws.RDS

• Resource for entity aws::database::RDS

• Id attribute name

• Agent name provider.name

• Handlers aws.RDSHandler

Handlers

class aws.ELBHandler

This class manages ELB instances on amazon ec2

• Handler name ec2

• Handler for entity aws::ELB

class aws.VirtualMachineHandler

• Handler name ec2

• Handler for entity aws::VirtualMachine

class aws.VolumeHandler

• Handler name volume

• Handler for entity aws::Volume

class aws.ElasticSearchHandler

• Handler name elasticsearch

• Handler for entity aws::analytics::ElasticSearch

362 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

class aws.RDSHandler

• Handler name elasticsearch

• Handler for entity aws::database::RDS

class aws.VPCHandler

• Handler name ec2

• Handler for entity aws::VPC

class aws.RouteHandler

• Handler name ec2

• Handler for entity aws::Route

class aws.SubnetHandler

• Handler name ec2

• Handler for entity aws::Subnet

class aws.InternetGatewayHandler

• Handler name ec2

• Handler for entity aws::InternetGateway

class aws.SecurityGroupHandler

• Handler name ec2

• Handler for entity aws::SecurityGroup

11.7.3 Module exec

• License: Apache 2.0

• Version: 1.1.21

• This module requires compiler version 2017.1 or higher

• Upstream project: https://github.com/inmanta/exec.git

Entities

entity exec::Run

Parents: std::Resource

Run a command with almost exact semantics as the exec type of puppet

The command is not executed in a shell! This means:

• shell operators like ;, |, > don’t work

• variable substitution doesn’t work: echo $PATH will literally print $PATH

• variable substitution doesn’t work in environment variables either: setting PATH to $PATH will result
in command not found

If want to run a command in a shell, use the plugin ‘in_shell’:

exec::Run(host=host, command=exec::in_shell(command))

If you want variable substitution on environment variables, use the export command in the shell:

11.7. Inmanta modules 363

https://github.com/inmanta/exec.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

exec::Run(host=host, command=exec::in_shell("export PATH=$PATH:/usr/local/bin; {
↪→{command}}"))

attribute string command

The actual command to execute. The command should be almost always be idempotent.

attribute string creates=''
A file that the command creates, when the file already exists the command will not be executed. This
helps to make simple commands idempotent

attribute string cwd=''
The directory from which to run the command. WARNING: Command is spawned in a subshell. This
implies that the real path of cwd is used and not a possible symlinked path.

attribute dict environment={}
Environment variables to set before the command is executed. A dictionary of variables can be passed
in the form {“var”: “value”}.

attribute string onlyif=''
Only execute the command if this command is true (returns 0)

attribute string path=''
The path to search the command in

attribute string reload=''
The command to execute when this run needs to reload. If empty the command itself will be executed
again.

attribute bool reload_only=false
Only use this command to reload

attribute number[] returns=List()
A list of valid return codes, by default this is only 0

attribute number timeout=300
The maximum time the command should take. If the command takes longer, the deploy agent will try
to end it.

attribute string unless=''
If this attribute is set, the command will only execute if the command in this attribute is not successful
(returns not 0). If the command passed to this attribute does not exist, this is interpreted as a non-
successful execution.

attribute bool skip_on_fail=false
Report this resource as skipped instead of failed.

relation std::Host host [1]

The following implementations are defined for this entity:

• exec::execHost

The following implements statements select implementations for this entity:

• exec::execHost constraint true

364 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Implementations

implementation exec::execHost

Plugins

exec.in_shell(command: 'string')→ 'any'
Wrap the command such that it is executed in a shell

Resources

class exec.Run

This class represents a service on a system.

• Resource for entity exec::Run

• Id attribute command

• Agent name host.name

• Handlers exec.PosixRun

Handlers

class exec.PosixRun

A handler to execute commands on posix compatible systems. This is a very atypical resource as
this executes a command. The check_resource method will determine based on the “reload_only”,
“creates”, “unless” and “onlyif” attributes if the command will be executed.

• Handler name posix

• Handler for entity exec::Run

11.7.4 Module ip

• License: Apache 2.0

• Version: 2.0.2

• This module requires compiler version 2016.5 or higher

• Upstream project: https://github.com/inmanta/ip.git

Typedefs

typedef ip::cidr

• Base type string

• Type constraint (ip::is_valid_cidr(self) == true)

typedef ip::cidr_v10

• Base type string

• Type constraint (ip::is_valid_cidr_v10(self) == true)

11.7. Inmanta modules 365

https://github.com/inmanta/ip.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

typedef ip::cidr_v6

• Base type string

• Type constraint (ip::is_valid_cidr_v6(self) == true)

typedef ip::ip

• Base type string

• Type constraint (ip::is_valid_ip(self) == true)

typedef ip::ip_v10

• Base type string

• Type constraint (ip::is_valid_ip_v10(self) == true)

typedef ip::ip_v6

• Base type string

• Type constraint (ip::is_valid_ip_v6(self) == true)

typedef ip::mask

• Base type string

• Type constraint ip::is_valid_netmask(self)

typedef ip::port

• Base type int

• Type constraint ((self >= 0) and (self < 65536))

typedef ip::protocol

• Base type string

• Type constraint (((((self == 'tcp') or (self == 'udp')) or (self == 'icmp')) or
(self == 'sctp')) or (self == 'all'))

Entities

entity ip::Address

Parents: ip::Alias

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Alias

Parents: ip::IP

attribute ip::ip netmask='0.0.0.0'

attribute number alias=0

attribute bool dhcp=false

relation ip::services::Server server [0:*]
other end: ip::services::Server.ips [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

366 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity ip::DstService

Parents: ip::Service

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Host

Parents: std::Host

Like std::Host, kept for backwards compatibility.

relation ip::services::Server servers [0:*]
other end: ip::services::Server.host [1]

relation ip::services::Client clients [0:*]
other end: ip::services::Client.host [1]

The following implements statements select implementations for this entity:

• std::hostDefaults constraint true

entity ip::IP

Parents: std::Entity

Base class for all ip addresses

attribute ip::ip v4='0.0.0.0'

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Network

Parents: std::Entity

A network in this infrastructure.

attribute string network

attribute string netmask

attribute string name

attribute bool dhcp

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::Port

Parents: ip::PortRange

attribute ip::port high=0

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::PortRange

Parents: std::Entity

attribute ip::port low

attribute ip::port high

The following implements statements select implementations for this entity:

• std::none constraint true

11.7. Inmanta modules 367

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity ip::Service

Parents: std::Entity

Define a service as a protocol and a source and destination port range

attribute ip::protocol proto

relation ip::PortRange dst_range [0:*]

relation ip::PortRange src_range [0:*]

relation ip::services::BaseServer listening_servers [0:*]
other end: ip::services::BaseServer.services [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::BaseClient

Parents: std::Entity

Base client class that connects to a server

relation ip::services::BaseServer servers [0:*]
other end: ip::services::BaseServer.clients [0:*]

entity ip::services::BaseServer

Parents: std::Entity

Base class for servers that accept connections from clients

relation ip::Service services [0:*]
other end: ip::Service.listening_servers [0:*]

relation ip::services::BaseClient clients [0:*]
other end: ip::services::BaseClient.servers [0:*]

entity ip::services::Client

Parents: ip::services::BaseClient

This interface models a client that is linked to a host

relation ip::Host host [1]
other end: ip::Host.clients [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::Server

Parents: ip::services::BaseServer

This interface models a server that accepts connections from a client

relation ip::Host host [1]
other end: ip::Host.servers [0:*]

relation ip::Alias ips [0:*]
other end: ip::Alias.server [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualClient

Parents: ip::services::BaseClient, ip::services::VirtualSide

This interface models a virtual client. It can for example represent all clients that exist on the internet.

368 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute string name

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualHost

Parents: ip::services::VirtualScope

An address represented by a hostname

attribute std::hoststring hostname

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualIp

Parents: ip::services::VirtualScope

Only one ip

attribute ip::ip address

entity ip::services::VirtualNetwork

Parents: ip::services::VirtualScope

Define a virtual network segment

attribute ip::ip network

attribute ip::ip netmask

entity ip::services::VirtualRange

Parents: ip::services::VirtualScope

A range defined by from/to

attribute ip::ip from

attribute ip::ip to

The following implements statements select implementations for this entity:

• std::none constraint true

entity ip::services::VirtualScope

Parents: std::Entity

This interface represents a scope to determine what a virtual client or server is.

relation ip::services::VirtualSide side [0:*]
other end: ip::services::VirtualSide.scope [0:*]

entity ip::services::VirtualServer

Parents: ip::services::BaseServer, ip::services::VirtualSide

Same as VirtualClient but then for a server

attribute string name

entity ip::services::VirtualSide

Parents: std::Entity

A base class for a virtual server or client

relation ip::services::VirtualScope scope [0:*]
other end: ip::services::VirtualScope.side [0:*]

11.7. Inmanta modules 369

Inmanta Documentation, Release 7.1.1.dev20240504011805

Plugins

ip.add(addr: 'ip::ip_v10', n: 'number')→ 'ip::ip_v10'
Add a number to the given ip.

ip.cidr_to_network(cidr: 'string')→ 'string'
Given cidr return the network address

ip.concat(host: 'std::hoststring', domain: 'std::hoststring')→ 'std::hoststring'
Concat host and domain

ip.hostname(fqdn: 'string')→ 'string'
Return the hostname part of the fqdn

ip.ipindex(addr: 'ip::cidr_v10', position: 'number')→ 'string'
Return the address at position in the network.

ip.ipnet(addr: 'ip::cidr_v10', what: 'string')→ 'string'
Return the ip, prefixlen, netmask or network address of the CIDR

Parameters
• addr – CIDR

• what – The required result:

– ip: The IP address of addr object.

– prefixlen: The prefix length of addr object.

– netmask: The subnet mask of addr object.

– network: The network address of addr object.

For instance:

std::print(ipnet(“192.168.1.100/24”, “ip”)) –> 192.168.1.100
std::print(ipnet(“192.168.1.100/24”, “prefixlen”)) –> 24
std::print(ipnet(“192.168.1.100/24”, “netmask”)) –> 255.255.255.0
std::print(ipnet(“192.168.1.100/24”, “network”)) –> 192.168.1.0

ip.is_valid_cidr(addr: 'string')→ 'bool'

ip.is_valid_cidr_v10(addr: 'string')→ 'bool'
Validate if the string matches a v6 or a v4 network in CIDR notation

ip.is_valid_cidr_v6(addr: 'string')→ 'bool'

ip.is_valid_ip(addr: 'string')→ 'bool'

ip.is_valid_ip_v10(addr: 'string')→ 'bool'
Validate if the string matches a v6 or v4 address

ip.is_valid_ip_v6(addr: 'string')→ 'bool'

ip.is_valid_netmask(netmask: 'string')→ 'bool'
Validate if the string matches a netmask

ip.net_to_nm(network_addr: 'string')→ 'string'

ip.netmask(cidr: 'number')→ 'ip::ip'
Given the cidr, return the netmask

ip.network(ip: 'ip::ip', cidr: 'string')→ 'string'
Given the ip and the cidr, return the network address

370 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.7.5 Module lsm

• License: Inmanta EULA

• Version: 2.29.2

• This module requires compiler version 2023.5 or higher

• Upstream project: https://github.com/inmanta/lsm.git

Typedefs

typedef lsm::attribute_modifier

• Base type string

• Type constraint (self in ['r', 'rw', 'rw+'])

typedef lsm::attribute_set_opt

• Base type string

• Type constraint (self in ['candidate', 'active', 'rollback'])

typedef lsm::labels

• Base type string

• Type constraint ((((self == 'success') or (self == 'info')) or (self ==
'warning')) or (self == 'danger'))

typedef lsm::operation

• Base type string

• Type constraint /^(clear (candidate|active|rollback)|promote|rollback)$/

Entities

entity lsm::EmbeddedEntity

Parents: std::Entity

An entity containing attributes that should be embedded into a ServiceEntity or another EmbeddedEntity.

attribute string[]? __lsm_key_attributes=null
list of attributes that uniquely identify the embedded entity. The embedded entity must have an index
defined on these attribute.

attribute dict __annotations={}
The annotations that should be associated with this ServiceEntity. The key-value pairs in this dictionary
represent respectively the name and the value of the annotation.

The following implements statements select implementations for this entity:

• std::none constraint true

entity lsm::InterServiceRelation

Parents: std::Entity

An Entity used to create relations between different services. This Entity should be used as an annotation on
a relationship definition and should only be used through the __service__ variable

The following implements statements select implementations for this entity:

• std::none constraint true

11.7. Inmanta modules 371

https://github.com/inmanta/lsm.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity lsm::LifecycleStateMachine

Parents: std::Entity

The lifecycle statemachine definition.

attribute string name

The name of the lifecycle used for reporting on the lifecycle

attribute bool render_graph=false
When set to true the state machine is renderd to a dot graph for debug purposes.

relation lsm::State initial_state [1]

relation lsm::StateTransfer transfers [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity lsm::LifecycleTransfer

Parents: std::PurgeableResource

This resource reports the result of all events its receives to the LSM for handling transfers

attribute string service_entity

The service entity from the service catalog.

attribute string instance_id

The id of the service instance.

attribute number next_version
The next version of the instance in the LSM

attribute bool purge_on_delete=false

attribute string agent='internal'

relation std::Resource resources [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity lsm::RelationAnnotations

Parents: std::Entity

An entity that holds the annotations set on a relationship.

attribute dict annotations
Annotations that should be associated with a relationship.

The following implements statements select implementations for this entity:

• std::none constraint true

entity lsm::RelationshipMetadata

Parents: std::Entity

The metadata belonging to the relationship to an embedded entity.

attribute lsm::attribute_modifier modifier='rw'

The following implements statements select implementations for this entity:

• std::none constraint true

372 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity lsm::ServiceBase

Parents: std::Entity

A baseclass used for entities that refine a service instance to resources.

attribute bool purge_resources
Remove the resources associated with this service

relation lsm::ServiceBase children [0:*]

This relation connects a parent entity to its children entities. These children can be:
• entities that are refined from the parent entity.

• entities that are owned by the parent entity.

• embedded entities that are part of the parent entity.

This relation is required to collect all resources a service consists of.

other end: lsm::ServiceBase.parent [0:1]

relation lsm::ServiceBase parent [0:1]

This relation connects a parent entity to its children entities. These children can be:
• entities that are refined from the parent entity.

• entities that are owned by the parent entity.

• embedded entities that are part of the parent entity.

This relation is required to collect all resources a service consists of.

other end: lsm::ServiceBase.children [0:*]

relation std::Resource resources [0:*]
A list of resources that this entity refines to. This relation will also contain all resources from entities
collected through child service base entities.

relation std::Resource owned_resources [0:*]
A sublist of ServiceBase.resources containing only those resources that are exclusively used by this
service instance. This list is used when the lsm_partial_compile environment option is enabled to
determine the resources for the resource set of this service.

The following implementations are defined for this entity:

• lsm::serviceBase

The following implements statements select implementations for this entity:

• lsm::serviceBase constraint true

entity lsm::ServiceEntity

Parents: lsm::ServiceBase

A high level service that become available in the service catalog of the LSM. Based on this definition a
service entity is generated in the catalog and an API endpoint becomes available in the service inventory.

Attributes starting with ‘_’ are excluded from the API specification. Attributes starting with ‘__’ are treated
as metadata for the ServiceEntity. The values are taken from the defaults.

Service attributes are defined by adding an attribute to this entity. Metadata is specified by adding attributes
with default values that start with the name of the attribute, a double underscore and then the name of
the metadata. For example, for the attribute service_id, service_id__modifier provides the modifier of the
service_id attribute. The following metadata is available. - modifier: Defines when the attribute can be set.
See the type definition for more information.

11.7. Inmanta modules 373

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute std::uuid instance_id

A unique id allocated by the LSM for each service instance.

attribute dict __annotations={}
Annotations that should be associated with this ServiceEntity. The key-value pairs in this dictionary
represent respectively the name and the value of the annotation.

relation lsm::State current_state [1]
A reference to the current state the state machine is in.

relation lsm::ServiceEntityBinding entity_binding [1]
The binding of the service entity to the LSM service

The following implementations are defined for this entity:

• lsm::stateConfig

• lsm::setResourceSet

The following implements statements select implementations for this entity:

• constraint true

• lsm::stateConfig constraint true

• lsm::setResourceSet constraint true

entity lsm::ServiceEntityBinding

Parents: std::Entity

Instances of this entity are used to bind entities to the service catalog

attribute string service_entity

The fully qualified named of the entity to register in the catalog

attribute string service_entity_name

The name of the service instance. This name is used to register the service in the service catalog and
generate the REST API on the LSM

attribute string? allocation_spec=null
name of the allocation specification for this ServiceEntityBinding, check the product documentation
for more information

attribute string? service_identity=null
name of the attribute to be used as a service identity

attribute string? service_identity_display_name=null
The display name of the service identity, to be used by the frontend

attribute string? relation_to_owner=null
the name of the InterServiceRelation to use to find the owning instance

attribute bool strict_modifier_enforcement=false
Boolean value to control if strict validation of embedded entities’ attributes with respect to modifiers
is on or off

relation lsm::LifecycleStateMachine lifecycle [1]
The statemachine that represents the lifecycle

relation lsm::ServiceEntityBinding owned [0:*]
The ServiceEntityBinding in whose ResourceSet the resources for this entity should be placed in case
of partial compile

other end: lsm::ServiceEntityBinding.owner [0:1]

374 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation lsm::ServiceEntityBinding owner [0:1]
The ServiceEntityBinding in whose ResourceSet the resources for this entity should be placed in case
of partial compile

other end: lsm::ServiceEntityBinding.owned [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity lsm::ServiceEntityBindingV2

Parents: lsm::ServiceEntityBinding

Version 2 of the ServiceEntityBinding entity. In contrast to the ServiceEntityBinding entity, this entity
enabled strict_modifier_enforcement by default.

attribute bool strict_modifier_enforcement=true

The following implements statements select implementations for this entity:

• constraint true

entity lsm::ServiceInstance

Parents: std::PurgeableResource

Instances of this entity are instances of a service entity in the catalog

attribute string service_entity

The name of the service entity this instance belongs to

attribute std::uuid instance_id

ID of this instance

attribute dict attributes
The desired attributes of this instance. The attribute names and types are determined by the service
entity

attribute string[] skip_update_states
The Lifecycle States where updating the service instance is not possible, and should be marked as
skipped

attribute string[] rejected_states
A list of unrecoverable states. The ServiceInstance resource will end up in the failed state when the
service instance is in one of these rejected_states. In a rejected state the resource can only be purged.

attribute bool purge_on_delete=false

attribute string agent='internal'

The following implements statements select implementations for this entity:

• std::none constraint true

entity lsm::State

Parents: std::Entity

A state in the state machine

attribute string name

The name of a state

attribute lsm::labels? label=null
A label that is used in the UI

attribute bool export_resources
Indicates whether the resources of a service instance should be exported when that service instance is
in this state.

11.7. Inmanta modules 375

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute lsm::attribute_set_opt? validate_self=null
The attribute set of a service instance that should be taken into account when that service instance is
being validated while it is in this state of the its lifecycle.

attribute lsm::attribute_set_opt? validate_others=null
The attribute set of a service instance that should be taken into account when that service instance is
involved in the validation of another service instance while it is in this state of the its lifecycle.

attribute bool purge_resources=false
Should the service purge resources

attribute bool deleted=false
The service is marked as deleted. This indicates the lifeycle has ended.

attribute dict values={}
A dictionary with values associated with this state. Use the api::fsmvalue plugin to access a value.

The following implements statements select implementations for this entity:

• std::none constraint true

entity lsm::StateTransfer

Parents: std::Entity

Configure an allowed state transfer. In a state machine transfers have to adhere to the following rules:
• if multiple transfers between two states, only one active transfer can have auto set to true

attribute bool on_update=false
Trigger this state transfer when the service is updated (API)

attribute bool on_delete=false
Trigger this state transfer when the service is deleted (API)

attribute bool api_set_state=false
Allow this state transfer using the API.

attribute bool resource_based=false
Do the state transfer using a StateParam resource. The state transfer either happens always, or when
there are requires, when these requires are deployed.

attribute bool auto=false
The lifecycle manager executes this step automatically when it gets to the from state. Used often in com-
bination with validate. Auto transfers can be configured to conditionally trigger via the config_name
attribute.

attribute bool validate=false
Run a compiler validation step when following this state transfer.

attribute string? description=null
name of description to aid debugging

attribute string? config_name=null
For auto transfers only, an optional configuration name that determines whether this transfer is enabled
or not.

attribute lsm::operation? target_operation=null
The operation to perform on the attribute sets when the transfer goes to the target state.

attribute lsm::operation? error_operation=null
The operation to perform on the attribute sets when the transfer goes to the error state.

relation lsm::State source [1]
The start of the transfer edge

376 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation lsm::State target [1]
The end of the transfer edge

relation lsm::State error [0:1]
The target state in cause of failure. There is an implicit error edge for each statetransfer to this error
state.

The following implements statements select implementations for this entity:

• std::none constraint true

Implementations

implementation lsm::serviceBase

implementation lsm::setResourceSet

Associate a resource set with this ServiceEntity.

implementation lsm::stateConfig

This implementation configures the state machine

Plugins

lsm.all(binding: 'lsm::ServiceEntityBinding')→ 'list'
Returns a list of records for the given binding.

Parameters
binding – The entity binding

Returns
A list of dict with all the defined records.

lsm.context_v2_unwrapper(assignments: 'dict[]', fallback_attribute: 'string', track_deletes: 'bool' = False)
→ 'dict[]'

This plugin can be used to wrap the instances coming out of lsm::all and place all allocated values in :param
fallback_attribute: where they should go. The returned value is what has been given as input, except for the
allocated values being set where they should. :param track_deletes: drop deleted embedded entities, even if
they still exist in the fallback set.

This should be used together with ContextV2Wrapper allocator.

Each assignment is an attribute dict containing a fallback attribute assigned with allocated values as produced
by the ContextV2 (one-level deep, keys are string representation of the paths, values are allocated values)
and update the dict placing values where their key-path would reach them.

Parameters
• assignments – The list of service instance dictionaries as returned by lsm::all

• fallback_attributes – The attribute name at the root of the instance attributes that
contains all the allocated values

e.g.:

context_v2_unwrapper(
[

{
"environment": "8f7bf3a5-d655-4bcb-bbd4-6222407be999",
"id": "f93acfad-7894-4a12-9770-b27cbdd85c74",
"service_entity": "carrierEthernetEvc",
"version": 4,

(continues on next page)

11.7. Inmanta modules 377

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

"config": {},
"state": "allocating",
"attributes": {

"allocated": {
"evcEndPoints[identifier=my-evc-ep-1].uni": {

"uniref": "inmanta:456-852-789",
"test_value": "test_value",

},
"evcEndPoints[identifier=my-evc-ep-2].uni": {

"uniref": "inmanta:123-852-456",
"test_value": "test_value",

},
},
"another_key": "any value",

},
"candidate_attributes": {

"allocated": {
"evcEndPoints[identifier=my-evc-ep-1].uni": {

"uniref": "inmanta:456-852-789",
"test_value": "test_value",

},
"evcEndPoints[identifier=my-evc-ep-2].uni": {

"uniref": "inmanta:123-852-456",
"test_value": "test_value",

},
},
"another_key": "any value",

},
"active_attributes": {},
"rollback_attributes": {},

}
],
"allocated",

)

will return:

[
{

"environment": "8f7bf3a5-d655-4bcb-bbd4-6222407be999",
"id": "f93acfad-7894-4a12-9770-b27cbdd85c74",
"service_entity": "carrierEthernetEvc",
"version": 4,
"config": {},
"state": "allocating",
"attributes": {

"allocated": {
"evcEndPoints[identifier=my-evc-ep-1].uni": {

"uniref": "inmanta:456-852-789",
"test_value": "test_value",

},
"evcEndPoints[identifier=my-evc-ep-2].uni": {

"uniref": "inmanta:123-852-456",
"test_value": "test_value",

},
},

(continues on next page)

378 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

"evcEndPoints": [
{

"identifier": "my-evc-ep-1",
"uni": {

"uniref": "inmanta:456-852-789",
"test_value": "test_value",

},
},
{

"identifier": "my-evc-ep-2",
"uni": {

"uniref": "inmanta:123-852-456",
"test_value": "test_value",

},
},

],
"another_key": "any value",

},
"candidate_attributes": {

"allocated": {
"evcEndPoints[identifier=my-evc-ep-1].uni": {

"uniref": "inmanta:456-852-789",
"test_value": "test_value",

},
"evcEndPoints[identifier=my-evc-ep-2].uni": {

"uniref": "inmanta:123-852-456",
"test_value": "test_value",

},
},
"evcEndPoints": [

{
"identifier": "my-evc-ep-1",
"uni": {

"uniref": "inmanta:456-852-789",
"test_value": "test_value",

},
},
{

"identifier": "my-evc-ep-2",
"uni": {

"uniref": "inmanta:123-852-456",
"test_value": "test_value",

},
},

],
"another_key": "any value",

},
"active_attributes": {},
"rollback_attributes": {},

}

]

lsm.current_state(fsm: 'lsm::ServiceEntity')→ 'dict'
Returns the current state from the lifecycle and the next version of the instance

lsm.format(__string: 'string', args: 'list', kwargs: 'dict')→ 'string'

11.7. Inmanta modules 379

Inmanta Documentation, Release 7.1.1.dev20240504011805

Format a string using python string formatter, and accepting statements which native inmanta f-string doesn’t
support (such as accessing dict values)

Parameters
• __string – The string to apply formatting to

• args – The positional arguments to feed into the str.format method

• kwargs – The keyword arguments to feed into the str.format method

lsm.fsm_to_dot(config: 'lsm::LifecycleStateMachine')→ 'string'
Generate a dot representation of the state machine

lsm.has_current_state(service_instance: 'lsm::ServiceEntity', state_name: 'string')→ 'bool'
Check whether the given service instance is currently in the given state of its lifecycle.

Parameters
• service_instance – The ServiceEntity object.

• state_name – The name of the lifecycle state

lsm.is_validating(instance_id: 'string')→ 'bool'
Return true if the current compile is a validating compile and the instance being validated has the given id.

Parameters
instance_id – The id of the instance we want to check for validation.

lsm.render_dot(fsm: 'lsm::LifecycleStateMachine')
Render a dot graph in the current directory

lsm.update_read_only_attribute(service: 'lsm::ServiceEntity', attribute_path: 'string', *, value: 'any')
→ 'any'

Update the value of a read-only (candidate) attribute in the service, in any compile, at any time. The value
will first be compared to the previous set value, and only be sent to the server if it is different.

Parameters
• service – The service on which we want to set the value

• attribute_path – The path towards the service attribute

• value – The new value that we want to make sure is currently written in the service.

lsm.validate_service_index(binding: 'lsm::ServiceEntityBinding', attributes: 'dict', ignored_states:
'string[]' = [])→ 'bool'

Validate that amongst all the services of the given binding that should be taken into account in this compile,
only one of them has the provided set of attributes names and values.

Parameters
• binding – The binding for which we want to check the services.

• attributes – The attributes that we are looking for, the keys should be the attributes
names, and the values the expected values.

lsm::allocators.allocate_value(service: 'lsm::ServiceEntity',
attribute_path: 'string', *, value: 'any') -> 'any'

This simple allocator allows to store a value that we already know in the model in the service (mostly to
make it more visible).

Parameters
value – The value to save in the service attributes.

lsm::allocators.combine_used_values(used_list: 'list') -> 'any'

380 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

lsm::allocators.get_first_free_integer(service: 'lsm::ServiceEntity',
attribute_path: 'string', *, range_start: 'int', range_end: 'int',
used_values: 'any') -> 'int'

Get the first free integer in the given range.

Check all services of the same type as the provided service for the value at attribute_path. Services can be
filtered out by using the filters parameter. The filters parameters take as key the path to an attribute in the
service and as value the attribute value that the service is expected at this path. If the value is no match, the
service is ignored.

Parameters
• range_start – The lowest value that can be allocated.

• range_end – The highest value that can be allocated.

• used_values – A UsedValues object, as defined in inmanta_plugins.lsm.allocators.

lsm::allocators.get_service_used_values(service: 'lsm::ServiceEntity',
attributes_path: 'string', *, attribute_sets: 'string[]?' = None,
attribute_sets_matching: 'dict?' = None) -> 'any'

Get all the values used by this service at the given attribute path. The path can be a wild dict path, making
use of wild cards to select multiple values within this service.

The values are checked in each resource set of the service. Some attributes sets can be excluded by providing
a value to the attribute_sets param. When this is provided, we will only consider the attributes sets which
are provided in the parameter.

The value returned by this plugin can not be used within the model. It can only be used as input for a V3
allocator.

Parameters
• service – The service in which we should look for the values.

• attributes_path – The wild dict path that points to the attributes we want to get the
values of.

• attribute_sets – A list of attribute sets to consider when looking for a value. By
default, check all attribute sets.

• attribute_sets_matching – A dict taking as key dict_path expressions, and as values
literals. The dict will then be used to filter the instances in which we should look for the
usage of values. Any attribute set for which any of the value at the given path doesn’t
match the value in this dict, will be left out.

lsm::allocators.get_used_values(binding: 'lsm::ServiceEntityBindingV2',
attributes_path: 'string', *, states: 'string[]?' = None, attribute_sets: 'string[]?
' = None, attribute_sets_matching: 'dict?' = None) -> 'any'

Get all the values used by the services of this binding at the given attribute path. The path can be a wild dict
path, making use of wild cards to select multiple values within one service.

The values are checked in each resource set of each service in the inventory. Some attributes sets can be
excluded by providing a value to the attribute_sets param. Some states can be excluded by providing a value
to the states param. When those parameters are provided, we will only consider the attributes sets or states
which are provided in the parameter.

The value returned by this plugin can not be used within the model. It can only be used as input for a V3
allocator.

Parameters
• binding – The binding defining the service in the catalog.

• attributes_path – The wild dict path that points to the attributes we want to get the
values of.

11.7. Inmanta modules 381

Inmanta Documentation, Release 7.1.1.dev20240504011805

• attribute_sets – A list of attribute sets to consider when looking for a value. By
default, check all attribute sets.

• attribute_sets_matching – A dict taking as key dict_path expressions, and as values
literals. The dict will then be used to filter the instances in which we should look for the
usage of values. Any attribute set for which any of the value at the given path doesn’t
match the value in this dict, will be left out.

• states – A list of states to consider when looking for a value. By default, check all
states. Any service that is not in one of the provided states is skipped.

lsm::allocators.reallocate_value(service: 'lsm::ServiceEntity',
attribute_path: 'string', previous_value: 'any' = None, *, value: 'any') -> 'any'

This simple allocator allows to store a value that we already know in the model in the service (mostly to
make it more visible). The difference with allocate_value is that this one will be called for any validation
compile our service is in.

Parameters
value – The value to save in the service attributes.

Resources

class lsm.LifecycleTransferResource

A resource that collects deploy events and send them to the lsm

• Resource for entity lsm::LifecycleTransfer

• Id attribute instance_id

• Agent name agent

• Handlers lsm.LifecycleTransferHandler

class lsm.ServiceInstanceResource

• Resource for entity lsm::ServiceInstance

• Id attribute instance_id

• Agent name agent

• Handlers lsm.ServiceInstanceHandler

Handlers

class lsm.LifecycleTransferHandler

A handler that collects all resource statuses from resources that are part of a service instance. The
deploy() method is used to determine whether the resources of a service instance are deployed
successfully or not.

• Handler name local_state

• Handler for entity lsm::LifecycleTransfer

class lsm.ServiceInstanceHandler

• Handler name service_instance

• Handler for entity lsm::ServiceInstance

382 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.7.6 Module net

• License: Apache 2.0

• Version: 1.1.2

• This module requires compiler version 2020.1 or higher

• Upstream project: https://github.com/inmanta/net.git

Typedefs

typedef net::mac_addr

• Base type string

• Type constraint std::validate_type('pydantic.constr',self,{'regex':
'^([0-9a-fA-F]{2})(:[0-9a-fA-F]{2}){5}|$', 'strict': True})

typedef net::vlan_id

• Base type int

• Type constraint std::validate_type('pydantic.conint',self,{'ge': 0, 'lt':
4096})

Entities

entity net::Interface

Parents: std::Entity

This interface models an ethernet network interface.

attribute net::mac_addr mac=''

attribute string name

attribute number mtu=1500

attribute bool vlan=false

relation std::Host host [1]
Host ethernet interface are always placed inside a host

other end: std::Host.ifaces [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

11.7.7 Module openstack

• License: Apache 2.0

• Version: 4.0.4

• This module requires compiler version 2024.1 or higher

• Upstream project: https://github.com/inmanta/openstack.git

11.7. Inmanta modules 383

https://github.com/inmanta/net.git
https://github.com/inmanta/openstack.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

Typedefs

typedef openstack::admin_state

• Base type string

• Type constraint ((self == 'up') or (self == 'down'))

typedef openstack::container_format

• Base type string

• Type constraint (self in ['ami', 'ari', 'aki', 'bare', 'ovf', 'ova', 'docker'])

typedef openstack::direction

• Base type string

• Type constraint ((self == 'ingress') or (self == 'egress'))

typedef openstack::disk_format

• Base type string

• Type constraint (self in ['ami', 'ari', 'aki', 'vhd', 'vhdx', 'vmdk', 'raw',
'qcow2', 'vdi', 'iso', 'ploop'])

typedef openstack::mac_addr

• Base type string

• Type constraint std::validate_type('pydantic.constr',self,{'regex':
'^([0-9a-fA-F]{2})(:[0-9a-fA-F]{2}){5}|$', 'strict': True})

typedef openstack::protocol

• Base type string

• Type constraint (self in ['tcp', 'udp', 'icmp', 'sctp', 'all'])

typedef openstack::visibility

• Base type string

• Type constraint (self in ['public', 'private'])

Entities

entity openstack::AddressPair

Parents: std::Entity

An address pair that is added to a host port

attribute std::ipv4_network address

The address range that is allowed on this port (network interface)

attribute openstack::mac_addr? mac=null

The following implements statements select implementations for this entity:

• std::none constraint true

entity openstack::EndPoint

Parents: openstack::OpenStackResource

attribute string region

attribute string internal_url

384 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute string public_url

attribute string admin_url

attribute string service_id

relation openstack::Service service [1]
other end: openstack::Service.endpoint [0:1]

relation openstack::Provider provider [1]
other end: openstack::Provider.endpoints [0:*]

The following implementations are defined for this entity:

• openstack::endPoint

The following implements statements select implementations for this entity:

• openstack::endPoint, openstack::providerRequire constraint true

entity openstack::Flavor

Parents: openstack::OpenStackResource

A machine flavor for OpenStack VMs

attribute string name

Descriptive name of the flavor. While OpenStack does not consider the name unique, this module does.

attribute int ram
Memory in MB for the flavor

attribute int vcpus
Number of VCPUs for the flavor

attribute int disk
Size of local disk in GB

attribute string? flavor_id=null
OpenStack unique ID. You can use the reserved value “auto” to have Nova generate a UUID for the
flavor in cases where you cannot simply pass null.

attribute int ephemeral=0
Ephemeral disk size in GB

attribute int swap=0
Swap space in MB

attribute float rxtx_factor=1.0
RX/TX factor

attribute bool is_public=true
Whether the flavor is publicly visible

attribute dict extra_specs={}
Set extra specs on a flavor. See https://docs.openstack.org/nova/rocky/admin/flavors.html

relation openstack::Provider provider [1]
other end: openstack::Provider.flavors [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::FloatingIP

Parents: openstack::OpenStackResource

11.7. Inmanta modules 385

https://docs.openstack.org/nova/rocky/admin/flavors.html

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute string name

attribute std::ipv4_address address

attribute bool force_ip=false

relation openstack::Project project [1]
other end: openstack::Project.floating_ips [0:*]

relation openstack::Provider provider [1]
other end: openstack::Provider.floating_ips [0:*]

relation openstack::Network external_network [1]
other end: openstack::Network.floating_ips [0:*]

relation openstack::HostPort port [1]
other end: openstack::HostPort.floating_ips [0:*]

The following implementations are defined for this entity:

• openstack::fipName

• openstack::fipAddr

The following implements statements select implementations for this entity:

• openstack::fipName, openstack::providerRequire constraint true

• openstack::fipAddr constraint (not force_ip)

entity openstack::GroupRule

Parents: openstack::SecurityRule

relation openstack::SecurityGroup remote_group [1]
other end: openstack::SecurityGroup.remote_group_rules [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity openstack::Host

Parents: std::Host, openstack::VMAttributes

attribute bool purged=false
Set whether this Host should exist or not.

attribute bool purge_on_delete=false
Purge this Host when it is deleted from the configuration model.

relation openstack::VirtualMachine vm [1]
other end: openstack::VirtualMachine.host [0:1]

relation openstack::Subnet subnet [0:1]

relation ssh::Key key_pair [1]

relation openstack::Project project [1]

relation openstack::Provider provider [1]

relation openstack::SecurityGroup security_groups [0:*]

The following implementations are defined for this entity:

• openstack::eth0Port

• openstack::openstackVM

386 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

The following implements statements select implementations for this entity:

• openstack::eth0Port constraint subnet is defined

• std::hostDefaults, openstack::openstackVM constraint true

entity openstack::HostPort

Parents: openstack::Port

A port attached to a VM

attribute string name

The name of the host port.

attribute bool portsecurity=true
Enable or disable port security (security groups and spoofing filters)

attribute bool dhcp=true
Enable dhcp for this port or not for this port

attribute int port_index=0
The index of the port. This determines the order of the interfaces on the virtual machine. 0 means no
specific order.

attribute int retries=20
A hostport can only be attached to a VM when it is in an active state. The handler will skip this port
when the VM is not ready. To speed up deployments, the handler can retry this number of times before
skipping the resource.

attribute int wait=5
The number of seconds to wait between retries.

relation openstack::Subnet subnet [1]
other end: openstack::Subnet.host_ports [0:*]

relation openstack::VirtualMachine vm [1]
other end: openstack::VirtualMachine.ports [0:*]

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.port [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::IPrule

Parents: openstack::SecurityRule

attribute std::ipv4_network remote_prefix

The following implements statements select implementations for this entity:

• std::none constraint true

entity openstack::Image

Parents: openstack::OpenStackResource

A machine image for OpenStack VMs

attribute string name

Name for the flavor. Inmanta treats image names as unique per provider.

attribute string uri

a link to the download location of the image.

11.7. Inmanta modules 387

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute openstack::container_format? container_format='bare'
Must be one of [null, ami, ari, aki, bare, ovf, ova, docker].

attribute openstack::disk_format? disk_format='qcow2'
Must be one of [null, ami, ari, aki, vhd, vhdx, vmdk, raw, qcow2, vdi, iso, ploop].

attribute std::uuid? image_id=null
uuid to identify the image. Auto set by OpenStack if not set.

attribute openstack::visibility visibility='public'
Whether the image is visible across all projects. Can either be public or private. Shared and community
are currently not implemented.

attribute bool protected=false
Whether the image can be deleted or not. Inmanta will never delete protected images.

attribute dict metadata={}
Various metadata passed as a dict.

attribute bool skip_on_deploy=true
When set, inmanta will not wait for the image to be deployed and mark it as skipped.

attribute bool purge_on_delete=false
When set to true, the image will be removed when no longer present in the model.

relation openstack::Provider provider [1]
other end: openstack::Provider.images [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::Network

Parents: openstack::OpenStackResource

A neutron network owned by a project

attribute string name

attribute bool external=false

attribute string physical_network=''

attribute string network_type=''

attribute int segmentation_id=0

attribute bool shared=false

attribute bool? vlan_transparent=null

relation openstack::Provider provider [1]
other end: openstack::Provider.networks [0:*]

relation openstack::Project project [1]
other end: openstack::Project.networks [0:*]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.network [1]

relation openstack::Router routers [0:*]
other end: openstack::Router.ext_gateway [0:1]

388 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.external_network [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::OpenStackResource

Parents: std::PurgeableResource, std::ManagedResource

Base class for all openstack resources

attribute bool send_event=true
Forced to default true. This means that all resources that subscribe to this resource will run their process
events / reload.

The following implementations are defined for this entity:

• openstack::providerRequire

entity openstack::Port

Parents: openstack::OpenStackResource

A port on a network

attribute std::ipv4_address address

relation openstack::Provider provider [1]
other end: openstack::Provider.ports [0:*]

relation openstack::Project project [1]
other end: openstack::Project.ports [0:*]

relation openstack::AddressPair allowed_address_pairs [0:*]

entity openstack::Project

Parents: openstack::OpenStackResource

A project / tenant in openstack

attribute string name

attribute bool enabled=true

attribute string description=''

relation openstack::Provider provider [1]
other end: openstack::Provider.projects [0:*]

relation openstack::Role roles [0:*]
Each user can have multiple roles

other end: openstack::Role.project [1]

relation openstack::Network networks [0:*]
other end: openstack::Network.project [1]

relation openstack::Port ports [0:*]
other end: openstack::Port.project [1]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.project [1]

relation openstack::Router routers [0:*]
other end: openstack::Router.project [1]

11.7. Inmanta modules 389

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation openstack::SecurityGroup security_groups [0:*]
other end: openstack::SecurityGroup.project [1]

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.project [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::Provider

Parents: std::Entity

The configuration for accessing an Openstack based IaaS

attribute string name

attribute string connection_url

attribute bool verify_cert=true
Indicates whether the SSL/TLS certificate should be verified.

attribute string username

attribute string password

attribute string tenant

attribute string token=''

attribute string admin_url=''

attribute bool auto_agent=true

relation openstack::Project projects [0:*]
other end: openstack::Project.provider [1]

relation openstack::User users [0:*]
other end: openstack::User.provider [1]

relation openstack::Role roles [0:*]
other end: openstack::Role.provider [1]

relation openstack::Service services [0:*]
other end: openstack::Service.provider [1]

relation openstack::EndPoint endpoints [0:*]
other end: openstack::EndPoint.provider [1]

relation openstack::Network networks [0:*]
other end: openstack::Network.provider [1]

relation openstack::Port ports [0:*]
other end: openstack::Port.provider [1]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.provider [1]

relation openstack::Router routers [0:*]
other end: openstack::Router.provider [1]

relation openstack::SecurityGroup security_groups [0:*]
other end: openstack::SecurityGroup.provider [1]

390 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation openstack::FloatingIP floating_ips [0:*]
other end: openstack::FloatingIP.provider [1]

relation openstack::VirtualMachine virtual_machines [0:*]
other end: openstack::VirtualMachine.provider [1]

relation openstack::Flavor flavors [0:*]
other end: openstack::Flavor.provider [1]

relation openstack::Image images [0:*]
other end: openstack::Image.provider [1]

The following implementations are defined for this entity:

• openstack::agentConfig

The following implements statements select implementations for this entity:

• std::none constraint true

• openstack::agentConfig constraint auto_agent

entity openstack::Role

Parents: openstack::OpenStackResource

A role in openstack. A role defines membership of a user in a project. This entity is used to connect users
to projects. With this, it implicitly defines the role.

attribute string role_id

attribute string role

relation openstack::Provider provider [1]
other end: openstack::Provider.roles [0:*]

relation openstack::Project project [1]
Each user can have multiple roles

other end: openstack::Project.roles [0:*]

relation openstack::User user [1]
other end: openstack::User.roles [0:*]

The following implementations are defined for this entity:

• openstack::roleImpl

The following implements statements select implementations for this entity:

• openstack::roleImpl, openstack::providerRequire constraint true

entity openstack::Route

Parents: std::Entity

A routing rule to add

attribute std::ipv4_network destination

attribute std::ipv4_address nexthop

relation openstack::Router router [0:1]
other end: openstack::Router.routes [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

11.7. Inmanta modules 391

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity openstack::Router

Parents: openstack::OpenStackResource

A router

attribute openstack::admin_state admin_state='up'

attribute string name

attribute bool ha=false

attribute bool distributed=false

relation openstack::Provider provider [1]
other end: openstack::Provider.routers [0:*]

relation openstack::Project project [1]
other end: openstack::Project.routers [0:*]

relation openstack::RouterPort ports [0:*]
other end: openstack::RouterPort.router [1]

relation openstack::Subnet subnets [0:*]
other end: openstack::Subnet.router [0:1]

relation openstack::Network ext_gateway [0:1]
other end: openstack::Network.routers [0:*]

relation openstack::Route routes [0:*]
other end: openstack::Route.router [0:1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::RouterPort

Parents: openstack::Port

A port attached to a router

attribute string name

relation openstack::Subnet subnet [1]
other end: openstack::Subnet.routers [0:*]

relation openstack::Router router [1]
other end: openstack::Router.ports [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::SecurityGroup

Parents: openstack::OpenStackResource

attribute string description=''

attribute string name

attribute bool manage_all=true

attribute int retries=10
A security group can only be deleted when it is no longer in use. The API confirms the delete of a
virtual machine for example, but it might still be in progress. This results in a failure to delete the
security group. To speed up deployments, the handler can retry this number of times before skipping
the resource.

392 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

attribute int wait=5
The number of seconds to wait between retries.

relation openstack::Provider provider [1]
other end: openstack::Provider.security_groups [0:*]

relation openstack::Project project [1]
other end: openstack::Project.security_groups [0:*]

relation openstack::VirtualMachine virtual_machines [0:*]
other end: openstack::VirtualMachine.security_groups [0:*]

relation openstack::GroupRule remote_group_rules [0:*]
other end: openstack::GroupRule.remote_group [1]

relation openstack::SecurityRule rules [0:*]
other end: openstack::SecurityRule.group [1]

The following implementations are defined for this entity:

• openstack::sg

The following implements statements select implementations for this entity:

• openstack::sg, openstack::providerRequire constraint true

entity openstack::SecurityRule

Parents: std::Entity

A filter rule in the a security group

attribute openstack::protocol ip_protocol
The type of ip protocol to allow. Currently this support tcp/udp/icmp/sctp or all

attribute std::port port_min=0

attribute std::port port_max=0

attribute std::port port=0

attribute openstack::direction direction

relation openstack::SecurityGroup group [1]
other end: openstack::SecurityGroup.rules [0:*]

entity openstack::Service

Parents: openstack::OpenStackResource

attribute string name

attribute string type

attribute string description

relation openstack::Provider provider [1]
other end: openstack::Provider.services [0:*]

relation openstack::EndPoint endpoint [0:1]
other end: openstack::EndPoint.service [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

11.7. Inmanta modules 393

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity openstack::Subnet

Parents: openstack::OpenStackResource

A neutron network subnet

attribute std::ipv4_network network_address

attribute bool dhcp

attribute string name

attribute string allocation_start=''

attribute string allocation_end=''

attribute std::ipv4_address[] dns_servers=List()

attribute std::ipv4_address? gateway_ip=null
The gateway IP to set on this subnet. If set to null, the first IP in the subnet will be used as the gate-
way_ip. Example: 192.168.0.1 will be used for the network 192.168.0.0/24.

attribute bool disable_gateway_ip=false
When set to true, no gateway IP will be set for the subnet. As such, the gateway_ip parameter will be
ignored.

relation openstack::RouterPort routers [0:*]
other end: openstack::RouterPort.subnet [1]

relation openstack::HostPort host_ports [0:*]
other end: openstack::HostPort.subnet [1]

relation openstack::Provider provider [1]
other end: openstack::Provider.subnets [0:*]

relation openstack::Project project [1]
other end: openstack::Project.subnets [0:*]

relation openstack::Network network [1]
other end: openstack::Network.subnets [0:*]

relation openstack::Router router [0:1]
other end: openstack::Router.subnets [0:*]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::User

Parents: openstack::OpenStackResource

A user in openstack. A handler for this entity type is loaded by agents.

attribute string name

The name of the user. The name of the user has to be unique on a specific IaaS. The handler will use
this name to query for the exact user and its ID.

attribute string email

The email address of the user to use.

attribute bool enabled=true
Enable or disable this user

attribute string password=''
The password for this user. The handler will always reset back to this password. The handler will
ignore this attribute when an empty string is set.

394 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation openstack::Provider provider [1]
other end: openstack::Provider.users [0:*]

relation openstack::Role roles [0:*]
other end: openstack::Role.user [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

entity openstack::VMAttributes

Parents: std::Entity

Entity with vm attributes that can be used for a virtual machine and a host

attribute string flavor

The name of the flavor

attribute string image

The uuid of the image

attribute string user_data

The user_data script to pass

attribute dict metadata={}
A dict of metadata items

attribute dict personality={}
A dict of files (personality)

attribute bool config_drive=false
Attach a configuration drive to the vm

entity openstack::VirtualMachine

Parents: openstack::OpenStackResource, openstack::VMAttributes

attribute string name

relation openstack::HostPort ports [0:*]
other end: openstack::HostPort.vm [1]

relation openstack::SecurityGroup security_groups [0:*]
other end: openstack::SecurityGroup.virtual_machines [0:*]

relation openstack::HostPort eth0_port [1]

relation ssh::Key key_pair [1]

relation openstack::Project project [1]

relation openstack::Provider provider [1]
other end: openstack::Provider.virtual_machines [0:*]

relation openstack::Host host [0:1]
other end: openstack::Host.vm [1]

The following implements statements select implementations for this entity:

• openstack::providerRequire constraint true

11.7. Inmanta modules 395

Inmanta Documentation, Release 7.1.1.dev20240504011805

Implementations

implementation openstack::agentConfig

implementation openstack::endPoint

implementation openstack::eth0Port

implementation openstack::fipAddr

implementation openstack::fipName

implementation openstack::openstackVM

implementation openstack::providerRequire

implementation openstack::roleImpl

implementation openstack::sg

Plugins

openstack.find_flavor(provider: 'openstack::Provider', vcpus: 'number', ram: 'number', pinned: 'bool' =
False)→ 'string'

Find the flavor that matches the closest to the resources requested.

Parameters
• vcpus – The number of virtual cpus in the flavor

• ram – The amount of ram in gigabyte

• pinned – Wether the CPUs need to be pinned (#vcpu == #pcpu)

openstack.find_image(provider: 'openstack::Provider', os: 'std::OS', name: 'string' = None)→ 'string'
Search for an image that matches the given operating system. This plugin uses the os_distro and os_version
tags of an image and the name and version attributes of the OS parameter.

If multiple images match, the most recent image is returned.

Parameters
• provider – The provider to query for an image

• os – The operating system and version (using os_distro and os_version metadata)

• name – An optional string that the image name should contain

Resources

class openstack.EndPoint

An endpoint for a service

• Resource for entity openstack::EndPoint

• Id attribute service_id

• Agent name provider.name

• Handlers openstack.EndpointHandler

396 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

class openstack.Flavor

A flavor is an available hardware configuration for a server.

• Resource for entity openstack::Flavor

• Id attribute name

• Agent name provider.name

• Handlers openstack.FlavorHandler

class openstack.FloatingIP

A floating ip

• Resource for entity openstack::FloatingIP

• Id attribute name

• Agent name provider.name

• Handlers openstack.FloatingIPHandler

class openstack.HostPort

A port in a router

• Resource for entity openstack::HostPort

• Id attribute name

• Agent name provider.name

• Handlers openstack.HostPortHandler

class openstack.Image

• Resource for entity openstack::Image

• Id attribute name

• Agent name provider.name

• Handlers openstack.ImageHandler

class openstack.Network

This class represents a network in neutron

• Resource for entity openstack::Network

• Id attribute name

• Agent name provider.name

• Handlers openstack.NetworkHandler

class openstack.Project

This class represents a project in keystone

• Resource for entity openstack::Project

• Id attribute name

• Agent name provider.name

• Handlers openstack.ProjectHandler

11.7. Inmanta modules 397

Inmanta Documentation, Release 7.1.1.dev20240504011805

class openstack.Role

A role that adds a user to a project

• Resource for entity openstack::Role

• Id attribute role_id

• Agent name provider.name

• Handlers openstack.RoleHandler

class openstack.Router

This class represent a router in neutron

• Resource for entity openstack::Router

• Id attribute name

• Agent name provider.name

• Handlers openstack.RouterHandler

class openstack.RouterPort

A port in a router

• Resource for entity openstack::RouterPort

• Id attribute name

• Agent name provider.name

• Handlers openstack.RouterPortHandler

class openstack.SecurityGroup

A security group in an OpenStack tenant

• Resource for entity openstack::SecurityGroup

• Id attribute name

• Agent name provider.name

• Handlers openstack.SecurityGroupHandler

class openstack.Service

A service for which endpoints can be registered

• Resource for entity openstack::Service

• Id attribute name

• Agent name provider.name

• Handlers openstack.ServiceHandler

class openstack.Subnet

This class represent a subnet in neutron

• Resource for entity openstack::Subnet

• Id attribute name

398 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Agent name provider.name

• Handlers openstack.SubnetHandler

class openstack.User

A user in keystone

• Resource for entity openstack::User

• Id attribute name

• Agent name provider.name

• Handlers openstack.UserHandler

class openstack.VirtualMachine

A virtual machine managed by a hypervisor or IaaS

• Resource for entity openstack::VirtualMachine

• Id attribute name

• Agent name provider.name

• Handlers openstack.VirtualMachineHandler

Handlers

class openstack.FlavorHandler

• Handler name openstack

• Handler for entity openstack::Flavor

class openstack.ImageHandler

• Handler name openstack

• Handler for entity openstack::Image

class openstack.VirtualMachineHandler

• Handler name openstack

• Handler for entity openstack::VirtualMachine

class openstack.NetworkHandler

• Handler name openstack

• Handler for entity openstack::Network

class openstack.RouterHandler

• Handler name openstack

• Handler for entity openstack::Router

class openstack.SubnetHandler

• Handler name openstack

• Handler for entity openstack::Subnet

11.7. Inmanta modules 399

Inmanta Documentation, Release 7.1.1.dev20240504011805

class openstack.RouterPortHandler

• Handler name openstack

• Handler for entity openstack::RouterPort

class openstack.HostPortHandler

• Handler name openstack

• Handler for entity openstack::HostPort

class openstack.SecurityGroupHandler

• Handler name openstack

• Handler for entity openstack::SecurityGroup

class openstack.FloatingIPHandler

• Handler name openstack

• Handler for entity openstack::FloatingIP

class openstack.ProjectHandler

• Handler name openstack

• Handler for entity openstack::Project

class openstack.UserHandler

• Handler name openstack

• Handler for entity openstack::User

class openstack.RoleHandler

creates roles and user, project, role assocations

• Handler name openstack

• Handler for entity openstack::Role

class openstack.ServiceHandler

• Handler name openstack

• Handler for entity openstack::Service

class openstack.EndpointHandler

• Handler name openstack

• Handler for entity openstack::EndPoint

11.7.8 Module redhat

• License: Apache 2.0

• Version: 1.0.9

• Upstream project: https://github.com/inmanta/redhat.git

400 Chapter 11. Inmanta Reference

https://github.com/inmanta/redhat.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.7.9 Module rest

• License: Apache 2.0

• Version: 0.2.21

• This module requires compiler version 2018.1 or higher

• Upstream project: https://github.com/inmanta/rest.git

Entities

entity rest::RESTCall

Parents: std::Resource

This resource executes a restcall during the execute phase of the handler

attribute string url_id

attribute string url

The url to call

attribute string method='GET'
The HTTP method to use

attribute dict body
The body of the the http call. By default this body is sent as a json body

attribute dict headers={}
Additional headers to pass to the server.

attribute bool form_encoded=false
Use form encoding for the body

attribute bool ssl_verify=true
Verify the ssl cert of the server

attribute string? auth_user=null
The user to authenticate with

attribute string? auth_password=null
The password to authenticate with

attribute number[] return_codes=List()
Returns code that indicate that the call was successfull

attribute string? validate_return=null
An JQ expression to validate the return result of the call. The result of this JQ expression evaluates to
a python true or false.

attribute bool skip_on_fail=false
Report this resource as skipped instead of failed.

attribute string agent='internal'
The agent to initiate the REST call from

The following implementations are defined for this entity:

• rest::restCallID

The following implements statements select implementations for this entity:

• rest::restCallID constraint true

11.7. Inmanta modules 401

https://github.com/inmanta/rest.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

Implementations

implementation rest::restCallID

Resources

class rest.RESTCall

A Call to a rest endpoint

• Resource for entity rest::RESTCall

• Id attribute url_id

• Agent name agent

• Handlers rest.RESTHandler

Handlers

class rest.RESTHandler

• Handler name requests

• Handler for entity rest::RESTCall

11.7.10 Module ssh

• License: Apache 2.0

• Version: 1.0.1

• Upstream project: https://github.com/inmanta/ssh.git

Entities

entity ssh::Key

Parents: std::Entity

A public ssh-key used to access virtual machine

attribute string public_key

The actual public key that needs to be deployed

attribute string name

An identifier for the public key

attribute string command=''
The command that can be executed with this public key

attribute string options=''
SSH options associated with this public key

relation ssh::SSHUser ssh_users [0:*]
other end: ssh::SSHUser.ssh_keys [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

402 Chapter 11. Inmanta Reference

https://github.com/inmanta/ssh.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity ssh::SSHUser

Parents: std::Entity

An ssh users allows authorized keys to be installed

attribute string home_dir

attribute string user

attribute string group

relation ssh::Key ssh_keys [0:*]
other end: ssh::Key.ssh_users [0:*]

relation std::Host host [1]

The following implementations are defined for this entity:

• ssh::sshUser

The following implements statements select implementations for this entity:

• ssh::sshUser constraint true

Implementations

implementation ssh::sshUser

Plugins

ssh.get_private_key(name: 'string')→ 'string'
Create or return if it already exists a key with the given name. The private key is returned.

ssh.get_public_key(name: 'string')→ 'string'
See get_private_key

ssh.get_putty_key(name: 'string')→ 'string'

11.7.11 Module std

• License: Apache 2.0

• Version: 5.2.1

• This module requires compiler version 2023.6 or higher

• Upstream project: https://github.com/inmanta/std.git

Typedefs

typedef std::alfanum

• Base type string

• Type constraint std::validate_type('pydantic.constr',self,{'regex':
'^[a-zA-Z0-9]*$', 'strict': True})

typedef std::any_http_url

• Base type string

• Type constraint std::validate_type('pydantic.AnyHttpUrl',self)

11.7. Inmanta modules 403

https://github.com/inmanta/std.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

typedef std::any_url

• Base type string

• Type constraint std::validate_type('pydantic.AnyUrl',self)

typedef std::ascii_word

• Base type string

• Type constraint std::validate_type('pydantic.constr',self,{'regex': '^[!-~]*$',
'strict': True})

typedef std::base64

• Base type string

• Type constraint std::is_base64_encoded(self)

typedef std::config_agent

• Base type string

• Type constraint (self != 'internal')

typedef std::date

• Base type string

• Type constraint std::validate_type('datetime.date',self)

typedef std::datetime

• Base type string

• Type constraint std::validate_type('datetime.datetime',self)

typedef std::email_str

• Base type string

• Type constraint std::validate_type('pydantic.EmailStr',self)

typedef std::hoststring

• Base type string

• Type constraint /^[A-Za-z0-9-]+(\.[A-Za-z0-9-]+)*$/

typedef std::http_url

• Base type string

• Type constraint std::validate_type('pydantic.HttpUrl',self)

typedef std::ipv4_address

• Base type string

• Type constraint std::validate_type('ipaddress.IPv4Address',self)

typedef std::ipv4_interface

• Base type string

• Type constraint std::validate_type('ipaddress.IPv4Interface',self)

typedef std::ipv4_network

• Base type string

• Type constraint std::validate_type('ipaddress.IPv4Network',self)

404 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

typedef std::ipv6_address

• Base type string

• Type constraint std::validate_type('ipaddress.IPv6Address',self)

typedef std::ipv6_interface

• Base type string

• Type constraint std::validate_type('ipaddress.IPv6Interface',self)

typedef std::ipv6_network

• Base type string

• Type constraint std::validate_type('ipaddress.IPv6Network',self)

typedef std::ipv_any_address

• Base type string

• Type constraint std::validate_type('pydantic.IPvAnyAddress',self)

typedef std::ipv_any_interface

• Base type string

• Type constraint std::validate_type('pydantic.IPvAnyInterface',self)

typedef std::ipv_any_network

• Base type string

• Type constraint std::validate_type('pydantic.IPvAnyNetwork',self)

typedef std::name_email

• Base type string

• Type constraint std::validate_type('pydantic.NameEmail',self)

typedef std::negative_float

• Base type number

• Type constraint std::validate_type('pydantic.NegativeFloat',self)

typedef std::negative_int

• Base type int

• Type constraint std::validate_type('pydantic.NegativeInt',self)

typedef std::non_empty_string

• Base type string

• Type constraint /^(.*\S.*)$/

typedef std::package_state

• Base type string

• Type constraint (((self == 'installed') or (self == 'removed')) or (self ==
'latest'))

typedef std::port

• Base type int

• Type constraint ((self >= 0) and (self < 65536))

11.7. Inmanta modules 405

Inmanta Documentation, Release 7.1.1.dev20240504011805

typedef std::positive_float

• Base type number

• Type constraint std::validate_type('pydantic.PositiveFloat',self)

typedef std::positive_int

• Base type int

• Type constraint std::validate_type('pydantic.PositiveInt',self)

typedef std::printable_ascii

• Base type string

• Type constraint std::validate_type('pydantic.constr',self,{'regex': '^[-~]*$',
'strict': True})

typedef std::service_state

• Base type string

• Type constraint ((self == 'running') or (self == 'stopped'))

typedef std::time

• Base type string

• Type constraint std::validate_type('datetime.time',self)

typedef std::uuid

• Base type string

• Type constraint std::validate_type('uuid.UUID',self)

Entities

entity std::AgentConfig

Parents: std::PurgeableResource

Control agent settings. Currently these settings are only applied to autostarted agents

attribute bool autostart=false
When this flag is set to true, the resource will be exported and set the agent map on the orchestrator.
When false, this instance is ignored but can be used to generate agent configuration files.

attribute std::config_agent agentname
The name of the agent to which this config applies.

attribute string agent='internal'
If a resource is exported, agent manages the resource.

attribute string uri='local:'
The uri that indicates how the agent should execute. Currently the following uri are supported: *
“” An empty string. This is the same as running it locally * local: Manage resource locally * ssh:
//{[}user@{]}hostname{[}:port] Login using ssh. When user is left out, root is assumed. For port,
the system default is used. * host The actual hostname or ip to use. Although this is not a valid host
in uri form it is supported. * A query string can be used to set the properties: * python: The python
interpreter to use. The default value is python * retries: The number of retries before giving up. The
default number of retries 10 * retry_wait: The time to wait between retries for the remote target to
become available. The default wait is 30s. Example: ssh://centos@centos-machine/?python=python3
(This would connect to a the centos machine and use python3 as it’s interpreter)

The following implements statements select implementations for this entity:

406 Chapter 11. Inmanta Reference

ssh://{[}user@{]}hostname{[}:port
ssh://{[}user@{]}hostname{[}:port
ssh://centos@centos-machine/?python=python3

Inmanta Documentation, Release 7.1.1.dev20240504011805

• std::none constraint true

entity std::ConfigFile

Parents: std::File

A file with often used defaults for configuration files.

attribute int mode=644

attribute string owner='root'

attribute string group='root'

The following implements statements select implementations for this entity:

• std::reload , std::fileHost constraint true

entity std::Content

Parents: std::Entity

A content block as a prefix or suffix to a file. This blocks are only merged with the content at export time.
This is an advanced pattern that can be used to speed up the compilation in very specific use cases.

attribute string? sorting_key=null
The key to use to sort the content blocks in the same list. When this attribute is not set value is used as
sorting key.

attribute string value

The value to prepend or append

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::DefaultDirectory

Parents: std::Directory

A directory that is world readable. It is also writable for its owner root.

attribute int mode=755

attribute string owner='root'

attribute string group='root'

The following implements statements select implementations for this entity:

• std::reload , std::dirHost constraint true

entity std::Directory

Parents: std::Reload , std::PurgeableResource

A directory on the filesystem

attribute string path

attribute int mode

attribute string owner

attribute string group

attribute bool purge_on_delete=false

11.7. Inmanta modules 407

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation std::Host host [1]
other end: std::Host.directories [0:*]

The following implementations are defined for this entity:

• std::dirHost

The following implements statements select implementations for this entity:

• std::reload , std::dirHost constraint true

entity std::DiscoveryResource

Parents: std::Resource

A resource that scans the infrastructure for a certain type of deployment. This resource can be used to
facilitate the onboarding of resources that are not yet managed by the orchestrator.

entity std::Entity

The entity all other entities inherit from.

relation std::Entity requires [0:*]
other end: std::Entity.provides [0:*]

relation std::Entity provides [0:*]
other end: std::Entity.requires [0:*]

The following implementations are defined for this entity:

• std::none

entity std::File

Parents: std::Reload , std::PurgeableResource

This represents a file on the filesystem

attribute string path

The path of the file

attribute int mode
The permissions of the file

attribute string owner

The owner of the file

attribute string group

The group of the file

attribute string content

The file contents

attribute bool purge_on_delete=false

attribute bool send_event

attribute string content_seperator='\n'

relation std::Content prefix_content [0:*]

relation std::Content suffix_content [0:*]

relation std::Host host [1]
other end: std::Host.files [0:*]

The following implementations are defined for this entity:

• std::fileHost

The following implements statements select implementations for this entity:

408 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

• std::reload , std::fileHost constraint true

entity std::Host

Parents: std::ManagedDevice

A host models a server or computer in the managed infrastructure that has an ip address.

attribute std::ipv_any_address? ip=null
The ipaddress of this node.

attribute bool remote_agent=false
Start the mgmt agent for this node on the server and use remote io (ssh).

attribute string remote_user='root'
The remote user for the remote agent to login with.

attribute std::port remote_port=22
The remote port for this remote agent to use.

relation apt::Repository repository [0:*]
other end: apt::Repository.host [1]

relation std::File files [0:*]
other end: std::File.host [1]

relation std::Service services [0:*]
other end: std::Service.host [1]

relation std::Package packages [0:*]
other end: std::Package.host [1]

relation std::Directory directories [0:*]
other end: std::Directory.host [1]

relation std::Symlink symlinks [0:*]
other end: std::Symlink.host [1]

relation std::OS os [1]
Each host has an OS defined. This values is mostly used to select implementation in the where clause
of an implement statement. The familyof() plugin can be used for this.

relation std::HostConfig host_config [1]
other end: std::HostConfig.host [1]

relation std::HostGroup host_groups [0:*]
other end: std::HostGroup.hosts [0:*]

The following implementations are defined for this entity:

• std::hostDefaults

The following implements statements select implementations for this entity:

• std::hostDefaults constraint true

entity std::HostConfig

Parents: std::Entity

This represents generic configuration for a host. This entity is used by other modules to include their host
specific configuration. This should be instantiated in the implementation of std::Host or subclasses. This
host specific configuration cannot be included by just implementing std::Host because possibly subclasses
of std::Host are instantiated and implementations are not inherited.

11.7. Inmanta modules 409

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation std::Host host [1]
other end: std::Host.host_config [1]

The following implementations are defined for this entity:

• std::agentConfig

The following implements statements select implementations for this entity:

• std::none constraint true

• std::agentConfig constraint ((host.ip != null) and host.remote_agent)

entity std::HostGroup

Parents: std::Entity

This entity represents a group of hosts. For example a cluster of machines.

attribute string name

relation std::Host hosts [0:*]
other end: std::Host.host_groups [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::ManagedDevice

Parents: std::Entity

This interface represents all devices that can be managed

attribute std::hoststring name

entity std::ManagedResource

Parents: std::Resource

A base class for a resource that can be ignored/unmanaged by Inmanta.

attribute bool managed=true
This determines whether this resource is managed by Inmanta or not.

entity std::MutableBool

Parents: std::Entity

Wrapper for boolean values, used to pass a boolean out of an if statement.

Example

attr_a = std::MutableBool()
if some_condition:

attr_a.value = True
else:

attr_a.value = Null
end

attribute bool? value

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::MutableNumber

Parents: std::Entity

Wrapper for number values, used to pass a number out of an if statement or to use relations to create a
mutuable set of numbers.

410 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

Example

attr_a = std::MutableNumber()
if some_condition:

attr_a.value = 3
else:

attr_a.value = 4
end

Example

entity Test:
end

Test.string_list [0:] -- std::MutableNumber

a = Test()
a.string_list += std::MutableNumber(value=3)
a.string_list += std::MutableNumber(value=7)

attribute number? value

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::MutableString

Parents: std::Entity

Wrapper for string values. It can be used to pass a string out of an if statement, or to use relations to create
a mutable set of strings.

Example

attr_a = std::MutableString()
if some_condition:

attr_a.value = "a"
else:

attr_a.value = "b"
end

Example

entity Test:
end

Test.string_list [0:] -- std::MutableString

a = Test()
a.string_list += std::MutableString(value="value1")
a.string_list += std::MutableString(value="value2")

attribute string? value

The following implements statements select implementations for this entity:

• std::none constraint true

11.7. Inmanta modules 411

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity std::OS

Parents: std::Entity

Defines an operating system

attribute string name

The name of the operating system or family of operating systems

attribute number version=0.0
A specific version

attribute string? python_cmd='python'
Specifies what command should be used to launch the python interpreter on the other end

relation std::OS member [0:*]
other end: std::OS.family [0:1]

relation std::OS family [0:1]
other end: std::OS.member [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::Package

Parents: std::Reload

A software package installed on a managed device.

attribute string name

The name of the package to manage

attribute std::package_state state
The state of the package. Valid values are ‘installed’, ‘removed’ or ‘latest’. latest will upgrade the
package when an update is available.

relation std::Host host [1]
other end: std::Host.packages [0:*]

The following implementations are defined for this entity:

• std::pkgHost

The following implements statements select implementations for this entity:

• std::reload , std::pkgHost constraint true

entity std::Packages

Parents: std::Entity

Defined the state for multiple packages at once

attribute string[] name
A list of package names

attribute std::package_state state='installed'
The state of the package

relation std::Host host [1]

The following implementations are defined for this entity:

• std::pkgs

The following implements statements select implementations for this entity:

• std::pkgs constraint true

412 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

entity std::PurgeableResource

Parents: std::Resource

A base class for a resource that can be purged and can be purged by Inmanta whenever the resource is no
longer managed.

attribute bool purged=false
Set whether this resource should exist or not.

attribute bool purge_on_delete=false
Purge the resource when it is deleted from the configuration model. When this attribute is true, the
server will include a resource with purged=true when this resource is no longer included in the config-
uration model.

entity std::Reload

Parents: std::Resource

An entity to make the (old) reload mechanism compatible with the event mechanism

attribute bool reload=false
If a service requires this file, reload or restart the service when this file changes.

attribute bool send_event

The following implementations are defined for this entity:

• std::reload

entity std::Resource

Parents: std::Entity

A base entity for resources that can be exported. This type add specific attributes that are common for
most handlers. It is not required to inherit from this entity at the moment but highly recommended for
documentation purposes.

attribute bool send_event=false
This controls whether a resource should send its deploy state to the resources in its provides.

entity std::ResourceSet

Parents: std::Entity

A ResourceSet describes resources that logically belong together, and can be manipulated independently
from other managed resources.

attribute std::non_empty_string name

The name of the resource set.

relation std::Resource resources [0:*]

The following implements statements select implementations for this entity:

• std::none constraint true

entity std::Service

Parents: std::Reload

Manage a service on a host.

attribute string name

The name of the service to manage

attribute std::service_state state
The desired state of the service. Valid values are ‘running’ or ‘stopped’

attribute bool onboot
Should the service start on boot.

11.7. Inmanta modules 413

Inmanta Documentation, Release 7.1.1.dev20240504011805

relation std::Host host [1]
other end: std::Host.services [0:*]

The following implementations are defined for this entity:

• std::serviceHost

The following implements statements select implementations for this entity:

• std::reload , std::serviceHost constraint true

entity std::Symlink

Parents: std::Reload , std::PurgeableResource

A symbolic link on the filesystem

attribute string source

attribute string target

attribute bool purge_on_delete=false

attribute bool send_event

relation std::Host host [1]
other end: std::Host.symlinks [0:*]

The following implementations are defined for this entity:

• std::symHost

The following implements statements select implementations for this entity:

• std::reload , std::symHost constraint true

entity std::testing::NullResource

Parents: std::ManagedResource, std::PurgeableResource

A resource that does nothing, for use in tests and examples

attribute string name='null'
the name of this resource

attribute string agentname='internal'
the name of the agent to deploy this resource on

attribute bool send_event=true

attribute bool fail=false
when true, this resource will always fail on both dryrun and deploy

The following implements statements select implementations for this entity:

• std::none constraint true

Implementations

implementation std::agentConfig

implementation std::dirHost

implementation std::fileHost

implementation std::hostDefaults

414 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

implementation std::none

An empty implementation that can be used as a safe default.

implementation std::pkgHost

implementation std::pkgs

implementation std::reload

implementation std::serviceHost

implementation std::symHost

Plugins

std.add_to_ip(addr: 'std::ipv_any_address', n: 'int')→ 'std::ipv_any_address'
Add a number to the given ip.

std.assert(expression: 'bool', message: 'string' =)→ 'any'
Raise assertion error if expression is false

std.at(objects: 'list', index: 'int')→ 'any'
Get the item at index

std.attr(obj: 'any', attr: 'string')→ 'any'

std.capitalize(string: 'string')→ 'string'
Capitalize the given string

std.contains(dct: 'dict', key: 'string')→ 'bool'
Check if key exists in dct.

std.count(item_list: 'list')→ 'int'
Returns the number of elements in this list.

If any unknowns are present in the list, counts them like any other value. Depending on the unknown se-
mantics in your model this may produce an inaccurate count. For a count that is conservative with respect
to unknowns, see len.

std.dict_get(dct: 'dict', key: 'string')→ 'string'
Get an element from the dict. Raises an exception when the key is not found in the dict

std.environment()→ 'string'
Return the environment id

std.environment_name()→ 'string'
Return the name of the environment (as defined on the server)

std.environment_server()→ 'string'
Return the address of the management server

std.equals(arg1: 'any', arg2: 'any', desc: 'string' = None)→ 'any'
Compare arg1 and arg2

std.familyof(member: 'std::OS', family: 'string')→ 'bool'
Determine if member is a member of the given operating system family

std.file(path: 'string')→ 'string'
Return the textual contents of the given file

std.filter(values: 'list', not_item: 'std::Entity')→ 'list'
Filter not_item from values

11.7. Inmanta modules 415

Inmanta Documentation, Release 7.1.1.dev20240504011805

std.flatten(item_list: 'list')→ 'list'
Flatten this list

std.generate_password(pw_id: 'string', length: 'int' = 20)→ 'string'
Generate a new random password and store it in the data directory of the project. On next invocations the
stored password will be used.

Parameters
• pw_id – The id of the password to identify it.

• length – The length of the password, default length is 20

std.get_env(name: 'string', default_value: 'string' = None)→ 'string'

std.get_env_int(name: 'string', default_value: 'int' = None)→ 'int'

std.getattr(entity: 'std::Entity', attribute_name: 'string', default_value: 'any' = None, no_unknown: 'bool' =
True)→ 'any'

Return the value of the given attribute. If the attribute does not exist, return the default value.

Attr no_unknown
When this argument is set to true, this method will return the default value when the attribute
is unknown.

std.getfact(resource: 'any', fact_name: 'string', default_value: 'any' = None)→ 'any'
Retrieve a fact of the given resource

std.hostname(fqdn: 'string')→ 'string'
Return the hostname part of the fqdn

std.inlineif(conditional: 'bool', a: 'any', b: 'any')→ 'any'
An inline if

std.invert(value: 'bool')→ 'bool'
Invert a boolean value

std.ip_address_from_interface(ip_interface: 'std::ipv_any_interface')→ 'std::ipv_any_address'
Take an ip address with network prefix and only return the ip address

Parameters
ip_interface – The interface from where we will extract the ip address

std.ipindex(addr: 'std::ipv_any_network', position: 'int', keep_prefix: 'bool' = False)→ 'string'
Return the address at position in the network.

Parameters
• addr – The network address

• position – The desired position of the address

• keep_prefix – If the prefix should be included in the result

std.is_base64_encoded(s: 'string')→ 'bool'
Check whether the given string is base64 encoded.

std.is_instance(obj: 'any', cls: 'string')→ 'bool'

std.is_unknown(value: 'any')→ 'bool'

std.isset(value: 'any')→ 'bool'
Returns true if a value has been set

std.item(objects: 'list', index: 'int')→ 'list'
Return a list that selects the item at index from each of the sublists

416 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

std.key_sort(items: 'list', key: 'any')→ 'list'
Sort an array of object on key

std.len(item_list: 'list')→ 'int'
Returns the number of elements in this list. Unlike count, this plugin is conservative when it comes to
unknown values. If any unknown is present in the list, the result is also unknown.

std.length(value: 'string')→ 'int'
Return the length of the string

std.limit(string: 'string', length: 'int')→ 'string'
Limit the length for the string

Parameters
• string – The string to limit the length off

• length – The max length of the string

std.list_files(path: 'string')→ 'list'
List files in a directory

std.lower(string: 'string')→ 'string'
Return a copy of the string with all the cased characters converted to lowercase.

std.netmask(addr: 'std::ipv_any_interface')→ 'std::ipv_any_address'
Return the netmask of the CIDR

For instance:
std::print(netmask(“192.168.1.100/24”)) –> 255.255.255.0

std.network_address(addr: 'std::ipv_any_interface')→ 'std::ipv_any_address'
Return the network address of the CIDR

For instance:
std::print(network_address(“192.168.1.100/24”)) –> 192.168.1.0

std.objid(value: 'any')→ 'string'

std.password(pw_id: 'string')→ 'string'
Retrieve the given password from a password file. It raises an exception when a password is not found

Parameters
pw_id – The id of the password to identify it.

std.prefixlen(addr: 'std::ipv_any_interface')→ 'int'
Return the prefixlen of the CIDR

For instance:
std::print(prefixlen(“192.168.1.100/24”)) –> 24

std.prefixlength_to_netmask(prefixlen: 'int')→ 'std::ipv4_address'
Given the prefixlength, return the netmask

std.print(message: 'any')→ 'any'
Print the given message to stdout

std.replace(string: 'string', old: 'string', new: 'string')→ 'string'

std.select(objects: 'list', attr: 'string')→ 'list'
Return a list with the select attributes

11.7. Inmanta modules 417

Inmanta Documentation, Release 7.1.1.dev20240504011805

std.sequence(i: 'int', start: 'int' = 0, offset: 'int' = 0)→ 'list'
Return a sequence of i numbers, starting from zero or start if supplied.

Parameters
• i – The number of elements in the sequence.

• start – The starting value for the sequence.

• offset – [Deprecated] An offset value (this parameter will be removed in the future).

Returns
A list containing the sequence of ints.

std.server_ca()→ 'string'

std.server_port()→ 'int'

std.server_ssl()→ 'bool'

std.server_token(client_types: 'string[]' = ['agent'])→ 'string'

std.source(path: 'string')→ 'string'
Return the textual contents of the given file

std.split(string_list: 'string', delim: 'string')→ 'list'
Split the given string into a list

Parameters
• string_list – The list to split into parts

• delim – The delimeter to split the text by

std.template(path: 'string', **kwargs: 'any')→ 'string'
Execute the template in path in the current context. This function will generate a new statement that has
dependencies on the used variables.

Parameters
• path – The path to the jinja2 template that should be resolved.

• **kwargs – A set of variables that should overwrite the context accessible to the tem-
plate.

std.timestamp(dummy: 'any' = None)→ 'int'
Return an integer with the current unix timestamp

Parameters
any – A dummy argument to be able to use this function as a filter

std.to_number(value: 'any')→ 'number'
Convert a value to a number

std.type(obj: 'any')→ 'any'

std.unique(item_list: 'list')→ 'bool'
Returns true if all items in this sequence are unique

std.unique_file(prefix: 'string', seed: 'string', suffix: 'string', length: 'int' = 20)→ 'string'

std.upper(string: 'string')→ 'string'
Return a copy of the string with all the cased characters converted to uppercase.

418 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

std.validate_type(fq_type_name: 'string', value: 'any', validation_parameters: 'dict' = None)→ 'bool'
Check whether value satisfies the constraints of type fq_type_name. When the given type (fq_type_name)
requires validation_parameters, they can be provided using the optional validation_parameters argument.

The following types require validation_parameters:

• pydantic.condecimal:
gt: Decimal = None ge: Decimal = None lt: Decimal = None le: Decimal = None max_digits: int
= None decimal_places: int = None multiple_of: Decimal = None

• pydantic.confloat and pydantic.conint:
gt: float = None ge: float = None lt: float = None le: float = None multiple_of: float = None,

• pydantic.constr:
min_length: int = None max_length: int = None curtail_length: int = None (Only verify the regex
on the first curtail_length characters) regex: str = None (The regex is verified via Pattern.match())

Example usage:

• Define a vlan_id type which represent a valid vlan ID (0-4,095):

typedef vlan_id as number matching std::validate_type(“pydantic.conint”, self, {“ge”: 0, “le”: 4095})

Resources

class std.resources.AgentConfig

A resource that can modify the agentmap for autostarted agents

• Resource for entity std::AgentConfig

• Id attribute agentname

• Agent name agent

• Handlers std.resources.AgentConfigHandler

class std.resources.Directory

A directory on a filesystem

• Resource for entity std::Directory

• Id attribute path

• Agent name host.name

• Handlers std.resources.DirectoryHandler

class std.resources.File

A file on a filesystem

• Resource for entity std::File

• Id attribute path

• Agent name host.name

• Handlers std.resources.PosixFileProvider

class std.resources.Package

A software package installed on an operating system.

• Resource for entity std::Package

11.7. Inmanta modules 419

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Id attribute name

• Agent name host.name

• Handlers apt.AptPackage, std.resources.YumPackage

class std.resources.Service

This class represents a service on a system.

• Resource for entity std::Service

• Id attribute name

• Agent name host.name

• Handlers std.resources.SystemdService, std.resources.ServiceService, ubuntu.
UbuntuService

class std.resources.Symlink

A symbolic link on the filesystem

• Resource for entity std::Symlink

• Id attribute target

• Agent name host.name

• Handlers std.resources.SymlinkProvider

class std.resources.Null

• Resource for entity std::testing::NullResource

• Id attribute name

• Agent name agentname

• Handlers std.resources.NullProvider

Handlers

class std.resources.YumPackage

A Package handler that uses yum

• Handler name yum

• Handler for entity std::Package

class std.resources.NullProvider

Does nothing at all

• Handler name null

• Handler for entity std::testing::NullResource

class std.resources.PosixFileProvider

This handler can deploy files on a unix system

• Handler name posix_file

• Handler for entity std::File

420 Chapter 11. Inmanta Reference

Inmanta Documentation, Release 7.1.1.dev20240504011805

class std.resources.SystemdService

A handler for services on systems that use systemd

• Handler name systemd

• Handler for entity std::Service

class std.resources.ServiceService

A handler for services on systems that use service

• Handler name redhat_service

• Handler for entity std::Service

class std.resources.DirectoryHandler

A handler for creating directories

• Handler name posix_directory

• Handler for entity std::Directory

class std.resources.SymlinkProvider

This handler can deploy symlinks on unix systems

• Handler name posix_symlink

• Handler for entity std::Symlink

class std.resources.AgentConfigHandler

• Handler name agentrest

• Handler for entity std::AgentConfig

11.7.12 Module ubuntu

• License: Apache 2.0

• Version: 0.4.20

• Upstream project: https://github.com/inmanta/ubuntu.git

Handlers

class ubuntu.UbuntuService

A handler for services on systems that use upstart

• Handler name ubuntu_service

• Handler for entity std::Service

11.7. Inmanta modules 421

https://github.com/inmanta/ubuntu.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.7.13 Module user

• License: ASL 2

• Version: 0.1.22

• Upstream project: https://github.com/inmanta/user.git

Entities

entity user::Group

Parents: std::ManagedResource, std::PurgeableResource

attribute string name

attribute bool system=false

relation std::Host host [1]

The following implementations are defined for this entity:

• user::execGroup

The following implements statements select implementations for this entity:

• user::execGroup constraint true

entity user::User

Parents: std::ManagedResource, std::PurgeableResource

attribute string name

attribute string group

attribute string[] groups=List()

attribute bool system=false

attribute string shell='/bin/bash'

attribute string homedir

relation std::Host host [1]

The following implementations are defined for this entity:

• user::execUser

The following implements statements select implementations for this entity:

• user::execUser constraint true

Implementations

implementation user::execGroup

Exec based implementation until a handler is available

implementation user::execUser

Exec based implementation until a handler is available

422 Chapter 11. Inmanta Reference

https://github.com/inmanta/user.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.7.14 Module yum

• License: Apache 2.0

• Version: 0.7.8

• Upstream project: https://github.com/inmanta/yum.git

Entities

entity yum::Repository

Parents: std::Entity

A yum repository.

Constraint: The attributes baseurl, mirrorlist and metalink cannot be null at the same time.

attribute string name

attribute bool gpgcheck=false

attribute bool enabled=true

attribute string? baseurl=null

attribute string? mirrorlist=null

attribute string? metalink=null

attribute string gpgkey=''

attribute number metadata_expire=7200

attribute bool skip_if_unavailable=false

relation std::Host host [1]
other end: std::Host.repos [0:*]

The following implementations are defined for this entity:

• yum::validateInput

• yum::redhatRepo

The following implements statements select implementations for this entity:

• yum::validateInput constraint true

• yum::redhatRepo constraint std::familyof(host.os,'redhat')

Implementations

implementation yum::redhatRepo

implementation yum::validateInput

11.7. Inmanta modules 423

https://github.com/inmanta/yum.git

Inmanta Documentation, Release 7.1.1.dev20240504011805

11.8 REST API reference

11.9 Compatibility

The table below shows the system requirements of version 7 of the Inmanta Service Orchestrator.

11.9.1 System requirements

Table 1: System requirements

Component Required version

python 3.11

Note: This information is also available in a machine-consumable format in the compatibility.json file.

11.9.2 Inmanta core and extensions versions

The orchestrator is constituted of several components (python packages and npm packages). The python packages
are of two types: one core package and several extension packages.

The following table shows the ranges of the Inmanta Python components, this product version is compatible with.
The lower bound of these version constraints will remain the same for the whole lifetime of this major version.
Upper bounds may be added when a new major version is released.

This table is only meant as a reference for developers of Inmanta extensions and is meant to be used as input to a
dependency resolver e.g. pip to ensure the resulting versions are compatible. This information is not relevant when
installing the orchestrator via RPM as is recommended in the Install Inmanta section.

Table 2: Inmanta core and extensions versions

Component Required version

inmanta-core ~=11.0.dev

inmanta-license ~=4.0.dev

inmanta-lsm ~=4.0.dev

inmanta-support ~=3.2.dev

inmanta-ui ~=5.1.dev

Note: This information is also available as a constraints file in requirements.components.txt and in json format in

424 Chapter 11. Inmanta Reference

./compatibility.json
./requirements.components.txt

Inmanta Documentation, Release 7.1.1.dev20240504011805

the compatibility.json file.

11.9. Compatibility 425

./compatibility.json

Inmanta Documentation, Release 7.1.1.dev20240504011805

426 Chapter 11. Inmanta Reference

CHAPTER

TWELVE

TROUBLESHOOTING

This page describes typical failure scenario’s and provides a guideline on how to troubleshoot them.

12.1 A resource is stuck in the state available

When a resource is stuck in the available state, it usually means that the agent, which should deploy the resource,
is currently down or paused. Click on the Resources tab of the web-console, to get an overview of the different
resources in the model. This overview shows the state of each resource and the name of its agent. Filter on resources
in the available state and check which resource are ready to be deployed (i.e. a resource without dependencies or
a resource for which all dependencies were deployed successfully). The agent of that resource, is the agent that
causes the problem. In the figure below, the global GnmiResource should be ready to deploy on the spine agent.

Next, go to the Agents tab of the web-console to verify the state of that agent.

An agent can be in one of the following states:

• Down

• Paused

• Up

Each of the following subsections describes what should be done when the agent is in each of the different states.

427

Inmanta Documentation, Release 7.1.1.dev20240504011805

12.1.1 The agent is down

The Section Agent doesn’t come up provides information on how to troubleshoot the scenario where an agent that
shouldn’t be down is down.

12.1.2 The agent is paused

Unpause the agent by clicking the Unpause button in the Agents tab of the web-console.

428 Chapter 12. Troubleshooting

Inmanta Documentation, Release 7.1.1.dev20240504011805

12.1.3 The agent is up

When the agent is in the up state, it should be ready to deploy resources. Read the agent log to verify it
doesn’t contain error or warning messages that would explain why the agent is not deploying any resources.
For auto-started agents, three different log files exist. The log files are present in <config.log-dir>/
agent-<environment-id>.[log|out|err]. The environment ID can be found in the URL of the web-console,
or in the Settings tab. More information about the different log files can be found here. For manually started
agents the log file is present in /var/log/inmanta/agent.log. If the log file doesn’t provide any more infor-
mation, trigger the agent to execute a deployment by clicking on the Force repair button in the Agents tab of
the web-console, as shown in the figure below:

When the agent receives the notification from the server, it writes the following log message in its log:

INFO inmanta.agent.agent Agent <agent-name> got a trigger to update in␣
↪→environment <environment ID>

If the notification from the server doesn’t appear in the log file of the agent after clicking the Force repair
button, the problem is situated on the server side. Check if the server log contains any error messages or warning
that could explain the reason why the agent didn’t get a notification from the server. The server log file is situated
at <config.log-dir>/server.log.

12.2 The deployment of a resource fails

When a resource cannot be deployed, it ends up in one of the following deployment states:

• failed: A resource ends up in the failed state when the handler of that resource raises an uncaught excep-
tion. Check the log of the resource to get more details about the issue.

• unavailable: A resource ends up in the unavailable state when no handler could be found to deploy that
resource. Check the log of the resource to get more details about the issue.

• undefined: A resource ends up in the undefined state when an attribute required by that resource, didn’t
yet resolve to a definite value. Read Section Check which attributes are undefined to find out which attributes
are undefined.

• skipped: When a resource is in the skipped state, it can mean two different things. Either the resource
cannot be deployed because one of its dependencies ended up in the failed state or the handler itself raised

12.2. The deployment of a resource fails 429

Inmanta Documentation, Release 7.1.1.dev20240504011805

a SkipResource exception to indicate that the resource in not yet ready to be deployed. The latter case can
occur when a VM is still booting for example. Check the log of the resource to get more information about
actual root cause.

• skipped_for_undefined: The skipped_for_undefined state indicates that the resource cannot be de-
ployed because one of its dependencies cannot be deployed. Check the log of the resource to get information
about the actual dependency that cannot be deployed.

12.2.1 Read the logs of a resource

This section describes how to obtain the logs for a specific resource. In the Resources tab of the web-console,
click on Show Details for the desired resource.

Next, in the Logs tab of this view, the logs can be sorted and filtered. Click on the chevron for a specific log line
to display more information, such as the traceback.

12.2.2 Check which attributes are undefined

To find out undefined attributes of a resource, click on Show Details for the resource in the undefined state, as
shown in the figure below.

Look for attributes marked as undefined in the list of attributes of that resource (See figure below). Track the source
of this attribute down within the configuration model to find out why this attribute is undefined.

12.3 Agent doesn’t come up

This section explains how to troubleshoot the problem where an agent is in the down state while it should be up.
In the figure shown below, the four agents are down.

Agents can be started in two different ways, either automatically by the inmanta server (auto-started agents) or
manually (manually-started) agents. More information about the configuration of both types of agent can be found
on this page. The Section Auto-started agents describes how to troubleshoot this issue for agents started by the
Inmanta server. The Section Manually-started agents describes how to troubleshoot this issue for agents that were
started manually.

430 Chapter 12. Troubleshooting

Inmanta Documentation, Release 7.1.1.dev20240504011805

12.3. Agent doesn’t come up 431

Inmanta Documentation, Release 7.1.1.dev20240504011805

432 Chapter 12. Troubleshooting

Inmanta Documentation, Release 7.1.1.dev20240504011805

12.3.1 Auto-started agents

An auto-started agent is only started when that agent is present in the autostart_agent_map environment setting.
Verify that requirement in the Configuration panel of the Settings tab, as shown in the figure below.

When the autostart_agent_map is configured correctly, but the agent is still not up, read the logs
of the auto-started agent . These logs can be found at the following location: <config.log-dir>/
agent-<environment-id>.[log|out|err]. The environment ID is present in the URL of the web-console.
More information about the different log files can be found here. When reading those log files, pay specific atten-
tion to error messages and warnings that could explain why the agent is marked as down. Also, ensure that the
name of the agent under consideration is added as an endpoint to the agent process. The log file should contain the
following message when a certain agent is added as an endpoint to the process:

inmanta.agent.agent Adding endpoint <agent-name>

When the agent is not added as an endpoint, log an issue on https://github.com/inmanta/inmanta-core/issues.

An autostarted-agent connects to the Inmanta server via the address configured in the server.server-address
config option. If this option is set incorrectly, the agent will not be able to connect to the server.

12.3.2 Manually started agents

When a manually-started agent doesn’t come up, verify whether the agent process is still running via the following
command:

$ systemctl status inmanta-agent

If the agent process is down, start and enable it via the following command:

$ systemctl enable --now inmanta-agent

Also check the log file of the manually-started agent. This log file is located at /var/log/inmanta/agent.log.
The standard output and the standard error streams produced by the agent, can be obtained via journalctl:

$ journalctl -u inmanta-agent

12.3. Agent doesn’t come up 433

https://github.com/inmanta/inmanta-core/issues

Inmanta Documentation, Release 7.1.1.dev20240504011805

12.3.3 Potential reasons why an agent doesn’t start

This section provides a list of potential reasons why an agent wouldn’t start:

• bind-address set incorrectly: The Inmanta server listens on all the interfaces configured via the server.
bind-address option. If the server doesn’t listen on an interface used by a remote agent, the agent will not
be able to connect to the server.

• Authentication issue: If the Inmanta server has been setup with authentication, a misconfiguration may deny
an agent access to the Inmanta API. For example, not configuring a token provider (issuer) with sign=true
in the auth_jwt_<ID> section of the Inmanta configuration file. Documentation on how to configure au-
thentication correctly can be found here.

• SSL problems: If the Inmanta server is configured to use SSL, the Agent should be configured to use SSL
as well (See the SSL-related configuration options in the server and agent_rest_transport section of
the Inmanta configuration reference)

• Network issue: Many network-related issue may exist which don’t allow the agent to establish a connection
with the Inmanta server. A firewall may blocks traffic between the Inmanta agent and the server, no network
route may exist towards the Inmanta server, etc.

12.4 Recompilation failed

You can trigger a recompilation from the Compile Reports tab. It shows a list of compile reports for the latest
compilations. Click on Show Details to see more information about a given report.

Each step of the compile process is shown. Click on the chevron, as shown below, for a specific step, to display
more information such as the output produced by that step and the return code. Verify that the timestamp of the
compile report corresponds to the time the compilation was triggered in the web-console. If no compile report was
generated or the compile report doesn’t show any errors, check the server logs as well. By default the server log is
present in <config.log-dir>/server.log.

434 Chapter 12. Troubleshooting

Inmanta Documentation, Release 7.1.1.dev20240504011805

12.5 Logs show “empty model” after export

This log message indicates that something went wrong during the compilation or the export of the model to the
server. To get more information about the problem, rerun the command with the -vvv and the -X options. The
-vvv option increases the log level of the command to the DEBUG level and the -X option shows stack traces and
errors.

$ inmanta -vvv export -X

12.6 Compilation fails

In rare situations, the compiler might fail with a List modified after freeze or an Optional variable
accessed that has no value error, even though the model is syntactically correct. The following sections
describe why this error occurs and what can be done to make the compilation succeed.

12.6.1 Reason for compilation failure

When the compiler runs, it cannot know upfront how many elements will be added to a relationship. At some stages
of the compilation process the compiler has to guess which relations are completely populated in order to be able to
continue the compilation process. Heuristics are being used to determine the correct order in which relationships
can be considered completely populated. In most situation these heuristics work well, but in rare situations the
compiler makes an incorrect decision and considers a relationship to be complete while it isn’t. In those situation
the compiler crashes with one of the following exception:

• List modified after freeze: This error occurs when a relationship with an upper arity larger than one
was considered complete too soon.

• Optional variable accessed that has no value: This error occurs when a [0:1] relationship was
considered complete too soon.

The following sections provide information on how this issue can be resolved.

12.5. Logs show “empty model” after export 435

Inmanta Documentation, Release 7.1.1.dev20240504011805

12.6.2 Relationship precedence policy

Warning: The inmanta compiler is very good at determining in which order it should evaluate the orchestration
model. Unfortunately in very complex models it might not be able to do this. In that case you can give the
compiler some instruction by providing it with relationship precedence rules.

This is a very powerful tool because you can override all the intelligence in the compiler. This means that if
you provide the correct rule it will fix the compilation. If you provide a wrong rule it can make this even worse.
However, it can never make the orchestrator compile incorrect results.

The above-mentioned problem can be resolved by defining a relation precedence policy in the project.yml file of
an Inmanta project. This policy consists of a list of rules. Each rule defining the order in which two relationships
should be considered complete with respect to each other. By providing this policy, it’s possible to guide the
compiler in making the correct decisions that lead to a successful compilation.

Example: Consider the following project.yml file.

1 name: quickstart
2 modulepath: libs
3 downloadpath: libs
4 repo: https://github.com/inmanta/
5 description: A quickstart project that installs a drupal website.
6 relation_precedence_policy:
7 - "a::EntityA.relation before b::EntityB.other_relation"

The last two lines of this file define the relation precedence policy of the project. The policy contains one rule
saying that the relationship relation of entity a::EntityA should be considered completely populated before
the relation other_relation of entity b::EntityB can be considered complete.

Each rule in a relation precedence policy should have the following syntax:

<first-type>.<first-relation-name> before <then-type>.<then-relation-name>

12.6.3 Compose a relationship precedence policy

Depending on the complexity of your model, it might be difficult to determine the rule(s) that should be added to
the relation precedence policy to make the compile succeed. In this section we will provide some guidelines to
compose the correct set of rules.

When the compilation of a model fails with a List modified after freeze or an Optional variable
accessed that has no value error, the output from the compiler will contain information regarding which
relationship was frozen too soon.

For example, consider the following compiler output:

...
Exception explanation
=====================
The compiler could not figure out how to execute this model.

During compilation, the compiler has to decide when it expects a relation to have all␣
↪→its elements.
In this compiler run, it guessed that the relation 'finds' on the instance␣
↪→maze::ServiceA
(instantiated at /home/centos/maze_project/libs/maze/model/_init.cf:43) would be␣
↪→complete with the values [], but the
value maze::SubB (instantiated at /home/centos/maze_project/libs/maze/model/_init.

(continues on next page)

436 Chapter 12. Troubleshooting

Inmanta Documentation, Release 7.1.1.dev20240504011805

(continued from previous page)

↪→cf:62) was added at
/home/centos/maze_project/libs/maze/model/_init.cf:75
...

In the above-mentioned example, the relationship maze::ServiceA.finds was incorrectly considered complete.
To find the other relation in the ordering conflict, compile the model once more with the log level set to DEBUG
by passing the -vvv option and grep for the log lines that contain the word freezing. The output will contains
a log line for each relationship that is considered complete. This way you get an overview regarding the order in
which the compiler considers the different relations to be complete.

$ inmanta -vvv compile|grep -i freezing
...
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::ServiceA (instantiated␣
↪→at /home/centos/maze_project/libs/maze/model/_init.cf:43) maze::ServiceA.finds = []
inmanta.execute.schedulerLevel 3 Freezing ListVariable maze::World (instantiated at /
↪→home/centos/maze_project/libs/maze/model/_init.cf:10) maze::World.services =␣
↪→[maze::ServiceA 7f8feb20f700, maze::ServiceA 7f8feb20faf0, maze::ServiceA␣
↪→7f8feb20fee0, maze::ServiceA 7f8feb1e7310, maze::ServiceA 7f8feb1e7700]
Could not set attribute `finds` on instance `maze::ServiceA
...

All the relationships frozen after the freeze of the maze::ServiceA.finds relationship are potentially causing
the compilation problem. In the above-mention example, there is only one, namely the maze::World.services
relationship.

As such the following rule should be added to the relation precedence policy to resolve this specific conflict:

maze::World.services before maze::ServiceA.finds

When you compile the model once more with the relation precedence policy in-place, the compilation can either
succeed or fail with another List modified after freeze or an Optional variable accessed that has
no value error. The latter case indicates that a second rule should be added to the relation precedence policy.

12.7 Debugging

Debugging the server is possible in case the rpdb package is installed. Installing the rpdb package to the virtual
environment used by Inmanta by default can be done the following way:

$ /opt/inmanta/bin/python3 -m pip install rpdb

Rpdb can be triggered by sending a TRAP signal to the inmanta server process.

$ kill -5 <PID>

After receiving the signal, the process hangs, and it’s possible to attach a pdb debugger by connecting to 127.0.0.1,
on port 4444 (for example using telnet).

12.7. Debugging 437

https://pypi.org/project/rpdb/

Inmanta Documentation, Release 7.1.1.dev20240504011805

438 Chapter 12. Troubleshooting

CHAPTER

THIRTEEN

CHANGELOG

13.1 Unreleased changes (2024-05-04)

13.1.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.1.2 Inmanta-core: unreleased changes (2024-05-04)

New features

• Add support to configure the logging framework using a configuration file. (inmanta/inmanta-core#7271)

Improvements

• Remove the venv of an auto-started agent when its environment is deleted or cleared or when its project is
deleted. (inmanta/inmanta-core#7043)

• Raise a warning if JIT is enabled on the PostgreSQL database as this might result in poor query performance.

• Module release tool: do not write internal field version_tag to setup.cfg.

• Improve support for four-digit version on ‘inmanta module release’ command. If the ‘use_four_digit’ is set
to ‘True’ in the module’s metadata, the version will be bumped to a 4 digit format after a release. (#7521)

• Display a banner in the docs that notifies the user when the build belongs to an old major iso version.
(inmanta/infra-tickets#201)

Bug fixes

• Fix bug that makes the endpoints to clear or delete an environment fail with the error message (39,
'Directory not empty')

• Fix resource details endpoint status reporting

439

https://github.com/inmanta/inmanta-core/issues/7271
https://github.com/inmanta/inmanta-core/issues/7043
https://github.com/inmanta/inmanta-core/issues/7521
https://github.com/inmanta/infra-tickets/issues/201

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.1.3 Inmanta-license: unreleased changes (2024-05-04)

No changelog entries.

13.1.4 Inmanta-lsm: unreleased changes (2024-05-04)

New features

• Add support for batched partial compiles. (inmanta/inmanta-lsm#1602)

Bug fixes

• Reject lifecycle state transfers with a config option specified on a resource based transfer, instead of silently
ignoring them. (inmanta/inmanta-core#7393)

• Fix bug where the POST /service_catalog endpoint returned a status code 500 if an invalid service
definition was given.

• Fix bug that raises a UniqueViolationError if two different inter-service relationships happen to have the
same service instance as source and destination.

13.1.5 Inmanta-support: unreleased changes (2024-05-04)

No changelog entries.

13.1.6 Inmanta-ui: unreleased changes (2024-05-04)

No changelog entries.

13.1.7 Web-console: unreleased changes (2024-05-04)

New features

• Add functionality to show relation label when hovering over them in Instance Composer (#5623)

Improvements

• Added functionality to view instances that are blocked from editing in the Instance Composer. (#5373)

• Enable expert mode on empty values. (#5588)

• Forced state options are now sorted alphabetically. (#5631)

• Improve the icons in the menu to make them more straightforward. (#5650)

• Replace SVG icons with PatternFly icons. (#5651)

• Change information in the Composer’s Form Modal to be more adequate when no instance is chosen, Make
expand/collapse button action area bigger in the Instances on the Instance Composer Canvas. (#5691)

• replace randomUUID function with adequate cryptographic substitute (#5706)

• Propagate suggestions to embedded entities and allow 0 as valid default input (#5717)

440 Chapter 13. Changelog

https://github.com/inmanta/inmanta-lsm/issues/1602
https://github.com/inmanta/inmanta-core/issues/7393
https://github.com/inmanta/web-console/issues/5623
https://github.com/inmanta/web-console/issues/5373
https://github.com/inmanta/web-console/issues/5588
https://github.com/inmanta/web-console/issues/5631
https://github.com/inmanta/web-console/issues/5650
https://github.com/inmanta/web-console/issues/5651
https://github.com/inmanta/web-console/issues/5691
https://github.com/inmanta/web-console/issues/5706
https://github.com/inmanta/web-console/issues/5717

Inmanta Documentation, Release 7.1.1.dev20240504011805

Bug fixes

• resolve bug in duplicate form for preselected values in dropdowns. (#5588)

• Resolve a bug of invalid presentation of the add instance button in the instance composer when using Firefox
(#5689)

• Resolve bug in resource details filtering, where removing log filters would send invalid request. (#5697)

• Fix issue with integers passed through expert mode as a string (#5718)

13.2 Release 7.1.0 (2024-03-29)

13.2.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.2.2 Inmanta-core: release 11.1.0 (2024-03-29)

New features

• Added support for arithmetic operators to the language (addition, substraction, multiplication, division, ex-
ponentiation and modulo). (inmanta/inmanta-core#1799)

• Add facts that don’t expire. (#6560)

• Introduced a new configuration option database.wait_time for the Inmanta server, enabling it to wait
for the database to become available before starting. Users can specify the maximum time (in seconds) the
server should wait for the database to be up. A value of 0 means the server will not wait, while a negative
value indicates the server will wait indefinitely. (#6994)

• Implement constraints on jwt claims

• Remove state back propagation from the database

Improvements

• Add --soft-delete option to the exporter. This option makes sure that resource sets, specified using
the --delete-resource-set option, are only deleted if there are no resources exported for this set.
(inmanta/inmanta-lsm#1638)

• Report which pip indexes were used to install a V2 module or third-party Python dependency if that package
could not be found. (#6096)

• Add exclude_changes argument to the get_resource_actions endpoint to filter out resource actions with spe-
cific changes (#6733)

• Improved error message when http request have oversized headers

• Improve performance of cross agent dependency resolution (#6999)

• Improve exporter performance (#7040)

• Improve performance of std::validate_type (#7041)

• Add dedicated set_fact and set_parameter endpoints (#7068)

• Remove support for legacy schema migration (< ISO4) (#7117)

• Added the ability to have mergeable environment variables to the compiler service (#7154)

• Improve performance of resource view (#7231)

13.2. Release 7.1.0 (2024-03-29) 441

https://github.com/inmanta/web-console/issues/5588
https://github.com/inmanta/web-console/issues/5689
https://github.com/inmanta/web-console/issues/5697
https://github.com/inmanta/web-console/issues/5718
https://github.com/inmanta/inmanta-core/issues/1799
https://github.com/inmanta/inmanta-core/issues/6560
https://github.com/inmanta/inmanta-core/issues/6994
https://github.com/inmanta/inmanta-lsm/issues/1638
https://github.com/inmanta/inmanta-core/issues/6096
https://github.com/inmanta/inmanta-core/issues/6733
https://github.com/inmanta/inmanta-core/issues/6999
https://github.com/inmanta/inmanta-core/issues/7040
https://github.com/inmanta/inmanta-core/issues/7041
https://github.com/inmanta/inmanta-core/issues/7068
https://github.com/inmanta/inmanta-core/issues/7117
https://github.com/inmanta/inmanta-core/issues/7154
https://github.com/inmanta/inmanta-core/issues/7231

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Increased the default value of the database.connection_pool_max_size setting to 70 (#7248)

• Improve deploy performance for very large models (#7262)

• Add documentation on how to create the initial user when using the built-in authentication provider.
(inmanta/inmanta-core#7357)

• Ensure agent code folder is cleaned up on restart (#7388)

• Agent started using std::Agentconfig now always deploy when first started (#7448)

• Added a named-volume to the PostgreSQL server started by the docker-compose based installation docu-
mentation.

• Make agent more resilient to resource loading issues

• Improve performance by tuning logging

• Improve performance of type validation

• Make parameter refresh a non-blocking call

• Add support for string concatenation in the Inmanta modelling language

• Changed the default value of the server.auth_method config option from None to oidc.

Upgrade notes

• The default value of the project configuration option agent_install_dependency_modules changed to
True. (inmanta/inmanta-core#7026)

• Remove state back propagation from the database

Deprecation notes

• Remove functionality relying on netifaces from reporting. (inmanta/inmanta-core#7019)

• The project configuration option agent_install_dependency_modules is deprecated and will be re-
moved in a next major release. (inmanta/inmanta-core#7026)

Bug fixes

• Fixed bug where certain config options could not be set through environment variables

• Fix formatting of error message for inline if expressions (#6226)

• make sure an environment can not be resumed while deleting, that deleting an environment first halts the
environment and that the active model cannot be deleted.

• Resolve race condition on release version (#6955)

• Deploy command no longer ignores -f option. (#6993)

• Prevent deadlock between the _log_session_expiry_to_db and the _log_session_seen_to_db and
_log_session_creation_to_db methods. (inmanta/inmanta-core#7024)

• Requesting a dryrun after a partial compile was sometimes causing an internal server error. (#7065)

• Fix bug where the latest released version of the configurationmodel could be removed by the cleanup job.
(inmanta/inmanta-core#7324)

• Improved f-string error reporting (#7418)

• Fix bug where undefined and skipped_for_undefined resources are not correctly merged by the put_partial
endpoint. (inmanta/inmanta-core#7416)

• Fix a bug where PIP_NO_INDEX could be used by pip when use_system_config was set to False in the
PipConfig (#6096)

442 Chapter 13. Changelog

https://github.com/inmanta/inmanta-core/issues/7248
https://github.com/inmanta/inmanta-core/issues/7262
https://github.com/inmanta/inmanta-core/issues/7357
https://github.com/inmanta/inmanta-core/issues/7388
https://github.com/inmanta/inmanta-core/issues/7448
https://github.com/inmanta/inmanta-core/issues/7026
https://github.com/inmanta/inmanta-core/issues/7019
https://github.com/inmanta/inmanta-core/issues/7026
https://github.com/inmanta/inmanta-core/issues/6226
https://github.com/inmanta/inmanta-core/issues/6955
https://github.com/inmanta/inmanta-core/issues/6993
https://github.com/inmanta/inmanta-core/issues/7024
https://github.com/inmanta/inmanta-core/issues/7065
https://github.com/inmanta/inmanta-core/issues/7324
https://github.com/inmanta/inmanta-core/issues/7418
https://github.com/inmanta/inmanta-core/issues/7416
https://github.com/inmanta/inmanta-core/issues/6096

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Fix bug that causes literal values to be rendered incorrectly in the OpenAPI documentation.
(inmanta/inmanta-lsm#1586)

• Improve ha db setup documentation

13.2.3 Inmanta-license: release 4.0.1 (2024-03-29)

No changelog entries.

13.2.4 Inmanta-lsm: release 4.1.0 (2024-03-29)

New features

• Fix issue with allocation on embedded entities when using v1 update api

Improvements

• Ensure validation compiles make their transfer before the next compile is started (#1484)

• Return the label of the service instance on order items

• Fixed issue that made the deployment progress bar flicker blue and green in the web-console. (#1630)

• Add a list (LSM_ENV_VARS) to inmanta_lsm.const containing all environment variables defined in in-
manta_lsm.const to be able to easily access those. (inmanta/inmanta-core#6732)

• The POST /exporter/export_service_definition endpoint now performs two compiles. One to up-
date the service catalog and one to export the resources using the new version of the service catalog. (in-
manta/lsm#693)

• Improved logging when orders change state

Deprecation notes

• The behavior of the lsm_services_update(/lsm/v1/service_inventory/<service_entity>/<service_id>) is
slightly different on service with strict modifier enforcement enabled

Bug fixes

• Fix issue that prevents an attribute from being deleted from a service if that attribute was used by deleted
instances (#1566)

• Changed the behavior of lsm_services_log_list. It now returns an empty list (status code 200) instead of a
404 error when no logs are found (#1635)

• Fix race condition: Requesting a state transition with the lsm_services_resources_set_state from a
non-exporting state to an exporting state was sometimes causing compiles scheduled earlier to fail. (#1638)

• Fixed bug in the lsm_services_put endpoint where a 500 response code is returned if a re-
lation to an embedded entity has upper arity 1, doesn’t define any key_attributes and the
ignore_read_only_attributes flag of the API endpoint was set to True.

13.2. Release 7.1.0 (2024-03-29) 443

https://github.com/inmanta/inmanta-lsm/issues/1586
https://github.com/inmanta/inmanta-lsm/issues/1484
https://github.com/inmanta/inmanta-lsm/issues/1630
https://github.com/inmanta/inmanta-core/issues/6732
https://github.com/inmanta/lsm/issues/693
https://github.com/inmanta/lsm/issues/693
https://github.com/inmanta/inmanta-lsm/issues/1566
https://github.com/inmanta/inmanta-lsm/issues/1635
https://github.com/inmanta/inmanta-lsm/issues/1638

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.2.5 Inmanta-support: release 3.3.0 (2024-03-29)

Improvements

• Add support for bytea type when restoring json database dump. (#619)

Bug fixes

• Fix bug where a corrupted .sql database dump is included in the support archive.

• 1) Fixed bug where values for non-timestamp columns were incorrectly parsed as datetime objects by the
import-dump tool.

2) Fixed bug that caused the database dump collector to create json-based database dumps that violated foreign
key constraints at restore time.

Other notes

• Require latest version of inmanta-core

13.2.6 Inmanta-ui: release 5.1.1 (2024-03-29)

No changelog entries.

13.2.7 Web-console: release 1.16.0 (2024-03-29)

New features

• Add User Management view when user is logged in through database authentication (#4738)

• Discovered Resources page has been added. (#5395)

• New pages have been added to display the orders and their details. (#5438)

• Smart Composer is now general available (#5470)

• Add database based login form (#5558)

Improvements

• Add filtering by resource type on the Compliance and Compare pages. (#4555)

• Prevent the user from creating a project name that could be an empty value. (#5373)

• Corrected the disabled highlight for disabled delete button in the Service Inventory (#5400)

• Improve Instance Composer code readability and remove duplicated code (#5443)

• Add description to the order api request and extract the call from the Canvas component (#5469)

• Add Tooltips to the icon buttons in the Instance composer (#5478)

• Add default behavior to zoom to fit on initial load of the instance in the Smart Composer (#5506)

• Adjusted the color of the compile details to match patternfly scheme. Added default empty page for facts.
(#5511)

• Add support for suggestions in the forms (#5531)

• Added support to display attribute annotations in tabs in the Service Inventory (#5532)

• Update the add instance button to be displayed as a toggle when the Composer feature is enabled. (#5554)

444 Chapter 13. Changelog

https://github.com/inmanta/inmanta-support/issues/619
https://github.com/inmanta/web-console/issues/4738
https://github.com/inmanta/web-console/issues/5395
https://github.com/inmanta/web-console/issues/5438
https://github.com/inmanta/web-console/issues/5470
https://github.com/inmanta/web-console/issues/5558
https://github.com/inmanta/web-console/issues/4555
https://github.com/inmanta/web-console/issues/5373
https://github.com/inmanta/web-console/issues/5400
https://github.com/inmanta/web-console/issues/5443
https://github.com/inmanta/web-console/issues/5469
https://github.com/inmanta/web-console/issues/5478
https://github.com/inmanta/web-console/issues/5506
https://github.com/inmanta/web-console/issues/5511
https://github.com/inmanta/web-console/issues/5531
https://github.com/inmanta/web-console/issues/5532
https://github.com/inmanta/web-console/issues/5554

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Update Notification Drawer to handle notifications without uri (#5593)

• Feature Flag V2, enable specific parts of the application based on licencing (#5619)

• Add improvements to smart composer: Highlight of loose components, Hide/Show connection label, com-
poser is available only from root services

• Upgrade Yarn to V4.

Bug fixes

• Enable adding new nested entity that are already part of a nested entity when the form is in edit-mode (#5375)

• Prevent displaying invalid dates in the Order Details View. (#5512)

• Fix display name in the form for inter-service relationship, and adjust filtering when clicking on a relation
link in the attribute table. (#5561)

• Fix issue with misleading visual state of Diagnose button and misplaced ‘back’ button for terminated in-
stances

Other notes

• The repo requires node 18+ to be installed

13.3 Release 7.0.3 (2024-02-09)

13.3.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.3.2 Inmanta-core: release 11.0.2 (2024-02-09)

New features

• Prevent double processing of events in case of stale events (#7066)

Known Issues

• Handlers that process events should always indicate when they processed events(via ctx.set_updated) (#7066)

13.3.3 inmanta-license: release 4.0.0

This component has had no new releases since the last product version.

13.3. Release 7.0.3 (2024-02-09) 445

https://github.com/inmanta/web-console/issues/5593
https://github.com/inmanta/web-console/issues/5619
https://github.com/inmanta/web-console/issues/5375
https://github.com/inmanta/web-console/issues/5512
https://github.com/inmanta/web-console/issues/5561
https://github.com/inmanta/inmanta-core/issues/7066
https://github.com/inmanta/inmanta-core/issues/7066

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.3.4 inmanta-lsm: release 4.0.0

This component has had no new releases since the last product version.

13.3.5 inmanta-support: release 3.2.1

This component has had no new releases since the last product version.

13.3.6 inmanta-ui: release 5.1.0

This component has had no new releases since the last product version.

13.3.7 Web-console: release 1.15.3 (2024-02-09)

Improvements

• Collapse Difference Viewer Component by default to improve loading performance - iso6 (#5439)

13.4 Release 7.0.2 (2024-01-17)

13.4.1 General changes

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

Bug fixes

• Fix bug where the server restarts while the server venv is in an inconsistent state when the server is upgraded.

13.4.2 inmanta-core: release 11.0.1

This component has had no new releases since the last product version.

13.4.3 inmanta-license: release 4.0.0

This component has had no new releases since the last product version.

13.4.4 inmanta-lsm: release 4.0.0

This component has had no new releases since the last product version.

446 Chapter 13. Changelog

https://github.com/inmanta/web-console/issues/5439

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.4.5 inmanta-support: release 3.2.1

This component has had no new releases since the last product version.

13.4.6 inmanta-ui: release 5.1.0

This component has had no new releases since the last product version.

13.4.7 Web-console: release 1.15.2 (2024-01-17)

Bug fixes

• Fix resolving freezing of compliance check page

13.5 Release 7.0.1 (2024-01-04)

13.5.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.5.2 Inmanta-core: release 11.0.1 (2024-01-04)

Bug fixes

• Fix anchormap entrypoint (language server) for imports with rename

13.5.3 inmanta-license: release 4.0.0

This component has had no new releases since the last product version.

13.5.4 inmanta-lsm: release 4.0.0

This component has had no new releases since the last product version.

13.5.5 inmanta-support: release 3.2.1

This component has had no new releases since the last product version.

13.5.6 inmanta-ui: release 5.1.0

This component has had no new releases since the last product version.

13.5. Release 7.0.1 (2024-01-04) 447

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.5.7 Web-console: release 1.15.1 (2024-01-04)

Bug fixes

• Fix for pagination in Service Inventory + tests

13.6 Release 7.0.0 (2023-12-11)

13.6.1 General changes

Upgrade notes

• The RPMs now install a Python 3.11 environment. (inmanta/inmanta-core#6024)

• Ensure the database is backed up before executing an upgrade.

Deprecation notes

• dropped modules platform and web.

13.6.2 Inmanta-core: release 11.0.0 (2023-12-11)

New features

• A project-wide pip configuration can be set through the project.yml pip section. (#6518)

• Introduced the dict_path module in the inmanta.util package. This module was previously located in the
inmanta-lsm package. Users transitioning from inmanta-lsm should now use inmanta.util.dict_path for rel-
evant functionality. (inmanta/inmanta-core#6631)

• Migrated to pydantic v2, which offers more accurate type validation and increased performance

Improvements

• Improve the output of the inmanta compile and inmanta export commands, by using the logger name
compiler, exporter or <name-inmanta-module> for log records produced by respectively the compiler,
the exporter or an Inmanta module. (inmanta/inmanta-core#6489)

• Input validation of the put_version api endpoint is now more strict (#6517)

• Rate limit resolution of cross agent dependencies and make notification asynchronous

• Stricter type checking of values returned by plugins.

• Set the PIP_PRE, PIP_INDEX_URL and PIP_EXTRA_INDEX_URL pip env vars according to the project.yml
pip config when activating an inmanta environment with the inmanta-workon command. (#6721)

448 Chapter 13. Changelog

https://github.com/inmanta/inmanta-core/issues/6024
https://github.com/inmanta/inmanta-core/issues/6518
https://github.com/inmanta/inmanta-core/issues/6631
https://github.com/inmanta/inmanta-core/issues/6489
https://github.com/inmanta/inmanta-core/issues/6517
https://github.com/inmanta/inmanta-core/issues/6721

Inmanta Documentation, Release 7.1.1.dev20240504011805

Upgrade notes

• All projects now require a pip config in the project.yml: please refer to the migration guide to move to a
project-wide pip configuration. (#6518)

• Stricter type checking of values returned by plugins. Specifying None as returned type requires None to be
returned.

• For successful upgrading to this version, it is required to have ISO version 5.4.2 or higher already installed.
(#6726)

• stricturl is no longer supported. This has been dropped by pydantic

• Set the server.tz_aware_timestamps config option default value to true.

Deprecation notes

• Remove the autostart_agent_interval and autostart_splay environment settings (#6084)

• Removed the ‘inmanta module install’ command.. As an alternative to the now-removed ‘inmanta module
install’ command, users should follow the updated procedure for module installation: The new method in-
volves using the ‘inmanta module build’ command followed by ‘pip install ./dist/’ to build a module from
source and install the distribution package, respectively. Alternatively, use ‘pip install -e .’ to install the
module in editable mode (#6717)

Bug fixes

• Make sure openapi UI works when ssl is enabled (#5680)

• Fix a bug where numbers where cast to int instead of float

13.6.3 Inmanta-core: release 10.0.0 (2023-10-13)

New features

• Add handler (DiscoveryHandler) to discover unmanaged resources. (#6025)

Improvements

• Improve agents responsiveness for agents with a large number of connections and introduce a parameter to
set the max-clients limit on an agent. (#241)

• Add top-level handler abstract base class HandlerAPI and made resource handlers generic in their resource
type. (#6025)

• Files handled by the file API are now stored in the database instead of on the file system of the Inmanta
server. (inmanta/inmanta-core#6441)

13.6. Release 7.0.0 (2023-12-11) 449

https://github.com/inmanta/inmanta-core/issues/6518
https://github.com/inmanta/inmanta-core/issues/6726
https://github.com/inmanta/inmanta-core/issues/6084
https://github.com/inmanta/inmanta-core/issues/6717
https://github.com/inmanta/inmanta-core/issues/5680
https://github.com/inmanta/inmanta-core/issues/6025
https://github.com/inmanta/inmanta-core/issues/241
https://github.com/inmanta/inmanta-core/issues/6025
https://github.com/inmanta/inmanta-core/issues/6441

Inmanta Documentation, Release 7.1.1.dev20240504011805

Upgrade notes

• When implementing a generic handler (extending from Generic), the Generic class must be mentioned last
in the list of base classes of that handler. (#6025)

• A full recompile is required after upgrading the Inmanta server to re-publish all required files to the file API.
After the upgrade, the Inmanta server will no longer have access to files uploaded using the old version of
the Inmanta server. (inmanta/inmanta-core#6441)

Deprecation notes

• The compiler no longer explicitly injects the implied == true for plugin calls in typedef constraints
(inmanta/inmanta-core#5787)

• The CRUDHandlerGeneric is now deprecated in favor of the CRUDHandler class (#6025)

• The server.delete-currupt-files config option was removed. (inmanta/inmanta-core#6441)

• Removed support for the legacy relationship syntax from the compiler. (inmanta/inmanta-core#5265)

13.6.4 Inmanta-core: release 9.3.0 (2023-07-04)

Upgrade notes

• The purge_on_delete feature and the POST /decommission/<id> endpoints have been removed. (#5677)

Deprecation notes

• For consistency, V1 modules’ dependencies will now be installed using the configured pip index url (or v2
package repo) if it is set (#5993)

• The default agent backoff time has been changed from five to three. This backoff is configurable using the
config.agent-get-resource-backoff config option.

• Drop deprecated log_msg method in the handler.

13.6.5 Inmanta-license: release 4.0.0 (2023-12-11)

Bug fixes

• Fixed issue where the status endpoint shows that a timeout happened while checking the status of the license
component (inmanta/inmanta-core#5933)

13.6.6 Inmanta-lsm: release 4.0.0 (2023-12-11)

New features

• Added support to create service orders. An order allows a user to create, update or delete a list of service
instances in a batch. (inmanta/inmanta-lsm#1279)

450 Chapter 13. Changelog

https://github.com/inmanta/inmanta-core/issues/6025
https://github.com/inmanta/inmanta-core/issues/6441
https://github.com/inmanta/inmanta-core/issues/5787
https://github.com/inmanta/inmanta-core/issues/6025
https://github.com/inmanta/inmanta-core/issues/6441
https://github.com/inmanta/inmanta-core/issues/5265
https://github.com/inmanta/inmanta-core/issues/5677
https://github.com/inmanta/inmanta-core/issues/5993
https://github.com/inmanta/inmanta-core/issues/5933
https://github.com/inmanta/inmanta-lsm/issues/1279

Inmanta Documentation, Release 7.1.1.dev20240504011805

Upgrade notes

• For successful upgrading to this version, it is required to have ISO version 5.4.2 or higher already installed.
(inmanta/inmanta-core#6726)

13.6.7 inmanta-support: release 3.2.1

This component has had no new releases since the last product version.

13.6.8 Inmanta-ui: release 5.1.0 (2023-12-11)

No changelog entries.

13.6.9 Inmanta-ui: release 5.0.0 (2023-10-13)

No changelog entries.

13.6.10 web-console: release 1.15.0

This component has had no new releases since the last product version.

13.7 Release 6.5.0 (2023-12-11)

13.7.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.7.2 Inmanta-core: release 8.7.0 (2023-12-11)

New features

• Add ‘exclude_change’ argument to ‘get_resource_events’ to be able to exclude some types of changes from
the results. (#6375)

• Add server config option server.tz_aware_timestamps to make the server return time-zone aware timestamps.
(#6428)

• Introduce the ‘float’ type for floating point numbers (inmanta/inmanta-core#6526)

• Introduced the dict_path module in the inmanta.util package. This module was previously located in the
inmanta-lsm package. Users transitioning from inmanta-lsm should now use inmanta.util.dict_path for rel-
evant functionality. (inmanta/inmanta-core#6631)

• Support *args and **kwargs arguments in plugin signatures. (inmanta/inmanta-core#6691)

13.7. Release 6.5.0 (2023-12-11) 451

https://github.com/inmanta/inmanta-core/issues/6726
https://github.com/inmanta/inmanta-core/issues/6375
https://github.com/inmanta/inmanta-core/issues/6428
https://github.com/inmanta/inmanta-core/issues/6526
https://github.com/inmanta/inmanta-core/issues/6631
https://github.com/inmanta/inmanta-core/issues/6691

Inmanta Documentation, Release 7.1.1.dev20240504011805

Improvements

• Fixed reference to OpenAPI docs to work from any page

• Show exporter timings in compiler output (#6387)

• Improve the output of the inmanta compile and inmanta export commands, by using the logger name
compiler, exporter or <name-inmanta-module> for log records produced by respectively the compiler,
the exporter or an Inmanta module. (inmanta/inmanta-core#6489)

• Rate limit resolution of cross agent dependencies and make notification asynchronous

• Raise an explicit error when attempting to create a virtual env with invalid characters in its path.

• Added documentation on how to perform an upgrade in-place. (inmanta/inmanta-service-orchestrator#393)

Deprecation notes

• The net module has been deprecated. (inmanta/net#209)

• The ip module has been deprecated. All its functionality is now available in the std module. (in-
manta/ip#253)

• Deprecate the ‘number’ type. Use the ‘int’ or ‘float’ type instead (inmanta/inmanta-core#6526)

Bug fixes

• Make sure openapi UI works when ssl is enabled (#5680)

• Fix bug in f-strings not working when whitespaces surround the variable. (#6629)

• Fix the handling of numeric keys in dict paths: floating-point numbers and their integer equivalents are
treated as the same key. (#6731)

• Fix a bug where numbers where cast to int instead of float

• Fix jwt config error message to use the correct attribute and provide more context

• Compiler: fixed bugs in some operators when “Unknown” values are passed: ==, !=, not, in and is
defined now properly propagate unknowns. (#6033)

• Compiler: add support for “Unknown” values in operators (#6033)

• No longer update the increment when the agent pulls (this is now done when a new version is released), to
prevent race with #6486.

• Fixed compiler bug where list comprehensions result in a ListModifiedAfterFreeze exception when the value
expression is a constructor

Other notes

• Compiler: for consistency reasons, the for loop body will no longer be executed for “Unknown” values

452 Chapter 13. Changelog

https://github.com/inmanta/inmanta-core/issues/6387
https://github.com/inmanta/inmanta-core/issues/6489
https://github.com/inmanta/inmanta-service-orchestrator/issues/393
https://github.com/inmanta/net/issues/209
https://github.com/inmanta/ip/issues/253
https://github.com/inmanta/ip/issues/253
https://github.com/inmanta/inmanta-core/issues/6526
https://github.com/inmanta/inmanta-core/issues/5680
https://github.com/inmanta/inmanta-core/issues/6629
https://github.com/inmanta/inmanta-core/issues/6731
https://github.com/inmanta/inmanta-core/issues/6033
https://github.com/inmanta/inmanta-core/issues/6033

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.7.3 Inmanta-license: release 3.1.2 (2023-12-11)

Bug fixes

• Fix bug that causes the Inmanta server to fail at startup when the lsm extension is installed but disabled in
the configuration file, while the license extension is installed and enabled. (#549)

13.7.4 Inmanta-lsm: release 3.5.0 (2023-12-11)

Improvements

• Allow updates on attribute types from number to int or float as long as all instances comply to the new
type. (#1435)

Deprecation notes

• the dict_path module has been moved to the inmanta.util package of the inmanta-core package. The
old inmanta_lsm.dict_path is still available for backward compatibility. It will be removed in a future
major release. Users are advised to import the dict_path module from the inmanta.util.dict_path
(inmanta/inmanta-core#6631)

• The experimental /order endpoints were removed. The order functionality will be available from ISO 7.0 as
a stable feature.

13.7.5 Inmanta-support: release 3.2.1 (2023-12-11)

Improvements

• Improved error message for asyncpg failure by including cause.

13.7.6 Inmanta-ui: release 4.1.0 (2023-12-11)

Deprecation notes

• Removed the web-ui.console_json_parser option because it has become redundant. (inmanta/inmanta-
core#6641)

13.7.7 Web-console: release 1.15.0 (2023-12-11)

New features

• The Service inventory now supports the functionality to duplicate an instance. (#5166)

13.7. Release 6.5.0 (2023-12-11) 453

https://github.com/inmanta/inmanta-license/issues/549
https://github.com/inmanta/inmanta-lsm/issues/1435
https://github.com/inmanta/inmanta-core/issues/6631
https://github.com/inmanta/inmanta-core/issues/6641
https://github.com/inmanta/inmanta-core/issues/6641
https://github.com/inmanta/web-console/issues/5166

Inmanta Documentation, Release 7.1.1.dev20240504011805

Improvements

• Add links to API documentation, both for LSM API and the General API. The update Service Catalog
message is now also clearer (#4419)

• Improve behaviour of the agents table when the environment is halted (#4555)

• Enhancement bringing back functionality to close Sidebar when clicked outside of it on mobile, Introduce
said functionality to Notification Drawer - Desktop & mobile (#4751)

• Redirect the user to the Desired State page on Environment Creation on OSS, instead of Compile Reports
page. (#4835)

• Highlight table rows when hovering (#5038)

• Add the attribute modifiers to the Service Details table. (#5053)

• Timestamps in the dashboard are now rounded to full hours (#5081)

• Introduce functionality that blocks UI for the process of halting environment (#5136)

• Increase default page size to 100 for Resource logs in the Resource details page. (#5159)

• The user actions present in the expanded rows in the Service Inventory, displaying the Service Details have
been moved to a toggle-menu at the end of each row. (#5166)

• Update support archive link for v2 (#5218)

• Improve overal UI of the inventory table, and remove the Attribute Summary Column (#5280)

Bug fixes

• Repair the drilldown height issue for the Actions dropdown. (#5280)

13.8 Release 6.4.0 (2023-10-13)

13.8.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.8.2 Inmanta-core: release 8.6.0 (2023-10-13)

New features

• the release_version, /version/<id> api endpoint will now return a 409 when called twice on the same
version (#6349)

• Allow cron expressions in the agent_repair_interval so that we can specify a time-interval where the repair
runs happen.

454 Chapter 13. Changelog

https://github.com/inmanta/web-console/issues/4419
https://github.com/inmanta/web-console/issues/4555
https://github.com/inmanta/web-console/issues/4751
https://github.com/inmanta/web-console/issues/4835
https://github.com/inmanta/web-console/issues/5038
https://github.com/inmanta/web-console/issues/5053
https://github.com/inmanta/web-console/issues/5081
https://github.com/inmanta/web-console/issues/5136
https://github.com/inmanta/web-console/issues/5159
https://github.com/inmanta/web-console/issues/5166
https://github.com/inmanta/web-console/issues/5218
https://github.com/inmanta/web-console/issues/5280
https://github.com/inmanta/web-console/issues/5280
https://github.com/inmanta/inmanta-core/issues/6349

Inmanta Documentation, Release 7.1.1.dev20240504011805

Improvements

• add a warning to the docs about the risk of using multiple python package indexes

• Add the “not in” operator. (#6211)

• Split deletes of projects, environments and configurationmodels into small transactions to prevent deadlocks.
(inmanta/inmanta-core#6427)

• Ensure that resources that will receive events are in the increment.. Any deployment with a status other than
nochange is considered to be an event. (#6477)

• Add support for cron expressions for autostart_agent_deploy_interval and autostart_agent_repair_interval
environment settings. (#6549)

• Ensure child processes are awaited by the deploy command

• Prefix the error messages produced by the inmanta module release command with Error: to make
clear it’s an error message.

• Improve the output of the inmanta compile and inmanta export commands to make it more clear to the
end-user when the command failed. (inmanta/inmanta-core#5258)

• Increase the default value of INMANTA_MAX_ITERATIONS to 100000

• Moved the validate_type logic from the std module to inmanta-core. (inmanta/inmanta-core#6540)

• Reduce log level of compiler scheduler from debug to trace, to reduce compiler log output

• Added support to the GET /metrics endpoint to round the returned timestamps to a full hour.
(inmanta/inmanta-core#6051)

• Add clarifying docstring to the IgnoreResourceException.

Upgrade notes

• the release_version, /version/<id> api endpoint will now return a 409 when called twice on the same
version (#6349)

Bug fixes

• Ensure get_resource_events and resource_did_dependency_change work across incremental compiles
(#5493)

• Prevent repairs from restarting indefinitely when a short deploy interval is set (#6202)

• Ensure releasing a new version can not hide failures in ongoing deployments for older versions (#6475)

• Increase the timeout on the status method of a server slice 1s to prevent undesired timeouts on the status page
of the web-console. (inmanta/inmanta-core#6599)

• Removed duplicate fact-expire from default config file

• Fixed broken link to Pydantic docs in documentation

• Don’t set a resource to the deploying state if that resource is undeployable.

• Fix bug where the id.attribute_value field of resources emitted by the exporter have a non-string type,
when the type in the model is not a string.

• Improve the performance of the API endpoints that clear or delete an environment. (inmanta/inmanta-
core#6373)

13.8. Release 6.4.0 (2023-10-13) 455

https://github.com/inmanta/inmanta-core/issues/6211
https://github.com/inmanta/inmanta-core/issues/6427
https://github.com/inmanta/inmanta-core/issues/6477
https://github.com/inmanta/inmanta-core/issues/6549
https://github.com/inmanta/inmanta-core/issues/5258
https://github.com/inmanta/inmanta-core/issues/6540
https://github.com/inmanta/inmanta-core/issues/6051
https://github.com/inmanta/inmanta-core/issues/6349
https://github.com/inmanta/inmanta-core/issues/5493
https://github.com/inmanta/inmanta-core/issues/6202
https://github.com/inmanta/inmanta-core/issues/6475
https://github.com/inmanta/inmanta-core/issues/6599
https://github.com/inmanta/inmanta-core/issues/6373
https://github.com/inmanta/inmanta-core/issues/6373

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.8.3 Inmanta-license: release 3.1.1 (2023-10-13)

Bug fixes

• Fix bug where an invocation of the inmanta --version command shows the warning mes-
sage UserWarning: Deleting scheduler 'license' that has not been stopped properly
(inmanta/inmanta-license#520)

13.8.4 Inmanta-lsm: release 3.4.0 (2023-10-13)

New features

• Added support to attach annotations to entities and attributes/relations. (inmanta/inmanta-lsm#1297)

Improvements

• Add support to the POST /service_inventory/<service_entity> endpoint to set the configuration
options for a new service instance. (inmanta/inmanta-lsm#1209)

• Add include_referenced_by boolean parameter to get the inverse inter-service relationships of an in-
stance to the /lsm/v1/service_inventory GET endpoint. (#1353)

Upgrade notes

• The LSM extension now uses the same db and connection pool as inmanta-core. If your current server
uses a different database for lsm and for core make sure all the data has been migrated to the core-db
(inmanta/inmanta-lsm#1316)

Bug fixes

• Fixed bug in service catalog schema update affecting some multi-arity embedded entities

13.8.5 Inmanta-support: release 3.2.0 (2023-10-13)

New features

• Added the /api/v2/support endpoint for easier download of the support archive (#17)

Other notes

• The support archive no longer contains a zip with the logs, but a folder with the logs (#17)

13.8.6 Inmanta-ui: release 4.0.4 (2023-10-13)

No changelog entries.

456 Chapter 13. Changelog

https://github.com/inmanta/inmanta-license/issues/520
https://github.com/inmanta/inmanta-lsm/issues/1297
https://github.com/inmanta/inmanta-lsm/issues/1209
https://github.com/inmanta/inmanta-lsm/issues/1353
https://github.com/inmanta/inmanta-lsm/issues/1316
https://github.com/inmanta/inmanta-support/issues/17
https://github.com/inmanta/inmanta-support/issues/17

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.8.7 Web-console: release 1.14.0 (2023-10-13)

Improvements

• A banner will now be shown if your license is about to expire, or if it already has expired. (#4708)

• Add e2e test for keycloak authentication (#4868)

• Updated the default filtering on Compliance check page and Compare page to exclude the unmodified files.
(#4681)

• Improve the error messaging when the server is down and not reachable. (#4686)

• Improve the user-feedback when pressing either the repair or deploy button on the ressource page. (#4349)

• Update url construction based on new changes in API to redirect to ressource page. (#4907)

• Refresh automatically the environment overview page. (#4840)

• The select for compare functionality on the Desired State page has been updated. (#4391)

• Implement the useFeatures hook to fetch the config.js file from the server and extract the features.

Bug fixes

• Improve the behavior on Firefox when hovering over code-block icons. (#4916)

• Repair timepicker.

Other notes

• Upgrade the UI library to Patternfly V5. (#5076)

13.9 Release 6.3.1 (2023-08-02)

13.9.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.9.2 inmanta-core: release 8.5.0

This component has had no new releases since the last product version.

13.9.3 inmanta-license: release 3.1.0

This component has had no new releases since the last product version.

13.9. Release 6.3.1 (2023-08-02) 457

https://github.com/inmanta/web-console/issues/4708
https://github.com/inmanta/web-console/issues/4868
https://github.com/inmanta/web-console/issues/4681
https://github.com/inmanta/web-console/issues/4686
https://github.com/inmanta/web-console/issues/4349
https://github.com/inmanta/web-console/issues/4907
https://github.com/inmanta/web-console/issues/4840
https://github.com/inmanta/web-console/issues/4391
https://github.com/inmanta/web-console/issues/4916
https://github.com/inmanta/web-console/issues/5076

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.9.4 Inmanta-lsm: release 3.3.1 (2023-08-02)

Bug fixes

• Fixed bug where strict_modifier_enforcement could not be toggled through the service entity update endpoint
(Issue #1367)

13.9.5 inmanta-support: release 3.1.2

This component has had no new releases since the last product version.

13.9.6 inmanta-ui: release 4.0.3

This component has had no new releases since the last product version.

13.9.7 web-console: release 1.13.0

This component has had no new releases since the last product version.

13.10 Release 6.3.0 (2023-07-04)

13.10.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.10.2 Inmanta-core: release 8.5.0 (2023-07-04)

New features

• Added support for list comprehensions to the language, see the documentation for more details (Issue #5433)

• Added support for keyword-only arguments in plugins (Issue inmanta/inmanta-core#5706)

• Expose the logging setup through the stable api (Issue #5815)

Improvements

• Add support to the compilerservice to request a compile that is part of a database transaction. (Issue
inmanta/inmanta-lsm#1249)

• Add documentation on how to upgrade an orchestrator by migrating from one running orchestrator to another.
(Issue inmanta/inmanta-service-orchestrator#391)

• The CRUDHandlerGeneric class was added. This class contains the same implementation as the CRUDHan-
dler class, but is generic with respect to the specific PurgeableResource it acts on. (Issue inmanta/inmanta-
core#5555)

• Added generic logging interface for the handler and a compatible implementation that uses the Python loggers
for testing purposes. (Issue #5708)

• Add the “-v” / “–verbose” option to Inmanta commands and sub-commands to set the verbosity of the console
output. (Issue inmanta/inmanta-core#5755)

• Add python-like f-strings. (Issue #5757)

• The ‘inmanta module release’ command now outputs the release tag (Issue #5816)

458 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Improve error reporting when attempting to move a resource to another resource set in a partial compile.
(Issue #5884)

• Fix bug that makes the handler fail with the exception PostgresSyntaxError: trailing junk
after parameter at or near "$3A" when running against PostgreSQL 15. (Issue inmanta/inmanta-
core#5898)

• The server now keeps track of database pool exhaustion events and will report daily how many occured, if
some exhaustion was noticed. (Issue #5944)

• Add support to expose the same method via the API using different URLs. (Issue inmanta/inmanta-
lsm#1274)

• The hardcoded agent backoff time is now configurable using the config.agent_get_resource_backoff
config option.

• Improve the documentation of the api/v1/resource/<id> endpoint and return a clear error message if
the given id is not a valid resource version id.

• Improve the performance of the GET /api/v2/resource/<resource_id>/logs endpoint. (Issue
inmanta/inmanta-core#6147)

• The server now logs the enabled extensions when it starts.

• Only print exception trace on cache failure when log level is at least DEBUG (-vvv)

• Ensure status endpoint returns after 100ms

• Update the documentation about setting up authentication, to use Keycloak version 20.0

• Mention in the server installation documentation which extensions need to be enabled.

Deprecation notes

• In a future release it will not be possible anymore to use a resource with an id_attribute called id (Issue
inmanta/pytest-inmanta#367)

• The CRUDHandler class is deprecated in favor of the CRUDHandlerGeneric class. In a future major release
CRUDHandlerGeneric will be renamed to CRUDHandler. As such, it’s recommended to import CRUDHan-
dlerGeneric using the alias CRUDHandler. (Issue inmanta/inmanta-core#5555)

Bug fixes

• Show a clear error message when the inmanta module freeze command is executed on a v2 module.
This is not supported. (Issue #5631)

• Don’t run cleanup jobs on halted environments (Issue #5842)

• Make sure resource.version == resource.id.version (Issue #5931)

• The environment_delete endpoint now correctly removes the environment directory on the server. (Issue
#5974)

• Fix bug in inmanta module update when requirements.txt contains additional constraints

• Fixed compiler bug that could lead to performance issues for deeply nested boolean operators

• Fix bug where the cleanup job, that removes old resource actions, ignores the environment scope
of the resource_action_logs_retention setting. This way the shortest interval used for the
resource_action_logs_retention environment setting across all environments was applied on all en-
vironments.

• Fix issue where the documentation of the inmanta module release command is incorrectly formatted
on the documentation pages.

• Make sure that the log line, that reports the time required for an agent to fetch its resources from the server,
is reported as a floating point number instead of an integer.

13.10. Release 6.3.0 (2023-07-04) 459

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Fix race condition that can cause an environment setting to be reset to its default value.

• Fix bug that causes the /serverstatus endpoint to report an incorrect length of the compiler queue.

• The server no longer incorrectly logs a warning about server_rest_transport.token missing from the config

13.10.3 Inmanta-license: release 3.1.0 (2023-07-04)

Bug fixes

• Fixed issue where the status endpoint shows that a timeout happened while checking the status of the license
component (Issue inmanta/inmanta-core#5933)

13.10.4 Inmanta-lsm: release 3.3.0 (2023-07-04)

New features

• Expose ownership of service entities via the catalogue api (Issue #1288)

Improvements

• Add support to get the inverse inter-service relationships of an instance. (Issue #1271)

• Embedded entities in a [0:1] or a [1] relation no longer require an index when strict_modifier_enforcement
is enabled. (Issue inmanta/lsm#592)

Deprecation notes

• Defining an entity binding with the strict_modifier_enforcement feature flag set to false is being deprecated.
Please use the latest version of entity bindings: ServiceEntityBindingV2. (Issue inmanta/lsm#585)

Bug fixes

• Fixed race condition between the lifecycle state transfer and the associated compile request of a service
instance. This bug can cause a service instance to get stuck in a certain state of its lifecycle. If you hit this
bug, the issue can be resolved by executing a recompile. (Issue inmanta/inmanta-lsm#1249)

13.10.5 Inmanta-support: release 3.1.2 (2023-07-04)

No changelog entries.

13.10.6 Inmanta-ui: release 4.0.3 (2023-07-04)

Improvements

• Improve the logging regarding the web-console configuration options.

460 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.10.7 Web-console: release 1.13.0 (2023-07-04)

Improvements

• From now on Recompile buttons aren’t disabled after use, which makes queueing recompilations possible.

• Add support for Attribute-Type migration in the attribute table. (Issue #4534)

• Add support to run the e2e tests against the OSS Orchestrator releases. (Issue #4660)

• UI-fix for the header when authentication is enabled. (Issue #4865)

• Add support for textarea in forms (Issue #4910)

Bug fixes

• Fixed issues with missing default values in string list input in Create Instance Form and with embedded entity
inputs not being disabled in the Edit Instance Form (Issue #4737)

• Page redirection has been fixed when the authentication token expires. (Issue #4885)

• Bugfix for nested embedded entities being wrongly displayed in the attribute tree-table. (Issue #4915)

13.11 Release 6.2.0 (2023-04-11)

13.11.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.11.2 Inmanta-core: release 8.3.0 (2023-04-11)

New features

• Added namespace inference to nested constructors (Issue #4028)

• Add the user management service (Issue #5310)

• change agent_install_dependency_modules from experimental feature to expert feature (Issue #5693)

• adds docstrings to the anchormap so that the vscode extension can display them on hover (Issue
inmanta/vscode-inmanta#933)

Improvements

• Improve the performance of the put_partial endpoint (Issue inmanta/inmanta-core#4743)

• Expanded project’s package repo documentation with a note about the risk of using multiple package repos
and dependency confusion attacks.

• Old agents in the agent table are now cleaned up from the database. (Issue #5349)

• Improved compiler reasoning on resolving is defined for empty lists

• Improve line numbering when reporting non-existing attributes on constructors (Issue #5497)

• Produce no warning about download path if it is not used (Issue #5507)

• Added diagrams to the documentation that explain the limitations regarding inter-resource set dependencies
when partial compiles are enabled. (Issue inmanta/inmanta-core#5679)

• Add support for four digit versioning for inmanta module release.

13.11. Release 6.2.0 (2023-04-11) 461

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Raise namespace lookup exception earlier (normalization phase) for improved diagnostics

• Added -a option to inmanta release command to commit all pending changes.

Upgrade notes

• It’s required to run a full compile on any environment that uses partial compiles after upgrading the server.
(Issue inmanta/inmanta-core#4743)

• Changed the default value of environment_agent_trigger_method environment setting to
push_incremental_deploy

• The inmanta release command will no longer do git commit -a by default, add the -a option to get
the old behavior

Bug fixes

• The following API endpoints now return their results in a consistent, meaningful order: methods.list_settings,
methods_v2.environment_settings_list, methods.list_params, methods_v2.get_facts, methods.list_projects,
methods_v2.project_list, methods.dryrun_list.

• Fix race condition that causes the deployment of a resource to fail with the error message: ‘Fetching resource
events only makes sense when the resource is currently deploying’. This issue happens in rare situations and
the orchestrator will automatically recover from it during the next deployment.

• Fix issue that may cause the first export for an environment to fail when files with identical content are
present.

• Autostarted agents will now log in debug mode (Issue #5562)

• Fix bug that incorrectly calculates the timestamp indicating which facts have to be renewed.

• Fix race condition in incremental deploy calculation where a newly released version uses an increment that
is calculated from an old model version.

• Fix bug where the ‘done’ field of a model version returned by the GET /version or the GET /version/
<id> API endpoint decrements when a repair run of an agent changes the state of the resource to deploying
again.

13.11.3 Inmanta-license: release 3.0.2 (2023-04-11)

No changelog entries.

13.11.4 Inmanta-lsm: release 3.2.0 (2023-04-11)

New features

• Added support to edit attributes in expert mode using the /service_inventory/<service_entity>/
<service_id>/expert endpoint. (Issue #1107)

• Added support to delete an instance in expert mode using the /service_inventory/<service_entity>/
<service_id>/expert endpoint. (Issue inmanta/inmanta-core#5123)

462 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Improvements

• Show all possible values for an enum parameter in the OpenAPI documentation (Issue #1169)

• Added api endpoint to get a service instance by ID: /service_inventory/?
service_id=<service_instance> (Issue inmanta/lsm#571)

Bug fixes

• Fix bug that makes the /service_catalog_docs endpoint crash on enum values. (Issue #1169)

13.11.5 Inmanta-support: release 3.1.1 (2023-04-11)

Bug fixes

• Fix bug that causes a timeout error on the inmanta-support-tool collect-from-server command
after 20 seconds. (Issue #501)

13.11.6 Inmanta-ui: release 4.0.2 (2023-04-11)

No changelog entries.

13.11.7 Web-console: release 1.12.3 (2023-04-11)

New features

• Add support to force instance state, destroy instance or change intance attributes through lsm expert mode
(Issue #4682)

Improvements

• Move sidebars status icon into Header (Issue #4342)

• Adding automated e2e testing for the Resources (Issue #4367)

• Improve appeareance of Environment selector and move it to the right corner of the page (Issue #4531)

• Add new icons for new event types in Service Inventory (Issue #4609)

• Improve support for attribute lists (Issue #4556)

Bug fixes

• Resolve the rounding issue on dashboard Service Counter. (Issue #4602)

• refresh catalog list after deleting Service (Issue #4608)

• Show no value instead of null when there is no description in embedded/relation entity (Issue #4610)

• Fix tooltip aligment and resolve flickering on environment control button (Issue #4612)

• Allow to add/delete optional nested entities (Issue #4615)

• Fix service details relation links to send user to specified service page (Issue #4617)

• Fix incorrect Y-axis values on stacked charts on dashboard (Issue #4626)

• Improve metrics tooltip placement across chart (Issue #4627)

• Fix issue wit clearing unread notification (Issue #4677)

13.11. Release 6.2.0 (2023-04-11) 463

Inmanta Documentation, Release 7.1.1.dev20240504011805

• fix the issue that crash the app when using missing environment setting and it’s definition (Issue #4772)

13.11.8 Web-console: release 1.12.2 (2023-02-17)

Bug fixes

• Do not show LSM related graphs when LSM it not loaded (Issue #4650)

13.12 Release 6.1.0 (2023-02-09)

13.12.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.12.2 Inmanta-core: release 8.2.0 (2023-02-09)

Improvements

• Support inmanta module release options -c, --patch, --minor, --major without --dev

13.12.3 Inmanta-core: release 8.1.0 (2023-02-06)

New features

• Added inmanta module release command. (Issue inmanta/inmanta-core#5082)

• Added the /metrics API endpoint to retrieve aggregated metrics about an Inmanta environment from the
server. (Issue inmanta/inmanta-core#5129)

• experimental: Added a project option to install dependencies on other modules when loading code on the
agent

• Improve stability of incremental deploy for resources containing dicts (Issue #5306)

Improvements

• Remove resource.resource_version_id fields from the database and use resource id instead

• Improve error reporting when an index collision is detected. (Issue #5075)

• A proper inmanta warning is now displayed when an invalid escape sequence is detected in a regular string
or a multi-line string. (Issue #5091)

• Fix wrong docker login instructions

• improved partial compile documentation for LSM

• Improved error reporting when an optional list attribute (not relation) remains unset

• Improved exception handling during shutdown

• Remove auto-recompile-wait from the config file in the rpm (Issue #4332)

464 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Upgrade notes

• The first recompile after this upgrade will always perform a full deploy (Issue #5306)

Deprecation notes

• The inmanta module commit command has been deprecated in favor of the inmanta module release
command.

• The do_clean_hard and postgres_get_custom_types functions and the PGRestore and
AsyncSingleton classes in respectively inmanta_tests.conftest and inmanta_tests.db.common
were moved to the inmanta.db.util module. The do_clean_hard function is available in the inmanta.
db.util module under the name clear_database. These functions and classes will be removed from
their original location in a future major release (>=ISO7). (Issue inmanta/inmanta-core#5383)

Bug fixes

• Fix issue where server-side compiles fail when the SSL configuration on the server doesn’t match the SSL
configuration defined in the .inmanta file of the project. (Issue inmanta/inmanta-core#4640)

• Fixed cycle detection in experimental relation precedence policy (Issue #5380)

• Fix handling of deploying state in incremental deploys (Issue #5434)

13.12.4 Inmanta-license: release 3.0.1 (2023-02-09)

No changelog entries.

13.12.5 Inmanta-lsm: release 3.1.0 (2023-02-09)

New features

• Added support for lsm expert mode. When enabled, it will be possible to use the LSM expert mode API
endpoints, which bypass many of the safety checks done by the Inmanta server. LSM expert mode can be
enabled using the enable_lsm_expert_mode environment setting. (Issue inmanta/inmanta-core#1108)

Improvements

• Fixed visualization bug where part of the details would appear in the short summary for some endpoints in
the REST API documentation.

Bug fixes

• Fixed rare race condition in service instance delete with partial compiles

• Fixed bug in delete transfer for partial compiles

13.12. Release 6.1.0 (2023-02-09) 465

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.12.6 Inmanta-support: release 3.1.0 (2023-02-09)

New features

• New SQL and JSON Dump Importer. The following command can be used to use this import feature
‘inmanta-support-tool import-dump –path_dump the_path_of_the_db_dump’. Some default values are al-
ready defined such as IP, user, host and so on, these can be seen with ‘inmanta-support-tool import-dump
–help’

13.12.7 Inmanta-ui: release 4.0.1 (2023-02-06)

No changelog entries.

13.12.8 Web-console: release 1.12.1 (2023-02-09)

No changelog entries.

13.12.9 Web-console: release 1.12.0 (2023-02-06)

New features

• Create component and navigation for the Dashboard Page (Issue #4525)

• Create base components for Dashboard, endpoint QueryManager to acquire metrics and serve them to Dash-
board and finally components with given Manager (Issue #4527)

• Adjust routing to include Dashboard correctly, fix e2e accordingly to new flow of routes (Issue #4531)

• Add interpolation to charts when no data was aggregated, format dates from UTC to local, add rounding
(Issue #4579)

Improvements

• Adding automated e2e testing for the Service Catalog, for a basic-service instance. (Issue #4317)

• Adding automated e2e testing for the Service Catalog, for child-parent service instances. (Issue #4320)

• Adding automated e2e testing for the Service Catalog, for a Embedded Entity instance. (Issue #4321)

• Adding automated e2e testing for the Service Catalog - Catalog Update (Issue #4323)

• Adding automated e2e testing for the Service Details (Issue #4327)

• Adding automated e2e testing for the Service Catalog, for a desired state (Issue #4337)

• Adding Tooltips for halted and resume buttons in the sidebar. (Issue #4341)

• Adding automated e2e testing for the Compile Reports (Issue #4348)

466 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Bug fixes

• Fix Service filtering when clicking on service relation (Issue #4099)

• Fix toolbar alignment issue. (Issue #4422)

• Fix form booleans issue (Issue #4438)

• Name of the agent is not properly escaped in pause agent request (Issue #4454)

• Fix resource logs issue (Issue #4480)

• Fix configuration update issue (Issue #4481)

• fixes to metrics (Issue #4590)

13.13 Release 6.0.0 (2022-12-02)

13.13.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.13.2 Inmanta-core: release 8.0.0 (2022-11-30)

Deprecation notes

• Remove support for leaving nullable attribute unassigned, an exception will now be raised. You should
make sure optional variables are always assigned a value. This changes the behaviour of ‘is defined’ in Jinja
templates. You should now use ‘is not none’ instead (Issue #1888)

• The ‘dashboard’ section is no longer supported for configuration options. The ‘web-ui’ section should now
be used instead for configuration options related to web interfaces. (Issue inmanta/inmanta-ui#317)

• The Inmanta dashboard was removed. The URL of the Inmanta dashboard now redirects to the Inmanta
web-console which is the successor of the Inmanta dashboard. (Issue #4905)

• Removed support to use a dictionary in the requires metadata field of a V1 module or an Inmanta project.
(Issue inmanta/inmanta-core#4974)

• The inmanta module update command and the -r option of the inmanta module list command were
removed. They are replaced by the inmanta project update and the inmanta project freeze com-
mand respectively. (Issue inmanta/inmanta-core#4975)

• Remove support for hyphens in identifiers. An exception will now be raised. (Issue #4976)

• The available-versions-to-keep option of the server configuration file is no longer supported. Please use the
AVAILABLE_VERSIONS_TO_KEEP environment setting instead. (Issue #4980)

• Remove support for default constructors (Issue #4984)

13.13.3 Inmanta-core: release 7.1.0 (2022-09-29)

No changelog entries.

13.13. Release 6.0.0 (2022-12-02) 467

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.13.4 Inmanta-core: release 7.0.0 (2022-08-05)

Improvements

• Add support to enable/disable strict dependency checking in the compiler and in the module tools using the
–strict-deps-check and –no-strict-deps-check options. (Issue #4516)

Upgrade notes

• The compiler and the module tools now by default check all dependencies transitively for version conflicts.
When a version conflict is found, an error is raised. A fallback to the old behavior is possible by providing
the --no-strict-deps-check option. (Issue #4516)

Deprecation notes

• An exception is now raised when trying to interpolate a string in a dictionary key

• The auto-recompile-wait option in the server configuration is now deprecated in favor of the recom-
pile_backoff environment setting (Issue #4332)

13.13.5 Inmanta-license: release 3.0.0 (2022-12-02)

No changelog entries.

13.13.6 Inmanta-lsm: release 3.0.0 (2022-12-02)

No changelog entries.

13.13.7 Inmanta-support: release 3.0.0 (2022-12-02)

No changelog entries.

13.13.8 Inmanta-ui: release 4.0.0 (2022-11-30)

Deprecation notes

• The ‘web-console’ section is no longer supported for configuration options. The ‘web-ui’ section should
now be used instead for configuration options related to web interfaces. (Issue inmanta/inmanta-ui#317)

13.13.9 Inmanta-ui: release 3.0.2 (2022-09-29)

No changelog entries.

468 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.13.10 Inmanta-ui: release 3.0.1 (2022-08-05)

No changelog entries.

13.13.11 Inmanta-ui: release 3.0.0 (2022-02-02)

No changelog entries.

13.13.12 web-console: release 1.11.3

This component has had no new releases since the last product version.

13.14 Release 5.4.0 (2022-12-01)

13.14.1 General changes

New features

• Add support for RHEL 9 and derivatives. (Issue inmanta/inmanta-core#4973)

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.14.2 Inmanta-core: release 6.4.0 (2022-12-01)

New features

• Added the inmanta-workon command (Issue #4376)

• Add the finalizer decorator. Functions decorated with it will be executed at the end of the compilation

• Constructors that appear as a right hand side in an assignment (or another constructor) now no longer require
explicit assignments for the inverse relation to the left hand side.

• Add support for extensions to register their environment settings via the
register_environment_settings method in the extension.py file of the extension. (Issue in-
manta/irt#1366)

Improvements

• Improve the logging of the pip commands by using a separated logger for those. Also add the content of the
requirements and constraints files to the logging. (Issue #4651)

• Add module and plugin deprecation mechanism (Issue #4908)

• Improve the error message when trying to build a moduleV2 with an invalid version name (Issue #5054)

• Refactor page view functionality

13.14. Release 5.4.0 (2022-12-01) 469

Inmanta Documentation, Release 7.1.1.dev20240504011805

Deprecation notes

• Deprecated leaving nullable attribute unassigned. When using explicit null for plain attributes, the be-
haviour of ‘is defined’ in Jinja templates changes. You should update Jinja templates to use ‘is not none’
instead of is defined together with the change to explicit null. (Issue #1888)

• The ‘dashboard’ section is being deprecated. The ‘web-ui’ section should now be used instead for configu-
ration options related to web interfaces. (Issue inmanta/inmanta-ui#317)

• V1 modules are deprecated. Support for V1 modules will be removed in one of the next major releases (Issue
inmanta/inmanta-core#4941)

• Hyphens in identifiers are deprecated. Support will be removed in the next major releases (Issue
inmanta/inmanta-core#4976)

• The inmanta.server.services.environmentservice.register_setting method, used by the ex-
tensions to register environment settings, has been deprecated. The register_environment_settings
method in the extension.py of the extension has to be used instead. (Issue inmanta/irt#1366)

Bug fixes

• Fix issue where the progress information of the git clone command shows mixed log lines (Issue
inmanta/inmanta-core#4919)

• Fix issue with “inmanta module build” command on a v1 module if inmanta_plugins dir already exists (Issue
#4954)

• Fix bug where the stdout filehandler is not closed after streaming the output from pip into the logger.

• Fix bug where warnings messages were not shown to the user.

• Fix bug where the status endpoint can become non-responsive

• Fix issue where the documentation of the inmanta module freeze command incorrectly indicates that it
updates the project.yml file, while it updates the module.yml file.

• Fix an issue about the str function of the DatabaseOrder class which made it incompatible with python3.11

• Fix an issue about enum representation which made a test fail for python3.11

• Fixes an issue about optional fields without default value not being populated correctly in DAO

• Fix bug where a ResourceAction fails with an InvalidStateError when the agent is shutdown

• Fix bug where the endpoints compile_details, get_compile_reports and get_compile_queue
returned incorrect data for the fields exporter_plugin, notify_failed_compile and
failed_compile_message.

13.14.3 Inmanta-license: release 2.0.5 (2022-12-01)

No changelog entries.

13.14.4 Inmanta-lsm: release 2.4.0 (2022-12-01)

New features

• Add an API endpoint to export the service API (Issue #844)

• Have the diagnose function also report failed exporting compiles as rejections

470 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Improvements

• Use the new register_environment_settings method in the extension.py to register environment
settings. (Issue inmanta/irt#1366)

Deprecation notes

• inmanta_plugins.lsm.allocation_v2.dict_path has been deprecated in favor of inmanta_lsm.
dict_path (Issue inmanta/lsm#530)

Bug fixes

• Ensure that the filehandler to the callback log file is closed when the server shuts down.

13.14.5 Inmanta-support: release 2.0.5 (2022-12-01)

No changelog entries.

13.14.6 Inmanta-ui: release 2.1.0 (2022-12-01)

Deprecation notes

• The ‘web-console’ section is being deprecated. The ‘web-ui’ section should now be used instead for config-
uration options related to web interfaces. (Issue inmanta/inmanta-ui#317)

13.14.7 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

13.14.8 Web-console: release 1.11.3 (2022-11-30)

Improvements

• Allow to send filter values from more than one input at once with enter or button click - Resouces & Desired
State Details view

• An update banner will be displayed if your application happens to be outdated. (Issue #3879)

• Add an indication in the navigation sidebar when there are ongoing compilations. The indication will be
added to the “Compile Report” menu-item.

• add buttons for expanding/collapsing all nested attributes to speed up the process of going through services

• The create/edit Instance form now has a better way to allow the user to select multiple Inter Service Relations.
(Issue #4100)

• Updating React version to React 18. (Issue #4107)

• The link to the old dashboard has been removed from the sidebar. (Issue #4108)

• Improve the sidebar closing behaviour when on smaller screens. You can now click in the page content to
close the container. (Issue #4119)

• Add Hooks that check if user leaves unfinished Add/Edit Instance form and prompt for confirmation (Issue
#4125)

13.14. Release 5.4.0 (2022-12-01) 471

Inmanta Documentation, Release 7.1.1.dev20240504011805

• When only one option available in select input, then this one is preselected instead of default placeholder
prompt (Issue #4127)

• A button has been added to the Service Catalog overview to execute an update. (Issue #4159)

• move service details from dropdown to separate page (Issue #4160)

• add pagination on the bottom of the table to improve UX (Issue #4246)

• Move delete service button to the Service Catalog overview, in the kebab menu options. (Issue #4326)

• Fix service callbacks issues in display, in readabilty and form behaviour after adding callback (Issue #4332)

• Fix filter options being displayed under the DIFF comparator on some pages. (Issue #4338)

• Improve alignment of filter options on smaller screens. (Issue #4339)

Bug fixes

• Fix missing paramter in query when updating a service configuration. (Issue #4064)

• Fix the error thrown on create new instance. (Issue #4100)

• Make sure the Update button is also shown on an empty Catalog.

• Hotfix for the xml-formatter when the scenario occurs where the string to be formatted is preceded or ends
with whitspaces. (Issue #4144)

13.15 Release 5.3.0 (2022-09-30)

13.15.1 General changes

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

Bug fixes

• Add a signal handler to the entrypoint of the Inmanta container to correctly handle the termination of the
container (Issue inmanta/inmanta#87)

13.15.2 Inmanta-core: release 6.3.0 (2022-09-30)

New features

• Add option to bytecompile all python source in a v2 module wheel (Issue inmanta/irt#1190)

• Replace Drupal model of quickstart with SR Linux. (Issue #4333)

• Added partial compile feature

472 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Improvements

• When the AutostartedAgentManager starts a new agent process, it now uses a dynamic timeout on the time
to wait until all agents are active. The AutostartedAgentManager raises a timeout as soon as no new agent
has become active in the past five seconds. (Issue inmanta/inmanta-core#4398)

• Improved logging on the agent manager when restarting agents

• Performance improvements for the resource_did_dependency_change endpoint (Issue #4402)

• The put_partial endpoint and inmanta export --partial now dynamically allocate a new version.

• Add support for extras on Python dependencies (Issue inmanta/inmanta-core#4497)

• Improve logging on module installation. (Issue #4500)

• Reject v1tov2 module conversion when a setup.py is present

• Fix issue where the v1tov2 command removes the requirements.txt file (Issue #4684)

• Fix a bug in the typing of the new influxdb metrics (Issue #4688)

• Don’t set PYTHONPATH environment variable on venv activation: fixes editable install compatibility with
setuptools<64 (Issue #4713)

• Add argument to compilerservice to allow exporting with the specified exporter plugin

• Added options to compiler service to configure notification behavior (Issue #4803)

• Reduce compiler log level for iterations and cache log lines to debug

• For v1tov2 conversion, split tag from version and put it in tag_build field

• Improved editable v2 module compatibility with latest setuptools and PEP660 in edge case scenarios.

• Set the startup/shutdown order between the Inmanta server and the database in the docker-compose file

Upgrade notes

• It’s required to update-and-recompile on each Inmanta project on the server after an upgrade (Issue
inmanta/inmanta-core#4718)

Deprecation notes

• The internal upload_code endpoint has been removed, deprecated since core release 2018.2 (Issue in-
manta/irt#1190)

• The put_partial endpoint (previously marked experimental) no longer accepts a version argument.

Bug fixes

• Fix rare deadlock in the database locking mechanism when tasks are cancelled, mostly affects test environ-
ments. (Issue #4384)

• Fix issue that causes an agent restart storm for all agents on an agent process when an agent on that process
is paused. (Issue inmanta/inmanta-core#4398)

• make sure that the index present in PIP_INDEX_URL or PIP_EXTRA_INDEX_URL is not leaked to pip
when using install_from_index (Issue inmanta/inmanta-core#4723)

• Fix issue where the pip consistency check is too strict (Issue #4761)

• The compiler service now logs the requested time of a recompile using a consistent timezone

• Fixed minor backwards incompatibility of the resource action database schema and
resource_action_update endpoint

13.15. Release 5.3.0 (2022-09-30) 473

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Fix bugs in the merge logic of a partial compile. 1) Ensure that the version numbers present in the new
version of the configuration model are set correctly. 2) Ensure that the resource states and unknowns, that
belongs to the partial model, are sent to the server and merged correctly with the old configuration model.

13.15.3 Inmanta-license: release 2.0.4 (2022-09-30)

No changelog entries.

13.15.4 Inmanta-lsm: release 2.3.0 (2022-09-30)

New features

• Added partial compile feature for LSM models, see the documentation for details

13.15.5 Inmanta-support: release 2.0.4 (2022-09-30)

No changelog entries.

13.15.6 Inmanta-ui: release 2.0.4 (2022-09-30)

No changelog entries.

13.15.7 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

13.15.8 Web-console: release 1.11.2 (2022-09-29)

Improvements

• add delete button for desired state version with test coverage, bump test coverage for sibiling components
(Issue #3957)

• replace KeyCloakInstance as it is depraceted (Issue #4002)

Upgrade notes

• Improve test coverage for conditionals (Issue #4000)

Bug fixes

• Scroll into view when new lines are being added to the report while it is compiling. (Issue #3855)

• Fix the overflow disapearing outside the window for the facts table. (Issue #3909)

• Add error handling for uncaught errors. (Issue #3924)

• replace instance uuid with instance identity when possible in action modals(Delete and set State Action)

• bump dependencies versions to resolve vulnerabilities (Issue #4001)

• Fixed issue where web-console would crash when failing to format xml

474 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Other notes

• The editorconfig file now ensures that the codebase stays LF, the package.json will contain Windows specific
commands for linting/prettier. Single quotes for paths are not supported by Windows. (Issue #3909)

• updated the jenkins scripts for tests to be slightly more performant (Issue #3924)

13.16 Release 5.2.0 (2022-08-16)

13.16.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.16.2 Inmanta-core: release 6.2.0 (2022-08-16)

New features

• Improved tracking of potential future relation assignments within conditional statements.

• Add environment setting to set the number of stored versions. (Issue #3505)

• Create a notification when a git pull fails during compile (Issue #4021)

• Add ‘inmanta-cli environment recompile’ command (Issue #4052)

• Added auto_full_compile environment option to schedule regular full compiles (Issue #4274)

• Added support to create development builds of V2 modules (Issue inmanta/irt#1184)

• Added documentation for primitive type casts to the language reference

Improvements

• Improve batching of code loading in the agent (Issue #4217)

• inmanta module v1tov2 and inmanta module build will now merge setup.cfg and pyproject.toml (Issue
#4372)

• Add py.typed file to packages build using inmanta module build (Issue #4374)

• The compiler cache (.cfc) files are now stored in the .cfcache directory in the root of the inmanta project
instead of in the cfcache directory in the inmanta modules. (Issue inmanta/inmanta-core#4407)

• More precise cache invalidation for the compiler cache (Issue #4408)

• Add support to enable/disable strict dependency checking in the compiler and in the module tools using
the –strict-deps-check and –no-strict-deps-check options. Strict dependency checking is disabled by default.
(Issue #4516)

• Improve exception messages on version conflicts (Issue #4524)

• Improve documentation of agent configuration

• Make python -m inmanta work

• Add database connection metrics to the influxdb reporter

13.16. Release 5.2.0 (2022-08-16) 475

Inmanta Documentation, Release 7.1.1.dev20240504011805

Upgrade notes

• The default log level of the inmanta commandline tool was changed from ERROR to WARNING (Issue
#3911)

• inmanta project install and inmanta project update now always take into account the
requirements.txt of the project to provide additional version constraints to pip (Issue #4410)

• Each project present on the Inmanta server should be recompiled after an upgrade of the server.

Deprecation notes

• Unicode characters are no longer escaped in multi-line strings. (Issue #2582)

• The available-versions-to-keep option in the server configuration file is now deprecated in favor of the envi-
ronment setting (Issue #3505)

• The next major release will raise errors instead of warnings when the virtual environment being used contains
version conflicts or has missing dependencies. This new behavior can be enabled already by setting the
--strict-deps-check commandline option (Issue #4516)

Bug fixes

• Fix memory leak caused by lru-cache keeping strong references to cached items

• Fix installing extras of module dependencies (Issue #3443)

• Fix bug that fails the CRUDHandler when a changed attribute is of type set. (Issue #3470)

• Fix bug where the user is suggested to run the inmanta module update command when the execution of
the same command failed. (Issue #3911)

• Improve syntax error reporting when defining an attribute starting with a capital letter.

• Fix bug where inmanta project install and inmanta project update always invokes pip, even
when all dependencies are already met. (Issue #4055)

• Limit included namespace packages to inmanta_plugins for v1tov2 module conversion. (Issue #4130)

• Enforce inmanta package requirements so that modules can’t overwrite those. (Issue #4200)

• Make sure that the inmanta project install command doesn’t protect the inmanta-dev-dependencies
package (Issue #4249)

• Fix syntax error when calling “is defined” on dictionary lookup

• The set_setting endpoint now correctly returns a 400 status code when an invalid value is provided. (Issue
#4361)

• Fix bug where the setup.cfg file, generated by the v1tov2 command, contains a dependency to the module
itself when the module contains an import for a namespace in its own module. (Issue inmanta/inmanta-
core#4373)

• Fix bug on value lookup in an unknown dict and on lookup with an unknown key. (Issue #4475)

• Fix failing test case.

• Fix failing test cases.

• Fixed incorrect top level module loading for nested imports when v2 module is present in venv but not in
explicit requires

• Fix issue with get_resources_in_latest_version call not taking into account versions without resources (Issue
inmanta/inmanta-lsm#739)

• Fixed type cast behavior for null and unknown values

476 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.16.3 Inmanta-license: release 2.0.3 (2022-08-16)

No changelog entries.

13.16.4 Inmanta-lsm: release 2.2.0 (2022-08-16)

New features

• added support for inter-service-relations (see doc of LSM module) (Issue #441)

• Added support to update the default values of the attributes of a service entity. (Issue #763)

• Improve support for embedded entities in the service catalogue. Add key attributes to embedded entities
and the possibility to turn attribute modifier enforcement on or off through the strict_modifier_enforcement
parameter in service entities. (Issue #796)

• Update the service catalog to support inter-service-relations (Issue #803)

• Added Dict Path library (Issue #804)

• Improve warning messages by including the fully qualified path to the relevant entity or attribute.

• Add support to match against the value None in a a[key=value]-based dict path expression. (Issue #831)

Upgrade notes

• The server now explicitly fills defaults for values that are absent in the service instance creation call. This
results in more strict assignment consistency in the model. For models that treat absence of values different
from assigning null, this can lead to unexpected failures when recompiling.

Deprecation notes

• The dict_path.WildKeyedList and dict_path.KeyedList constructors now take a sequence of key-
value pairs rather than a single key and value. The old constructor syntax is now deprecated. (Issue #832)

Bug fixes

• Fix bug in openapi docs when instance schemas of multiple entities were mixed up (Issue #712)

• Fix bug where the inmanta --version command fails with a permission denied error while accessing the
callback.log file (Issue inmanta/inmanta-core#4107)

13.16.5 Inmanta-support: release 2.0.3 (2022-08-16)

Bug fixes

• Fix bug in the database_dump collector where no fallback is done to extract the database dump via the python
method when the pg_dump command is not available on the system. (Issue #55)

13.16. Release 5.2.0 (2022-08-16) 477

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.16.6 Inmanta-ui: release 2.0.3 (2022-08-16)

No changelog entries.

13.16.7 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

13.16.8 Web-console: release 1.11.1 (2022-08-16)

Bug fixes

• Fixed error on settings page resulting in blank page

• Fixed behavior of instance creation and update for services with inter-service relations

13.16.9 Web-console: release 1.11.0 (2022-08-05)

New features

• Add support for inter-service relations in the service inventory (Issue #3040)

13.17 Release 5.1.0 (2022-04-12)

13.17.1 General changes

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

Other notes

• Container images are now built and distributed for each release of the orchestrator.

13.17.2 Inmanta-core: release 6.1.0 (2022-04-12)

New features

• Change the relation deprecation warning to be more accurate. (Issue #2443)

• Add support for the elif keyword to the compiler

• Improved error reporting for invalid namespace access (Issue #2818)

• Expressions are now treated as statements (Issue #3367)

• Ensure processes forked by Inmanta commands load the same config folder as their parent process (Issue
#3765)

• Add notification service (Issue #3981)

• Add support to pass type precedence hints to the compiler (Issue #3098)

478 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Deprecation notes

• Writing a string over multiple lines is now only supported for strings within triple quotes. This was previously
allowed for strings within single quotes due to a bug.

Bug fixes

• The logger now correctly reports the endpoints that will be removed from a session

• Fixed an instance of nondeterministic behavior in the compiler

• Optimize resource list query

• Wrap any exception that occurs during resource export so that it is more useful to the end user (Issue #3787)

• Writing a string over multiple lines is now only supported for strings within triple quotes.

• An error message is now shown if a wrong repo path is used

• An exception is now raised when there is a mismatch between the python version of the compiler venv and
the python version of the active process (Issue #3829)

• Improve the compiler error message that is given when an index attribute is missing in the constructor call.
(Issue #3902)

• Fixed bug that makes the inmanta deploy command fail when the database and server sections of the
inmanta configuration files contain non-default values. (Issue #3927)

• Fix bug that makes every inmanta warning end with an empty line. (Issue #3951)

• Fix handling of ‘_’ in resource_logs and get_resource_events api endpoints (Issue #4043)

• Fix bug that crashes the agent when a cross-agent dependency doesn’t have any changes (Issue #4116)

• Fix order of stages in compile report details (Issue inmanta/web-console#3082)

• Constrained click dependency to known compatible range because of backwards incompatible minor

• Fix performance impacting race condition in deploy handler method (Issue inmanta/lsm#433)

• Fix issue where the deployment of resources takes a long time, due a high rate limiter backoff. (Issue #4084)

13.17.3 Inmanta-license: release 2.0.2 (2022-04-12)

No changelog entries.

13.17.4 Inmanta-lsm: release 2.1.0 (2022-04-12)

New features

• Add support for rollback validation to the lifecycle

13.17. Release 5.1.0 (2022-04-12) 479

Inmanta Documentation, Release 7.1.1.dev20240504011805

Bug fixes

• Add check to prevent logging empty callback_url list and add specific logging message if the list is empty

• Sort service resource list (Issue #786)

• Fix bug where no attribute validation is done on the attributes of a service instance when the attribute dic-
tionary is empty. (Issue #850)

13.17.5 Inmanta-support: release 2.0.2 (2022-04-12)

No changelog entries.

13.17.6 Inmanta-ui: release 2.0.2 (2022-04-12)

No changelog entries.

13.17.7 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

13.17.8 Web-console: release 1.10.0 (2022-04-12)

New features

• Add the Compliance Check page (Issue #2558)

• Add notification drawer (Issue #3056)

• Add notification center page (Issue #3067)

13.18 Release 5.0.1 (2022-02-11)

13.18.1 General changes

New features

• Introduced the v2 module format. V2 modules offer better integration with the Python ecosystem with
regards to distribution, dependency resolution and plugin loading. For more information on v2 modules, see
how to add a v2 module source, use a v2 module in your project, and install v2 modules.

• Added support for Python 3.9

• Added deploy method to handlers for increased flexibility in responding to events (Issue inmanta/inmanta-
core#2940)

• Added raw strings (r-strings) to the inmanta language (https://docs.inmanta.com/inmanta-service-
orchestrator/5/language.html#literals-values)

• Added support for Jinja 3 to std module.

• Added terraform module. Allows to use native terraform providers without having to use ter-
raform directly by using the included model generator. (https://docs.inmanta.com/inmanta-service-
orchestrator/5/reference/modules/terraform.html)

• VSCode extension interacts with the Python extension to allow venv selection.

• Extended web console functionality and made it the default front-end.

480 Chapter 13. Changelog

https://docs.inmanta.com/inmanta-service-orchestrator/5/model_developers/modules.html#understanding-modules
https://docs.inmanta.com/inmanta-service-orchestrator/5/model_developers/modules.html#installing-modules
https://docs.inmanta.com/inmanta-service-orchestrator/5/model_developers/developer_getting_started.html#v2-module-source
https://docs.inmanta.com/inmanta-service-orchestrator/5/model_developers/developer_getting_started.html#setting-up-a-module
https://docs.inmanta.com/inmanta-service-orchestrator/5/model_developers/modules.html#installing-modules

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Added support for PostgreSQL 13 (Issue inmanta/inmanta-core#2893)

Upgrade notes

• Compiling a project no longer installs modules on the fly. Run inmanta project install to install
modules. For more details see setting up a project.

• The compiler venv (.env) is no longer used. The compiler uses the active venv.

• The supported PostgreSQL version is now 13

• The supported Python version is now 3.9

• This release requires RHEL 8

• Jinja templates are required to be compatible with Jinja 3.

• An update of the VSCode extension is required for compatibility with this release.

• Clear your browser cache after upgrading to remove the old redirection rule. If the cache is not cleared the
‘/’ route will keep redirecting to ‘/dashboard’.

• The compiler and agent venv’s with a Python version older than the Python version of the Inmanta server
will be moved to an .rpmsave directory at installation time. (Issue #234)

• Ensure the database is backed up before executing an upgrade.

Deprecation notes

• inmanta module install no longer installs all modules for a project. This has moved to inmanta
project install.

• The inmanta dashboard is now deprecated in favor of the web console. It will be removed in a future major
release.

13.18.2 Inmanta-core: release 6.0.1 (2022-02-11)

Bug fixes

• Fix bug in incremental deploy where event processing can be delayed (Issue #3789)

13.18.3 Inmanta-core: release 6.0.0 (2022-02-02)

New features

• Added resource_deploy_start endpoint (Issue #2928)

• Added resource_deploy_done endpoint (Issue #2931)

• Added helper method for reliable event processing (Issue #2941)

• Improved south bound integration documentation (Issue #2954)

• Compiler improvement: made is defined gradually executable

• Added resource_list endpoint (Issue #3045)

• Added resource_details endpoint (Issue #3046)

• Added support to build V2 modules into a Python package. (Issue #3047)

• Added resource_history endpoint (Issue #3048)

• Added the ability to package V1 modules as V2 modules (Issue #3049)

13.18. Release 5.0.1 (2022-02-11) 481

https://docs.inmanta.com/inmanta-service-orchestrator/5/model_developers/developer_getting_started.html#setting-up-a-project
https://jinja.palletsprojects.com/en/3.0.x/changes/#version-3-0-0

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Added inmanta module v1tov2 command. (Issue #3050)

• Added V2 package loader (Issue #3051)

• Updated inmanta module install to install v2 modules from source.

• Added the inmanta module add command. (Issue #3089)

• Added resource_logs endpoint (Issue #3109)

• Added endpoint to list compile reports (Issue #3131)

• Added endpoint to get compile details (Issue #3132)

• inmanta project update now updates modules’ Python dependencies to the latest compatible version.
The same goes for triggering an update and recompile from the dashboard. (Issue #3623)

• Enable the UI extension by default (Issue #3653)

• Added version diff api endpoint (Issue #3659)

• Added raw strings to the inmanta language.

• Restructured module developer guide

• added operational procedures documentation

• added instructions about passwordless sudo to remote agent setup

• Added documentation regarding modules V2. (Issue #3023)

• Port the agent to the new deploy handler method. (Issue #2940)

• Added support for PostgreSQL 13 (Issue #2893)

Upgrade notes

• On newly created environments, the environment setting purge_on_delete will be set to false by default
instead of true. This overrides any purge_on_delete settings on individual resources. You need to explicitly
set it to true to enable the old behavior again. (Issue #2958)

• inmanta compile no longer installs any modules. Run inmanta project install before compiling
the first time.

• “The compiler venv has been phased out. The compiler will now use the venv used to execute the inmanta
compile command.” (Issue #3096)

• Compiler no longer installs modules on the fly, inmanta project install needs to be run to install
required modules

• Clear your browser cache after upgrading to remove the old redirection rule. If the cache is not cleared the
‘/’ route will keep redirecting to ‘/dashboard’. (Issue #3497)

• Project.load() no longer installs Project dependencies. Pass install=True for the old behavior.

• NOTSET is no longer accepted as a log level by the agent’s context logger. It was not a valid log level before,
but it was accepted by the agent.

• After upgrading the Inmanta server, all virtual environments used by the compiler and the agents have to be
removed. Use the following procedure to achive this:

– Stop the Inmanta server

– Remove all /var/lib/inmanta/server/environments/<environment-id>/.env directories

– Remove all /var/lib/inmanta/<environment-id> directories

– Start the Inmanta server again

482 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Deprecation notes

• inmanta module install no longer installs all modules for a project. This has moved to inmanta
project install.

• The inmanta module list -r command has been deprecated in favor of inmanta project freeze

• inmanta modules update has been replaced by inmanta project update. The old command has been
deprecated and will be removed in a future release. (Issue #3623)

Bug fixes

• Fixed docstring-parser compatibility after non-backwards compatible changes and constrained dependency
to semi-safe range.

• Ensure that special characters in the resource action log are not escaped. (Issue inmanta/inmanta-lsm#699)

• Fixed agent cache behavior when cache_none is provided

• Fix dollar sign escaping issue in installation documentation

• Fix bug where the listeners of the environment clear action are not notified when files of that environment
cannot be deleted from the filesystem. (Issue #3637)

• The tests folder is no longer included into the sdist package

• Removed NOTSET loglevel from all API’s

13.18.4 Inmanta-core: release 5.1.1 (2021-05-27)

Bug fixes

• Add upperbound to docstring-parser dependency so that pip install does not fail

13.18.5 Inmanta-core: release 5.1.0 (2021-05-05)

New features

• Mark the stable API using a decorator (Issue #2414)

• More strictly validate the schema of the project.yml and module.yml file (Issue #2723)

• Updated db schema update mechanism to track all installed versions (Issue #2724)

• Add partial support for collection type parameters for GET methods (Issue #2775)

• Add changelog section to the documentation (Issue inmanta/irt#417)

• Added developer getting started guide

• Added experimental caching support to the compiler

• Improved Inmanta install guide for Debian

• Extended stable API documentation (Issue inmanta/inmanta-lsm#408)

• Added built-in performance micro-benchmark, to help diagnose performance issues

• Added ability to do pip install inmanta-core[pytest-inmanta-extension]

13.18. Release 5.0.1 (2022-02-11) 483

Inmanta Documentation, Release 7.1.1.dev20240504011805

Deprecation notes

• Deprecated yaml dictionary syntax for module requires

Bug fixes

• Correctly describe in the documentation how version constraints can be set on module dependencies in the
module.yml file (Issue #2723)

• Ensure that an error at agent startup time is properly logged. (Issue #2777)

• Fixed compiler issue on rescheduling of plugins breaking the cycle breaking (Issue #2787)

• Fixed compiler issue on cycle breaking (Issue #2811)

• Fixed typos in language.rst file

• Changed python versions in install doc

Other notes

• To enable caching on the compiler, either set the config value compiler.cache in the .inmanta file or
pass the option --experimental-cache to inmanta compile

13.18.6 Inmanta-core: release 5.0.0 (2021-03-15)

No changelog entries.

13.18.7 Inmanta-license: release 2.0.1 (2022-02-11)

No changelog entries.

13.18.8 Inmanta-lsm: release 2.0.1 (2022-02-11)

New features

• Allow nested dicts in attributes of the type dict

Bug fixes

• Revert breaking changes on callback api in inmanta-lsm 1.8.0 (Issue #769)

13.18.9 Inmanta-support: release 2.0.1 (2022-02-11)

No changelog entries.

484 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.18.10 Inmanta-ui: release 2.0.1 (2022-02-11)

No changelog entries.

13.18.11 inmanta-dashboard: release 3.8.1

This component has had no new releases since the last product version.

13.18.12 Web-console: release 1.9.1 (2022-02-11)

New features

• Add Desired State Compare page (Issue #2374)

13.18.13 Web-console: release 1.9.0 (2022-02-02)

New features

• Add overview of resource facts (Issue #2379)

13.19 Release 4.4.0 (2022-01-26)

13.19.1 Upgrade notes

• Ensure the database is backed up before executing an upgrade.

13.19.2 Inmanta-core: release 4.4.0 (2022-01-25)

New features

• Added raw strings to the inmanta language.

Upgrade notes

• Creating new modules using the cookiecutter template now requires the –checkout v1 option. (Issue #3565)

Bug fixes

• Fixes a bug where minor version of python were wrongly set as only the first digit of multi-digit number was
used. (Issue #3536)

• Fix bug where the listeners of the environment clear action are not notified when files of that environment
cannot be deleted from the filesystem. (Issue #3637)

13.19. Release 4.4.0 (2022-01-26) 485

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.19.3 Inmanta-license: release 1.3.4 (2022-01-25)

No changelog entries.

13.19.4 Inmanta-lsm: release 1.9.0 (2022-01-25)

New features

• Allow nested dicts in attributes of the type dict

13.19.5 Inmanta-support: release 1.3.4 (2022-01-25)

No changelog entries.

13.19.6 Inmanta-ui: release 1.4.1 (2022-01-25)

No changelog entries.

13.19.7 Inmanta-dashboard: release 3.8.1 (2022-01-25)

No changelog entries.

13.19.8 Web-console: release 1.8.0 (2022-01-25)

New features

• Update design of not found page (Issue #1267)

• Refactor Query and Command definitions (Issue #1414)

• Hide LSM navigation when extension not present (Issue #1444)

• Create landing page (Issue #1472)

• Add create environment page (Issue #1473)

• Add delete action and modal to environment card (Issue #1474)

• Add edit toggle to environment card (Issue #1475)

• Add settings page (Issue #1476)

• Add environment tab to settings page (Issue #1482)

• Add documentation link to navigation bar (Issue #1484)

• Restrict base url to always include /console (Issue #1555)

• Improve content in delete env modal (Issue #1652)

• Add server status page (Issue #1723)

• Add agents page (Issue #1809)

• Add desired state page (Issue #2002)

• Add page state persistence to url for all pages (Issue #281)

• Add environments to landing page (Issue #380)

• Redirect to home page when no environment is selected (Issue #431)

486 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Bug fixes

• Fix compile timeline diff to always show the actual amount of seconds (Issue #1666)

13.20 Release 4.3.0 (2021-10-18)

13.20.1 General changes

Upgrade notes

• When an upgrade is done from ISO3 to ISO4, the following files could be renamed to the
same filename with a .rpmsave suffix: /etc/sysconfig/inmanta-server, /etc/sysconfig/
inmanta-agent, /etc/logrotate.d/inmanta, /etc/inmanta/inmanta.d/extensions.cfg, /etc/
inmanta/inmanta.cfg. After the upgrade, these files should be restored to their original location.

13.20.2 Inmanta-core: release 4.3.1 (2021-10-18)

New features

• Improved south bound integration documentation (Issue #2954)

• Compiler improvement: made is defined gradually executable

• Added resource_list endpoint (Issue #3045)

• Added resource_details endpoint (Issue #3046)

• Added resource_history endpoint (Issue #3048)

• Added resource_logs endpoint (Issue #3109)

• Added endpoint to list compile reports (Issue #3131)

• Added endpoint to get compile details (Issue #3132)

• Restructured module developer guide

• added operational procedures documentation

• added instructions about passwordless sudo to remote agent setup

Upgrade notes

• On newly created environments, the environment setting purge_on_delete will be set to false by default
instead of true. This overrides any purge_on_delete settings on individual resources. You need to explicitly
set it to true to enable the old behavior again. (Issue #2958)

• NOTSET is no longer accepted as a log level by the agent’s context logger. It was not a valid log level before,
but it was accepted by the agent.

• After upgrading the Inmanta server, all virtual environments used by the compiler and the agents have to be
removed. Use the following procedure to achive this:

– Stop the Inmanta server

– Remove all /var/lib/inmanta/server/environments/<environment-id>/.env directories

– Remove all /var/lib/inmanta/<environment-id> directories

– Start the Inmanta server again

13.20. Release 4.3.0 (2021-10-18) 487

Inmanta Documentation, Release 7.1.1.dev20240504011805

Bug fixes

• Ensure that special characters in the resource action log are not escaped. (Issue inmanta/inmanta-lsm#699)

• Fixed agent cache behavior when cache_none is provided

• Removed NOTSET loglevel from all API’s

13.20.3 Inmanta-license: release 1.3.3 (2021-10-18)

New features

• Build python3.8 packages (Issue inmanta/irt#497)

13.20.4 Inmanta-lsm: release 1.8.0 (2021-10-18)

New features

• Added embedded entities support for openapi. (Issue #452)

• Added service instance list endpoint to openapi documentation (Issue #546)

• Allow type updates in the service catalogue if all instance conform the new type. (Issue #566)

• Add instance summary to the service entity list and get methods (Issue #603)

• Filter attributes in POST and PATCH openapi request body, to only include the ones whose attribute modifier
allows it. (Issue #630)

• Don’t include deleted instances in summary (Issue #640)

• Sort service catalog on service name (Issue #657)

• Allow updating modifiers in the service catalogue

• Build python3.8 packages (Issue inmanta/irt#497)

Upgrade notes

• The LSM extension now requires additional confirmation for updates in the service catalogue that require
rewriting existing instances. For more information API docs or Procedure manual. (Issue #566)

Bug fixes

• Fixed bug that made it impossible to have the same service identity in different environments/service entities
(Issue #643)

• Fix bug that crashes the diagnose endpoint when a ResourceAction doesn’t have log messages. (Issue #669)

488 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.20.5 Inmanta-support: release 1.3.3 (2021-10-18)

No changelog entries.

13.20.6 Inmanta-ui: release 1.4.0 (2021-10-18)

No changelog entries.

13.20.7 Inmanta-dashboard: release 3.8.0 (2021-10-18)

New features

• Extend proxy support (Issue #130)

13.20.8 Web-console: release 1.7.0 (2021-10-18)

New features

• Create custom type for PageSize (Issue #1076)

• Make environments primary concept in selector (Issue #1471)

• Add resource details page (Issue #1479)

• Add paging, sorting and filtering to the events view (Issue #187)

• Show timestamps with the browser’s timezone (Issue #198)

• Remove environment from components (Issue #247)

• Add clipboard copy for identifiers (Issue #253)

• Fix integer list inputs on service instance forms (Issue #311)

• Add loading after filter update on ServiceInventory (Issue #329)

• Update UI for Diagnose feature (Issue #333)

• Add type hints for special fields on service instance forms (Issue #351)

• Change event date filters to use from/to (Issue #355)

• Add a title for each page (Issue #361)

• Make filters more obvious by adding icons (Issue #363)

• Add instance summary to the catalog view (Issue #379)

• Add summary chart and title to inventory page (Issue #383)

• Add details tab to the catalog view (Issue #384)

• Add Config tab to Service Catalog (Issue #44)

• Show full attribute and clipboard copy in tooltip when value is ellipsed (Issue #469)

• Add feedback to clicking clipboard copy button (Issue #470)

• Add page size selector to inventory table (Issue #644)

• Add support for nested attributes to Instance Form (Issue #696)

• Add Callbacks tab to ServiceCatalog (Issue #697)

• Hide state labels that are 0 and remove the total (Issue #712)

• Fix instance history attribute summary on click behavior (Issue #716)

13.20. Release 4.3.0 (2021-10-18) 489

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Add resource manager and resource view (Issue #725)

• Add resource table to the resource view (Issue #732)

• Add paging to resource table (Issue #735)

• Add sorting to resource table (Issue #736)

• Add filters to resource table (Issue #737)

• Add resource details tab to resource table (Issue #738)

• Add Desired State Tab to Resource row (Issue #739)

• Add resource history page (Issue #740)

• Add Resource Action Log (Issue #741)

• Update Filters on Resource Table (Issue #742)

• Add requires tab to resource table (Issue #791)

• Add support for finding the base url (Issue #836)

• Update pagination to force first page on prev (Issue #917)

• Add emergency stop button (Issue #930)

• Use compact view for the resource table (Issue #931)

• Fix resource version link (Issue #948)

• Add compile reports view (Issue #971)

• Add table to compile reports view (Issue #972)

• Add paging and sorting to compile reports table (Issue #973)

• Link to compile details view from the diagnose page (Issue #974)

• Add compile details view (Issue #976)

• Add filters to compile reports table (Issue #977)

• Select resource when clicking on its id in the requires tab (Issue #979)

• Change mouse pointer when hovering number of requires (Issue #980)

• Fix resource state alignment on requires tab (Issue #981)

• Support editing instance with complex nested attributes (Issue #982)

13.21 Release 4.2.1 (2021-06-01)

13.21.1 Inmanta-core: release 4.2.1 (2021-06-01)

Bug fixes

• Add upperbound to docstring-parser dependency so that pip install does not fail

490 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.21.2 Inmanta-license: release 1.3.2 (2021-06-01)

New features

• Made exceptions more distinct to allow easier processing of support tickets

13.21.3 Inmanta-lsm: release 1.7.0 (2021-06-01)

New features

• Allow filtering on service instance version with a range constraint (lt, le, gt, ge) (Issue #378)

• Added diagnose endpoint for service instance rejection and failure (Issue #408)

• Added service identity (Issue #461)

• Add filtering to the service inventory list api method (Issue #463)

• Add sorting to the service inventory list api method (Issue #466)

• Add option to sort instances by service identity to the service inventory list method (Issue #467)

• Added support for Postgresql 12 (Issue #502)

• Add further links and metadata for paging of service instances (Issue #533)

• Add sorting and paging to the list events api method (Issue #550)

• Add filtering to the list events api method (Issue #551)

Upgrade notes

• The lsm_services_config_set endpoint (/service_inventory/<service_entity>/
<service_id>/config) now requires values in its request body instead of config, for consistency with
the similar method on an entity in the service catalog. (Issue #568)

Deprecation notes

• The timestamp field of a ServiceInstanceLog is deprecated. The value of the last_updated field should
be used instead. (Issue #296)

Bug fixes

• Ensure that the created_at, timestamp and last_updated fields of a ServiceInstanceLog are kept up-
to-date correctly and consistent with respect to the events associated to that ServiceInstanceLog entry. (Issue
#296)

• Fixing lsm api access when server authentication is activated (Issue #548)

• Made service instance config set method consistent with service catalog one (Issue #568)

13.21. Release 4.2.1 (2021-06-01) 491

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.21.4 Inmanta-support: release 1.3.2 (2021-06-01)

No changelog entries.

13.21.5 Inmanta-ui: release 1.3.2 (2021-06-01)

No changelog entries.

13.21.6 Inmanta-dashboard: release 3.7.0 (2021-06-01)

No changelog entries.

13.21.7 Web-console: release 1.6.0 (2021-06-01)

New features

• Add support for service identity in the inventory table (Issue #150)

• Add paging to Service Inventory (Issue #151)

• Add filters to Service Inventory (Issue #152)

• Add sorting to the Service Inventory (Issue #155)

• Mark terminated instances in Service Inventory (Issue #159)

• Add full ServiceInstanceHistory page with breadcrumbs (Issue #186)

• Add basic version of ServiceInstanceHistory (Issue #186)

• Add config tab to ServiceInstance detail view (Issue #188)

• Fix spacing for state value in ResourceTable (Issue #233)

• Remove Settings and Notification symbols (Issue #236)

• Hide Profile when no auth (Issue #237)

• Add indentation to main TreeTable column (Issue #239)

• Sync auto-updating for all components (Issue #243)

• Fix inmanta logo link (Issue #257)

• Add total to pagination on ServiceInventory (Issue #276)

• Open resources tab when clicking on resource deployment progress (Issue #280)

• Fix state update when navigating the Service Inventory (Issue #299)

• Add support for service instance state without a label (Issue inmanta/lsm#294)

13.22 Release 4.2.0 (2021-05-05)

13.22.1 General changes

New features

• Add changelog section to the documentation (Issue inmanta/irt#417)

492 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

Bug fixes

• Added notes about supported operating systems (Issue #181)

13.22.2 Inmanta-core: release 4.2.0 (2021-05-05)

New features

• Mark the stable API using a decorator (Issue #2414)

• More strictly validate the schema of the project.yml and module.yml file (Issue #2723)

• Updated db schema update mechanism to track all installed versions (Issue #2724)

• Add partial support for collection type parameters for GET methods (Issue #2775)

• Add changelog section to the documentation (Issue inmanta/irt#417)

• Added developer getting started guide

• Added experimental caching support to the compiler

• Improved Inmanta install guide for Debian

• Extended stable API documentation (Issue inmanta/inmanta-lsm#408)

• Added built-in performance micro-benchmark, to help diagnose performance issues

• Added ability to do pip install inmanta-core[pytest-inmanta-extension]

Deprecation notes

• Deprecated yaml dictionary syntax for module requires

Bug fixes

• Correctly describe in the documentation how version constraints can be set on module dependencies in the
module.yml file (Issue #2723)

• Ensure that an error at agent startup time is properly logged. (Issue #2777)

• Fixed compiler issue on rescheduling of plugins breaking the cycle breaking (Issue #2787)

• Fixed compiler issue on cycle breaking (Issue #2811)

• Fixed typos in language.rst file

• Changed python versions in install doc

Other notes

• To enable caching on the compiler, either set the config value compiler.cache in the .inmanta file or
pass the option --experimental-cache to inmanta compile

13.22. Release 4.2.0 (2021-05-05) 493

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.22.3 Inmanta-license: release 1.3.2 (2021-05-05)

New features

• Made exceptions more distinct to allow easier processing of support tickets

13.22.4 Inmanta-lsm: release 1.7.0 (2021-05-05)

New features

• Allow filtering on service instance version with a range constraint (lt, le, gt, ge) (Issue #378)

• Added diagnose endpoint for service instance rejection and failure (Issue #408)

• Added service identity (Issue #461)

• Add filtering to the service inventory list api method (Issue #463)

• Add sorting to the service inventory list api method (Issue #466)

• Add option to sort instances by service identity to the service inventory list method (Issue #467)

• Added support for Postgresql 12 (Issue #502)

• Add further links and metadata for paging of service instances (Issue #533)

• Add sorting and paging to the list events api method (Issue #550)

• Add filtering to the list events api method (Issue #551)

Upgrade notes

• The lsm_services_config_set endpoint (/service_inventory/<service_entity>/
<service_id>/config) now requires values in its request body instead of config, for consistency with
the similar method on an entity in the service catalog. (Issue #568)

Deprecation notes

• The timestamp field of a ServiceInstanceLog is deprecated. The value of the last_updated field should
be used instead. (Issue #296)

Bug fixes

• Ensure that the created_at, timestamp and last_updated fields of a ServiceInstanceLog are kept up-
to-date correctly and consistent with respect to the events associated to that ServiceInstanceLog entry. (Issue
#296)

• Fixing lsm api access when server authentication is activated (Issue #548)

• Made service instance config set method consistent with service catalog one (Issue #568)

494 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.22.5 Inmanta-support: release 1.3.2 (2021-05-05)

No changelog entries.

13.22.6 Inmanta-ui: release 1.3.2 (2021-05-05)

No changelog entries.

13.22.7 Inmanta-dashboard: release 3.7.0 (2021-05-05)

No changelog entries.

13.22.8 Web-console: release 1.6.0 (2021-05-05)

New features

• Add support for service identity in the inventory table (Issue #150)

• Add paging to Service Inventory (Issue #151)

• Add filters to Service Inventory (Issue #152)

• Add sorting to the Service Inventory (Issue #155)

• Mark terminated instances in Service Inventory (Issue #159)

• Add full ServiceInstanceHistory page with breadcrumbs (Issue #186)

• Add basic version of ServiceInstanceHistory (Issue #186)

• Add config tab to ServiceInstance detail view (Issue #188)

• Fix spacing for state value in ResourceTable (Issue #233)

• Remove Settings and Notification symbols (Issue #236)

• Hide Profile when no auth (Issue #237)

• Add indentation to main TreeTable column (Issue #239)

• Sync auto-updating for all components (Issue #243)

• Fix inmanta logo link (Issue #257)

• Add total to pagination on ServiceInventory (Issue #276)

• Open resources tab when clicking on resource deployment progress (Issue #280)

• Fix state update when navigating the Service Inventory (Issue #299)

• Add support for service instance state without a label (Issue inmanta/lsm#294)

13.23 Release 4.1.0 (2021-03-19)

13.23.1 inmanta-core: 4.1.0 (2021-03-19)

Bug fixes

• Fix broken order by (#2638)

• Report the Inmanta OSS product version correctly (#2622)

• Set PYTHONPATH so that all subprocesses also see packages in parent venv (#2650, #2747)

13.23. Release 4.1.0 (2021-03-19) 495

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Create virtual environments without pip and use the pip of the parent venv

• Correctly set [:n] as syntactic sugar for [0:n] instead of leaving lower unbound (#2689)

New features

• Add installation procedure for el8 to installation documentation

13.23.2 inmanta-license: 1.3.1 (2021-03-19)

Bug fixes

• Fix the reporting command on python 3.6

13.23.3 inmanta-lsm: 1.6.0 (2021-03-19)

New features

• Added paging support to the service instance list endpoint (#462)

• Include deployment progress summary with the service instance list (#464)

Bug fixes

• Validate order by parameter of list queries (#475)

13.23.4 inmanta-support: 1.3.1 (2021-03-19)

No changelog entries.

13.23.5 inmanta-ui: 1.3.1 (2021-03-19)

No changelog entries.

13.23.6 dashboard: 3.6.0 (2021-01-06)

• Fix sidebar scaling issue (#103)

• Fix status page label (#106)

• Format file content using a monospace font

13.23.7 web-console: 1.5.0 (2021-03-19)

• Add clipboard copy funcionality for the full service instance id (#135)

• Fix validation error for optional boolean inputs (#140)

• Add expand functionality to the service inventory table (#149)

• Add status tab to service inventory (#182)

• Add attributes tab to service inventory (#162)

• Show available set states on the status tab (#94)

496 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Mark instance states according to labels (#153)

• Disable edit and delete instance actions when not allowed by the lifecycle (#184)

• Add resources tab to service inventory (#164)

• Add inmanta favicon (#78)

• Show resource deployment progress in the inventory view (#154)

• Add auto-updating of data to ResourcesTab (#225)

• Add auto-updating of service instances to ServiceInventory (#225)

• Add separate create instance page (#181)

• Add events tab (#183)

• Add auto-updating of services to ServiceCatalog (#227)

13.24 Release 4.0.0 (2021-01-06)

13.24.1 inmanta: 2020.6 (2021-01-06)

New features

• Add support to use a custom venv path in the Project class (#2466)

• Added more specific location information for attributes (#2481)

• Added plugin call anchors to support ctrl-clicking a plugin call (#1954)

• Added rpdb signal handler (#2170)

• Added pagination support on api calls for agent and agentproc (#2500)

• Added support to build RPMs for a python version different from Python3.6 (#1857)

• Added support for assigning null to relations with lower arity 0 (#2459)

• Added documentation on the core dashboard (inmanta/dashboard#63)

• Decouple the compiler version from the OSS product version (#2573)

• Show versions of all installed components when running inmanta --version (#2574)

Bug fixes

• Fix broken links in the documentation (#2495)

• Fixed bug in serialization of Resource with Unknowns in collections (#2603)

• Fixed documentation of install_mode

• Ensure all running compilations are stopped when the server is stopped (#2508)

• Cleanup old entries in the agentprocess and agentinstance database tables (#2499)

• Ensure the compiler service takes into account the environment variables set on the system (#2413)

• Fix --server_address option on inmanta export (#2514)

• Handle failure in an event handler consistently for local and non-local agents (#2509)

• Fix for cross agent dependencies responding to unavailable resources (#2501)

• Handle JSON serialization errors in handler log messages (#1875)

• Fixed too restrictive typing (and coercing) of AttributeStateChange (#2540)

13.24. Release 4.0.0 (2021-01-06) 497

Inmanta Documentation, Release 7.1.1.dev20240504011805

• Export command should raise exception on failure (#2487)

Upgrade notes

• Ensure the database is backed up before executing an upgrade.

Other notes

• The inmanta core package is renamed from inmanta to inmanta-core to allow for true semantic versioning
starting at 4.0.0. A new inmanta package is provided that includes inmanta-core and continues the
<year>.<minor>[.<patch>] version schema.

13.24.2 inmanta-license: 1.3.0 (2021-01-06)

• Update the Product Metadata format according to the changes on inmanta core

13.24.3 inmanta-lsm: 1.5.0 (2021-01-06)

Bug fixes

• Restrict arguments of Field constructor (#392)

• Fix OpenAPI params to match core (#398)

• Allow environment as query parameter for OpenAPI endpoint (#399)

13.24.4 inmanta-support: 1.3.0 (2021-01-06)

Bug fixes

• Add fallback method to dump postgresql data (#55)

• Show full length cli help (#146)

• Show default values of cli parameters (#147)

• Fix server status format when running from cli (#159)

13.24.5 inmanta-ui: 1.3.0 (2021-01-06)

• Dependency updates

13.24.6 dashboard: 3.6.0 (2021-01-06)

• Fix sidebar scaling issue (#103)

• Fix status page label (#106)

• Format file content using a monospace font

498 Chapter 13. Changelog

Inmanta Documentation, Release 7.1.1.dev20240504011805

13.24.7 web-console: 1.4.0 (2021-01-06)

• Upgrade to Patternfly 2020.11 (#110)

• Show resource id on diagnose window (#112)

• Emphasize errors on diagnose window (#113)

• Fix for diagnosing update_rejected state (#118)

• Fix service instance error message style and position (#122)

• Fix error when updating an instance in rejected state (#128)

• Improve support of optional and number attributes (#130, #131)

• Fix table layout with long attribute values (#134)

13.24. Release 4.0.0 (2021-01-06) 499

Inmanta Documentation, Release 7.1.1.dev20240504011805

500 Chapter 13. Changelog

CHAPTER

FOURTEEN

PDF VERSION

Download: inmanta.pdf

501

Inmanta Documentation, Release 7.1.1.dev20240504011805

502 Chapter 14. PDF version

PYTHON MODULE INDEX

i
inmanta.model, 115
inmanta.protocol.methods, 318
inmanta.protocol.methods_v2, 330

503

Inmanta Documentation, Release 7.1.1.dev20240504011805

504 Python Module Index

INDEX

Symbols
_abc_impl (inmanta.agent.handler.ResourceHandler

attribute), 298
_diff() (inmanta.agent.handler.ResourceHandler

method), 299
--action

inmanta-cli-action-log-list command
line option, 253

--action-id
inmanta-cli-action-log-show-messages

command line option, 254
--agent

inmanta-cli-agent-pause command line
option, 254

inmanta-cli-agent-unpause command line
option, 255

inmanta-cli-token-create command line
option, 264

--all
inmanta-cli-agent-pause command line

option, 254
inmanta-cli-agent-unpause command line

option, 255
--api

inmanta-cli-token-create command line
option, 264

--branch
inmanta-cli-environment-create command

line option, 255
inmanta-cli-environment-modify command

line option, 256
--compiler

inmanta-cli-token-create command line
option, 264

--environment
inmanta-cli-action-log-list command

line option, 253
inmanta-cli-action-log-show-messages

command line option, 254
inmanta-cli-agent-list command line

option, 254
inmanta-cli-agent-pause command line

option, 254
inmanta-cli-agent-unpause command line

option, 255
inmanta-cli-environment-setting-delete

command line option, 258
inmanta-cli-environment-setting-get

command line option, 258
inmanta-cli-environment-setting-list

command line option, 258
inmanta-cli-environment-setting-set

command line option, 258
inmanta-cli-lsm-resources-list command

line option, 260
inmanta-cli-lsm-service-entities-list

command line option, 260
inmanta-cli-lsm-service-instances-list

command line option, 261
inmanta-cli-monitor command line

option, 261
inmanta-cli-param-get command line

option, 261
inmanta-cli-param-list command line

option, 262
inmanta-cli-param-set command line

option, 262
inmanta-cli-token-create command line

option, 264
inmanta-cli-version-list command line

option, 265
inmanta-cli-version-release command

line option, 265
inmanta-cli-version-report command

line option, 265
--format

inmanta-cli-environment-show command
line option, 259

--full
inmanta-cli-version-release command

line option, 265
--host

inmanta-cli command line option, 253
inmanta-cli-lsm command line option,

259
--instance

inmanta-cli-lsm-resources-list command
line option, 260

--key
inmanta-cli-environment-setting-delete

command line option, 258
inmanta-cli-environment-setting-get

505

Inmanta Documentation, Release 7.1.1.dev20240504011805

command line option, 258
inmanta-cli-environment-setting-set

command line option, 258
--name

inmanta-cli-environment-create command
line option, 255

inmanta-cli-environment-modify command
line option, 256

inmanta-cli-param-get command line
option, 261

inmanta-cli-param-set command line
option, 262

inmanta-cli-project-create command
line option, 262

inmanta-cli-project-modify command
line option, 263

--port
inmanta-cli command line option, 253
inmanta-cli-lsm command line option,

259
--project

inmanta-cli-environment-create command
line option, 255

--push
inmanta-cli-version-release command

line option, 265
--repo-url

inmanta-cli-environment-create command
line option, 255

inmanta-cli-environment-modify command
line option, 256

--resource
inmanta-cli-param-get command line

option, 261
--rvid

inmanta-cli-action-log-list command
line option, 253

inmanta-cli-action-log-show-messages
command line option, 254

--save
inmanta-cli-environment-create command

line option, 255
--service-entity

inmanta-cli-lsm-resources-list command
line option, 260

inmanta-cli-lsm-service-instances-list
command line option, 261

--update
inmanta-cli-environment-recompile

command line option, 257
--value

inmanta-cli-environment-setting-set
command line option, 258

inmanta-cli-param-set command line
option, 262

--version
inmanta-cli-lsm-resources-list command

line option, 260

inmanta-cli-version-report command
line option, 265

-b
inmanta-cli-environment-create command

line option, 255
inmanta-cli-environment-modify command

line option, 256
-e

inmanta-cli-action-log-list command
line option, 253

inmanta-cli-action-log-show-messages
command line option, 254

inmanta-cli-agent-list command line
option, 254

inmanta-cli-agent-pause command line
option, 254

inmanta-cli-agent-unpause command line
option, 255

inmanta-cli-environment-setting-delete
command line option, 258

inmanta-cli-environment-setting-get
command line option, 258

inmanta-cli-environment-setting-list
command line option, 258

inmanta-cli-environment-setting-set
command line option, 258

inmanta-cli-lsm-resources-list command
line option, 260

inmanta-cli-lsm-service-entities-list
command line option, 260

inmanta-cli-lsm-service-instances-list
command line option, 261

inmanta-cli-monitor command line
option, 261

inmanta-cli-param-get command line
option, 261

inmanta-cli-param-list command line
option, 262

inmanta-cli-param-set command line
option, 262

inmanta-cli-token-create command line
option, 264

inmanta-cli-version-list command line
option, 265

inmanta-cli-version-release command
line option, 265

inmanta-cli-version-report command
line option, 265

-i
inmanta-cli-lsm-resources-list command

line option, 260
inmanta-cli-version-report command

line option, 265
-k

inmanta-cli-environment-setting-delete
command line option, 258

inmanta-cli-environment-setting-get
command line option, 258

506 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta-cli-environment-setting-set
command line option, 258

-l
inmanta-cli-version-report command

line option, 265
-n

inmanta-cli-environment-create command
line option, 255

inmanta-cli-environment-modify command
line option, 256

inmanta-cli-project-create command
line option, 262

inmanta-cli-project-modify command
line option, 263

-o
inmanta-cli-environment-setting-set

command line option, 258
-p

inmanta-cli-environment-create command
line option, 255

inmanta-cli-version-release command
line option, 265

-r
inmanta-cli-environment-create command

line option, 255
inmanta-cli-environment-modify command

line option, 256
-s

inmanta-cli-environment-create command
line option, 255

inmanta-cli-lsm-resources-list command
line option, 260

inmanta-cli-lsm-service-instances-list
command line option, 261

-u
inmanta-cli-environment-recompile

command line option, 257
-v

inmanta-cli-lsm-resources-list command
line option, 260

A
add_change() (inmanta.agent.handler.HandlerContext

method), 298
add_changes() (inmanta.agent.handler.HandlerContext

method), 298
add_function() (inmanta.plugins.PluginMeta class

method), 295
add_user() (in module in-

manta.protocol.methods_v2), 330
agent, 235
agent_action() (in module in-

manta.protocol.methods_v2), 330
all_agents_action() (in module in-

manta.protocol.methods_v2), 330
ApplicationContext (class in in-

manta.server.extensions), 351
apt.AptPackage (built-in class), 354

apt::Repository, 354
apt::Repository.base_url, 354
apt::Repository.host, 354
apt::Repository.name, 354
apt::Repository.release, 354
apt::Repository.repo, 354
apt::Repository.trusted, 354
apt::simpleRepo, 354
Attribute (class in inmanta.ast.attribute), 307
Attribute (class in inmanta.model), 115
available() (inmanta.agent.handler.CRUDHandler

method), 300
aws.ElasticSearch (built-in class), 362
aws.ElasticSearchHandler (built-in class), 362
aws.ELB (built-in class), 361
aws.ELBHandler (built-in class), 362
aws.elbid()

built-in function, 361
aws.get_api_id()

built-in function, 361
aws.InternetGateway (built-in class), 361
aws.InternetGatewayHandler (built-in class), 363
aws.RDS (built-in class), 362
aws.RDSHandler (built-in class), 362
aws.Route (built-in class), 361
aws.RouteHandler (built-in class), 363
aws.SecurityGroup (built-in class), 361
aws.SecurityGroupHandler (built-in class), 363
aws.Subnet (built-in class), 361
aws.SubnetHandler (built-in class), 363
aws.VirtualMachine (built-in class), 362
aws.VirtualMachineHandler (built-in class), 362
aws.Volume (built-in class), 362
aws.VolumeHandler (built-in class), 362
aws.VPC (built-in class), 361
aws.VPCHandler (built-in class), 363
aws::agentConfig, 360
aws::analytics::ElasticSearch, 359
aws::analytics::ElasticSearch.access_policies,

360
aws::analytics::ElasticSearch.automated_snapshot_start_hour,

360
aws::analytics::ElasticSearch.dedicated_master_count,

360
aws::analytics::ElasticSearch.dedicated_master_enabled,

359
aws::analytics::ElasticSearch.dedicated_master_type,

359
aws::analytics::ElasticSearch.domain_name,

359
aws::analytics::ElasticSearch.ebs_enabled,

360
aws::analytics::ElasticSearch.elasticsearch_version,

359
aws::analytics::ElasticSearch.instance_count,

359
aws::analytics::ElasticSearch.instance_type,

359

Index 507

Inmanta Documentation, Release 7.1.1.dev20240504011805

aws::analytics::ElasticSearch.volume_size,
360

aws::analytics::ElasticSearch.volume_type,
360

aws::analytics::ElasticSearch.zone_awareness_enabled,
359

aws::AWSResource, 355
aws::AWSResource.provider, 355
aws::database::RDS, 360
aws::database::RDS.allocated_storage, 360
aws::database::RDS.engine, 360
aws::database::RDS.engine_version, 360
aws::database::RDS.flavor, 360
aws::database::RDS.master_user_name, 360
aws::database::RDS.master_user_password,

360
aws::database::RDS.name, 360
aws::database::RDS.port, 360
aws::database::RDS.public, 360
aws::database::RDS.subnet_group, 360
aws::database::RDS.tags, 360
aws::direction, 355
aws::ELB, 355
aws::ELB.dest_port, 355
aws::ELB.instances, 355
aws::ELB.listen_port, 355
aws::ELB.name, 355
aws::ELB.protocol, 355
aws::ELB.security_group, 355
aws::GroupRule, 355
aws::GroupRule.remote_group, 355
aws::instance_tenancy, 355
aws::InternetGateway, 355
aws::InternetGateway.name, 356
aws::InternetGateway.vpc, 356
aws::IPrule, 355
aws::IPrule.remote_prefix, 355
aws::protocol, 355
aws::Provider, 356
aws::Provider.access_key, 356
aws::Provider.auto_agent, 356
aws::Provider.availability_zone, 356
aws::Provider.name, 356
aws::Provider.region, 356
aws::Provider.secret_key, 356
aws::req, 360
aws::Route, 356
aws::Route.destination, 356
aws::Route.nexthop, 356
aws::Route.vpc, 356
aws::SecurityGroup, 356
aws::SecurityGroup.description, 356
aws::SecurityGroup.manage_all, 356
aws::SecurityGroup.name, 356
aws::SecurityGroup.retries, 356
aws::SecurityGroup.rules, 357
aws::SecurityGroup.vpc, 357
aws::SecurityGroup.wait, 357

aws::SecurityRule, 357
aws::SecurityRule.direction, 357
aws::SecurityRule.group, 357
aws::SecurityRule.ip_protocol, 357
aws::SecurityRule.port, 357
aws::SecurityRule.port_max, 357
aws::SecurityRule.port_min, 357
aws::Subnet, 357
aws::Subnet.availability_zone, 357
aws::Subnet.cidr_block, 357
aws::Subnet.map_public_ip_on_launch, 357
aws::Subnet.name, 357
aws::Subnet.vpc, 357
aws::VirtualMachine, 358
aws::VirtualMachine.name, 358
aws::VirtualMachine.public_key, 359
aws::VirtualMachine.security_groups, 359
aws::VirtualMachine.subnet, 359
aws::VirtualMachine.tags, 359
aws::VirtualMachine.volumes, 359
aws::VMAttributes, 357
aws::VMAttributes.ebs_optimized, 358
aws::VMAttributes.flavor, 358
aws::VMAttributes.ignore_extra_volumes, 358
aws::VMAttributes.ignore_wrong_image, 358
aws::VMAttributes.image, 358
aws::VMAttributes.root_volume_size, 358
aws::VMAttributes.root_volume_type, 358
aws::VMAttributes.source_dest_check, 358
aws::VMAttributes.subnet_id, 358
aws::VMAttributes.user_data, 358
aws::Volume, 359
aws::Volume.attachmentpoint, 359
aws::Volume.availability_zone, 359
aws::Volume.encrypted, 359
aws::Volume.name, 359
aws::Volume.size, 359
aws::Volume.tags, 359
aws::Volume.vm, 359
aws::Volume.volume_type, 359
aws::VPC, 358
aws::VPC.cidr_block, 358
aws::VPC.enableDnsHostnames, 358
aws::VPC.enableDnsSupport, 358
aws::VPC.instance_tenancy, 358
aws::VPC.internet_gateway, 358
aws::VPC.name, 358
aws::VPC.routes, 358
aws::VPC.subnets, 358

B
BadRequest (class in inmanta.protocol.exceptions),

113
BaseDocument (class in inmanta.data), 313
BaseHttpException (class in in-

manta.protocol.exceptions), 113
BaseModel (class in inmanta.data.model), 317
Bool (class in inmanta.ast.type), 312

508 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

built-in function
aws.elbid(), 361
aws.get_api_id(), 361
exec.in_shell(), 365
ip.add(), 370
ip.cidr_to_network(), 370
ip.concat(), 370
ip.hostname(), 370
ip.ipindex(), 370
ip.ipnet(), 370
ip.is_valid_cidr(), 370
ip.is_valid_cidr_v10(), 370
ip.is_valid_cidr_v6(), 370
ip.is_valid_ip(), 370
ip.is_valid_ip_v10(), 370
ip.is_valid_ip_v6(), 370
ip.is_valid_netmask(), 370
ip.net_to_nm(), 370
ip.netmask(), 370
ip.network(), 370
lsm.all(), 377
lsm.context_v2_unwrapper(), 377
lsm.current_state(), 379
lsm.format(), 379
lsm.fsm_to_dot(), 380
lsm.has_current_state(), 380
lsm.is_validating(), 380
lsm.render_dot(), 380
lsm.update_read_only_attribute(), 380
lsm.validate_service_index(), 380
openstack.find_flavor(), 396
openstack.find_image(), 396
ssh.get_private_key(), 403
ssh.get_public_key(), 403
ssh.get_putty_key(), 403
std.add_to_ip(), 415
std.assert(), 415
std.at(), 415
std.attr(), 415
std.capitalize(), 415
std.contains(), 415
std.count(), 415
std.dict_get(), 415
std.environment(), 415
std.environment_name(), 415
std.environment_server(), 415
std.equals(), 415
std.familyof(), 415
std.file(), 415
std.filter(), 415
std.flatten(), 415
std.generate_password(), 416
std.get_env(), 416
std.get_env_int(), 416
std.getattr(), 416
std.getfact(), 416
std.hostname(), 416
std.inlineif(), 416

std.invert(), 416
std.ip_address_from_interface(), 416
std.ipindex(), 416
std.is_base64_encoded(), 416
std.is_instance(), 416
std.is_unknown(), 416
std.isset(), 416
std.item(), 416
std.key_sort(), 416
std.len(), 417
std.length(), 417
std.limit(), 417
std.list_files(), 417
std.lower(), 417
std.netmask(), 417
std.network_address(), 417
std.objid(), 417
std.password(), 417
std.prefixlen(), 417
std.prefixlength_to_netmask(), 417
std.print(), 417
std.replace(), 417
std.select(), 417
std.sequence(), 417
std.server_ca(), 418
std.server_port(), 418
std.server_ssl(), 418
std.server_token(), 418
std.source(), 418
std.split(), 418
std.template(), 418
std.timestamp(), 418
std.to_number(), 418
std.type(), 418
std.unique(), 418
std.unique_file(), 418
std.upper(), 418
std.validate_type(), 418

C
cache() (in module inmanta.agent.handler), 297
calculate_diff() (in-

manta.agent.handler.CRUDHandler
method), 300

can_reload() (inmanta.agent.handler.CRUDHandler
method), 300

cast() (inmanta.ast.type.Primitive method), 311
category (inmanta.ast.export.Error attribute), 351
character (inmanta.ast.export.Position attribute), 353
check_facts() (inmanta.agent.handler.CRUDHandler

method), 300
check_facts() (inmanta.agent.handler.ResourceHandler

method), 299
check_resource() (in-

manta.agent.handler.CRUDHandler
method), 300

check_resource() (in-
manta.agent.handler.ResourceHandler

Index 509

Inmanta Documentation, Release 7.1.1.dev20240504011805

method), 299
chmod() (inmanta.agent.io.local.LocalIO method),

304
chown() (inmanta.agent.io.local.LocalIO method),

304
clear() (inmanta.plugins.PluginMeta class method),

295
clear_database() (in module inmanta.db.util), 317
clear_environment() (in module in-

manta.protocol.methods), 318
clone() (inmanta.resources.Resource method), 296
close() (inmanta.agent.handler.CRUDHandler

method), 301
close() (inmanta.agent.io.local.LocalIO method),

304
code (inmanta.protocol.common.Result attribute), 313
ColumnNotFound (class in inmanta.data.schema), 114
Compile (class in inmanta.data), 314
compile_details() (in module in-

manta.protocol.methods_v2), 331
CompileData (class in inmanta.data.model), 351
CompilerException (class in inmanta.ast), 294
configuration model, 235
ConfigurationModel (class in inmanta.data), 315
Conflict (class in inmanta.protocol.exceptions), 114
ConstraintType (class in inmanta.ast.type), 312
Context (class in inmanta.plugins), 294
create_environment() (in module in-

manta.protocol.methods), 318
create_project() (in module in-

manta.protocol.methods), 319
create_resource() (in-

manta.agent.handler.CRUDHandler
method), 301

create_token() (in module in-
manta.protocol.methods), 319

CRITICAL (inmanta.const.LogLevel attribute), 293
CRUDHandler (class in inmanta.agent.handler), 300

D
DEBUG (inmanta.const.LogLevel attribute), 293
delete_environment() (in module in-

manta.protocol.methods), 319
delete_param() (in module in-

manta.protocol.methods), 319
delete_project() (in module in-

manta.protocol.methods), 319
delete_resource() (in-

manta.agent.handler.CRUDHandler
method), 301

delete_setting() (in module in-
manta.protocol.methods), 319

delete_user() (in module in-
manta.protocol.methods_v2), 331

delete_version() (in module in-
manta.protocol.methods), 319

dependency_manager() (in module inmanta.export),
307

deploy (inmanta.const.ResourceAction attribute), 294
deploy() (in module inmanta.protocol.methods), 320
deploy() (inmanta.agent.handler.CRUDHandler

method), 301
desired state, 235
Dict (class in inmanta.ast.type), 312
DictPath (class in inmanta.util.dict_path), 102
diff() (in module inmanta.protocol.methods), 320
DirectValue (class in inmanta.model), 115
discovered_resource_create() (in module in-

manta.protocol.methods_v2), 331
discovered_resource_create_batch() (in mod-

ule inmanta.protocol.methods_v2), 331
discovered_resources_get() (in module in-

manta.protocol.methods_v2), 331
discovered_resources_get_batch() (in module

inmanta.protocol.methods_v2), 331
do_changes() (inmanta.agent.handler.CRUDHandler

method), 301
do_changes() (inmanta.agent.handler.ResourceHandler

method), 299
do_dryrun() (in module inmanta.protocol.methods),

320
do_reload() (inmanta.agent.handler.CRUDHandler

method), 301
dryrun (inmanta.const.ResourceAction attribute), 294
dryrun_list() (in module in-

manta.protocol.methods), 320
dryrun_report() (in module in-

manta.protocol.methods), 320
dryrun_request() (in module in-

manta.protocol.methods), 320
dryrun_trigger() (in module in-

manta.protocol.methods_v2), 332
dryrun_update() (in module in-

manta.protocol.methods), 321
DSL, 235
DynamicProxy (class in inmanta.execute.proxy), 317

E
end (inmanta.ast.export.Range attribute), 353
entity, 235
Entity (class in inmanta.model), 116
ENVIRONMENT

inmanta-cli-environment-delete command
line option, 256

inmanta-cli-environment-modify command
line option, 256

inmanta-cli-environment-recompile
command line option, 257

inmanta-cli-environment-save command
line option, 257

inmanta-cli-environment-show command
line option, 259

environment, 235
Environment (class in inmanta.data), 315
environment_clear() (in module in-

manta.protocol.methods_v2), 332

510 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

environment_create() (in module in-
manta.protocol.methods_v2), 332

environment_create_token() (in module in-
manta.protocol.methods_v2), 333

environment_delete() (in module in-
manta.protocol.methods_v2), 333

environment_get() (in module in-
manta.protocol.methods_v2), 333

environment_list() (in module in-
manta.protocol.methods_v2), 333

environment_modify() (in module in-
manta.protocol.methods_v2), 333

environment_setting_delete() (in module in-
manta.protocol.methods_v2), 334

environment_setting_get() (in module in-
manta.protocol.methods_v2), 334

environment_settings_list() (in module in-
manta.protocol.methods_v2), 334

environment_settings_set() (in module in-
manta.protocol.methods_v2), 334

Error (class in inmanta.ast.export), 351
ERROR (inmanta.const.LogLevel attribute), 293
ErrorCategory (class in inmanta.ast.export), 352
errors (inmanta.data.model.CompileData attribute),

351
exec.in_shell()

built-in function, 365
exec.PosixRun (built-in class), 365
exec.Run (built-in class), 365
exec::execHost, 365
exec::Run, 363
exec::Run.command, 364
exec::Run.creates, 364
exec::Run.cwd, 364
exec::Run.environment, 364
exec::Run.host, 364
exec::Run.onlyif, 364
exec::Run.path, 364
exec::Run.reload, 364
exec::Run.reload_only, 364
exec::Run.returns, 364
exec::Run.skip_on_fail, 364
exec::Run.timeout, 364
exec::Run.unless, 364
execute() (inmanta.agent.handler.CRUDHandler

method), 302
execute() (inmanta.agent.handler.ResourceHandler

method), 299
expert feature, 235
ExplicitPluginException (class in inmanta.ast),

294
ExternalException (class in inmanta.ast), 294

F
facts, 235
facts() (inmanta.agent.handler.CRUDHandler

method), 302

fields_updated() (in-
manta.agent.handler.HandlerContext
method), 298

file_exists() (inmanta.agent.io.local.LocalIO
method), 304

file_stat() (inmanta.agent.io.local.LocalIO
method), 304

Forbidden (class in inmanta.protocol.exceptions), 113
from_path() (inmanta.module.Module class method),

308
from_path() (inmanta.module.ModuleLike class

method), 308
from_path() (inmanta.module.ModuleV1 class

method), 308
from_path() (inmanta.module.ModuleV2 class

method), 309

G
get() (inmanta.module.Project class method), 310
get_agent_process() (in module in-

manta.protocol.methods), 321
get_agent_process_details() (in module in-

manta.protocol.methods_v2), 334
get_agents() (in module in-

manta.protocol.methods_v2), 335
get_all_facts() (in module in-

manta.protocol.methods_v2), 335
get_api_docs() (in module in-

manta.protocol.methods_v2), 336
get_base_type() (inmanta.ast.type.Type method),

311
get_by_id() (inmanta.data.BaseDocument class

method), 313
get_client() (inmanta.agent.handler.CRUDHandler

method), 302
get_client() (inmanta.plugins.Context method), 294
get_code() (in module inmanta.protocol.methods),

321
get_compile_data() (in module in-

manta.protocol.methods_v2), 336
get_compile_queue() (in module in-

manta.protocol.methods), 321
get_compile_reports() (in module in-

manta.protocol.methods_v2), 336
get_compiler() (inmanta.plugins.Context method),

294
get_data_dir() (inmanta.plugins.Context method),

294
get_depended_by() (in-

manta.server.protocol.ServerSlice method),
106

get_dependencies() (in-
manta.server.protocol.ServerSlice method),
106

get_diff_of_versions() (in module in-
manta.protocol.methods_v2), 337

get_dryrun_diff() (in module in-
manta.protocol.methods_v2), 337

Index 511

Inmanta Documentation, Release 7.1.1.dev20240504011805

get_element() (inmanta.util.dict_path.DictPath
method), 102

get_elements() (inmanta.util.dict_path.DictPath
method), 102

get_environment() (in module in-
manta.protocol.methods), 321

get_environment_id() (inmanta.plugins.Context
method), 295

get_environment_metrics() (in module in-
manta.protocol.methods_v2), 338

get_fact() (in module in-
manta.protocol.methods_v2), 338

get_facts() (in module in-
manta.protocol.methods_v2), 338

get_file() (in module inmanta.protocol.methods),
321

get_file() (inmanta.agent.handler.CRUDHandler
method), 302

get_functions() (inmanta.plugins.PluginMeta class
method), 296

get_installed_module() (in-
manta.module.ModuleSource method),
309

get_key() (inmanta.util.dict_path.DictPath method),
102

get_list() (inmanta.data.BaseDocument class
method), 313

get_logs_for_version() (in-
manta.data.ResourceAction class method),
317

get_notification() (in module in-
manta.protocol.methods_v2), 339

get_param() (in module inmanta.protocol.methods),
321

get_parameter() (in module in-
manta.protocol.methods), 322

get_parameters() (in module in-
manta.protocol.methods_v2), 339

get_path_sections() (in-
manta.util.dict_path.DictPath method),
102

get_pip_config() (in module in-
manta.protocol.methods_v2), 339

get_plugin_files() (inmanta.module.Module
method), 308

get_project() (in module in-
manta.protocol.methods), 322

get_queue_scheduler() (inmanta.plugins.Context
method), 295

get_report() (in module inmanta.protocol.methods),
322

get_reports() (in module in-
manta.protocol.methods), 322

get_resolver() (inmanta.plugins.Context method),
295

get_resource() (in module in-
manta.protocol.methods), 322

get_resource_actions() (in module in-

manta.protocol.methods_v2), 340
get_resource_events() (in module in-

manta.protocol.methods_v2), 340
get_resources_for_agent() (in module in-

manta.protocol.methods), 323
get_resources_for_version() (in-

manta.data.Resource class method), 316
get_resources_in_version() (in module in-

manta.protocol.methods_v2), 341
get_server_status() (in module in-

manta.protocol.methods), 323
get_setting() (in module in-

manta.protocol.methods), 323
get_source_code() (in module in-

manta.protocol.methods_v2), 342
get_state() (in module inmanta.protocol.methods),

323
get_status() (in module inmanta.protocol.methods),

323
get_substitute_by_id() (inmanta.data.Compile

class method), 314
get_sync_client() (inmanta.plugins.Context

method), 295
get_type() (inmanta.ast.attribute.Attribute method),

307
get_type() (inmanta.plugins.Context method), 295
get_version() (in module in-

manta.protocol.methods), 323
get_versions() (inmanta.data.ConfigurationModel

class method), 315
getfact (inmanta.const.ResourceAction attribute),

294

H
halt_environment() (in module in-

manta.protocol.methods_v2), 342
handle (class in inmanta.protocol.decorators), 111
handler, 235
HandlerContext (class in inmanta.agent.handler),

298
hash_file() (inmanta.agent.io.local.LocalIO

method), 304
heartbeat() (in module inmanta.protocol.methods),

324
heartbeat_reply() (in module in-

manta.protocol.methods), 324

I
Id (class in inmanta.resources), 296
ignore_env() (in module inmanta.protocol.methods),

324
IgnoreResourceException (class in in-

manta.resources), 296
INFO (inmanta.const.LogLevel attribute), 293
infrastructure, 235
infrastructure-as-code, 236
init_env() (inmanta.env.VirtualEnv method), 311

512 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

inmanta.data.TBaseDocument (built-in variable),
313

inmanta.model
module, 115

inmanta.protocol.methods
module, 318

inmanta.protocol.methods_v2
module, 330

inmanta_lsm.const.LSM_ENV_VARS (built-in vari-
able), 294

inmanta-cli command line option
--host, 253
--port, 253

inmanta-cli-action-log-list command line
option

--action, 253
--environment, 253
--rvid, 253
-e, 253

inmanta-cli-action-log-show-messages
command line option

--action-id, 254
--environment, 254
--rvid, 254
-e, 254

inmanta-cli-agent-list command line option
--environment, 254
-e, 254

inmanta-cli-agent-pause command line
option

--agent, 254
--all, 254
--environment, 254
-e, 254

inmanta-cli-agent-unpause command line
option

--agent, 255
--all, 255
--environment, 255
-e, 255

inmanta-cli-environment-create command
line option

--branch, 255
--name, 255
--project, 255
--repo-url, 255
--save, 255
-b, 255
-n, 255
-p, 255
-r, 255
-s, 255

inmanta-cli-environment-delete command
line option

ENVIRONMENT, 256
inmanta-cli-environment-modify command

line option
--branch, 256

--name, 256
--repo-url, 256
-b, 256
-n, 256
-r, 256
ENVIRONMENT, 256

inmanta-cli-environment-recompile command
line option

--update, 257
-u, 257
ENVIRONMENT, 257

inmanta-cli-environment-save command line
option

ENVIRONMENT, 257
inmanta-cli-environment-setting-delete

command line option
--environment, 258
--key, 258
-e, 258
-k, 258

inmanta-cli-environment-setting-get
command line option

--environment, 258
--key, 258
-e, 258
-k, 258

inmanta-cli-environment-setting-list
command line option

--environment, 258
-e, 258

inmanta-cli-environment-setting-set
command line option

--environment, 258
--key, 258
--value, 258
-e, 258
-k, 258
-o, 258

inmanta-cli-environment-show command line
option

--format, 259
ENVIRONMENT, 259

inmanta-cli-lsm command line option
--host, 259
--port, 259

inmanta-cli-lsm-resources-list command
line option

--environment, 260
--instance, 260
--service-entity, 260
--version, 260
-e, 260
-i, 260
-s, 260
-v, 260

inmanta-cli-lsm-service-entities-list
command line option

--environment, 260

Index 513

Inmanta Documentation, Release 7.1.1.dev20240504011805

-e, 260
inmanta-cli-lsm-service-instances-list

command line option
--environment, 261
--service-entity, 261
-e, 261
-s, 261

inmanta-cli-monitor command line option
--environment, 261
-e, 261

inmanta-cli-param-get command line option
--environment, 261
--name, 261
--resource, 261
-e, 261

inmanta-cli-param-list command line option
--environment, 262
-e, 262

inmanta-cli-param-set command line option
--environment, 262
--name, 262
--value, 262
-e, 262

inmanta-cli-project-create command line
option

--name, 262
-n, 262

inmanta-cli-project-delete command line
option

PROJECT, 263
inmanta-cli-project-modify command line

option
--name, 263
-n, 263
PROJECT, 263

inmanta-cli-project-show command line
option

PROJECT, 264
inmanta-cli-token-create command line

option
--agent, 264
--api, 264
--compiler, 264
--environment, 264
-e, 264

inmanta-cli-version-list command line
option

--environment, 265
-e, 265

inmanta-cli-version-release command line
option

--environment, 265
--full, 265
--push, 265
-e, 265
-p, 265
VERSION, 265

inmanta-cli-version-report command line
option

--environment, 265
--version, 265
-e, 265
-i, 265
-l, 265

InmantaBootloader (class in in-
manta.server.bootloader), 351

install_modules() (inmanta.module.Project
method), 310

INSTALL_OPTS (in module inmanta.module), 308
InstallMode (class in inmanta.module), 307
instance, 236
Integer (class in inmanta.ast.type), 312
InvalidMetadata (class in inmanta.module), 308
InvalidModuleException (class in in-

manta.module), 308
ip.add()

built-in function, 370
ip.cidr_to_network()

built-in function, 370
ip.concat()

built-in function, 370
ip.hostname()

built-in function, 370
ip.ipindex()

built-in function, 370
ip.ipnet()

built-in function, 370
ip.is_valid_cidr()

built-in function, 370
ip.is_valid_cidr_v10()

built-in function, 370
ip.is_valid_cidr_v6()

built-in function, 370
ip.is_valid_ip()

built-in function, 370
ip.is_valid_ip_v10()

built-in function, 370
ip.is_valid_ip_v6()

built-in function, 370
ip.is_valid_netmask()

built-in function, 370
ip.net_to_nm()

built-in function, 370
ip.netmask()

built-in function, 370
ip.network()

built-in function, 370
ip::Address, 366
ip::Alias, 366
ip::Alias.alias, 366
ip::Alias.dhcp, 366
ip::Alias.netmask, 366
ip::Alias.server, 366
ip::cidr, 365
ip::cidr_v10, 365

514 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

ip::cidr_v6, 365
ip::DstService, 366
ip::Host, 367
ip::Host.clients, 367
ip::Host.servers, 367
ip::IP, 367
ip::ip, 366
ip::IP.v4, 367
ip::ip_v10, 366
ip::ip_v6, 366
ip::mask, 366
ip::Network, 367
ip::Network.dhcp, 367
ip::Network.name, 367
ip::Network.netmask, 367
ip::Network.network, 367
ip::Port, 367
ip::port, 366
ip::Port.high, 367
ip::PortRange, 367
ip::PortRange.high, 367
ip::PortRange.low, 367
ip::protocol, 366
ip::Service, 367
ip::Service.dst_range, 368
ip::Service.listening_servers, 368
ip::Service.proto, 368
ip::Service.src_range, 368
ip::services::BaseClient, 368
ip::services::BaseClient.servers, 368
ip::services::BaseServer, 368
ip::services::BaseServer.clients, 368
ip::services::BaseServer.services, 368
ip::services::Client, 368
ip::services::Client.host, 368
ip::services::Server, 368
ip::services::Server.host, 368
ip::services::Server.ips, 368
ip::services::VirtualClient, 368
ip::services::VirtualClient.name, 368
ip::services::VirtualHost, 369
ip::services::VirtualHost.hostname, 369
ip::services::VirtualIp, 369
ip::services::VirtualIp.address, 369
ip::services::VirtualNetwork, 369
ip::services::VirtualNetwork.netmask, 369
ip::services::VirtualNetwork.network, 369
ip::services::VirtualRange, 369
ip::services::VirtualRange.from, 369
ip::services::VirtualRange.to, 369
ip::services::VirtualScope, 369
ip::services::VirtualScope.side, 369
ip::services::VirtualServer, 369
ip::services::VirtualServer.name, 369
ip::services::VirtualSide, 369
ip::services::VirtualSide.scope, 369
is_compiling() (in module in-

manta.protocol.methods), 324

is_dry_run() (inmanta.agent.handler.HandlerContext
method), 298

is_editable() (inmanta.module.ModuleV2 method),
309

is_primitive() (inmanta.ast.type.Type method), 311
is_remote() (inmanta.agent.io.local.LocalIO

method), 305
is_symlink() (inmanta.agent.io.local.LocalIO

method), 305

L
lifecycle, 185
line (inmanta.ast.export.Position attribute), 353
List (class in inmanta.ast.type), 312
list_agent_processes() (in module in-

manta.protocol.methods), 324
list_agents() (in module in-

manta.protocol.methods), 325
list_changes() (in-

manta.agent.handler.CRUDHandler
method), 302

list_changes() (in-
manta.agent.handler.ResourceHandler
method), 299

list_desired_state_versions() (in module in-
manta.protocol.methods_v2), 342

list_dryruns() (in module in-
manta.protocol.methods_v2), 342

list_environments() (in module in-
manta.protocol.methods), 325

list_notifications() (in module in-
manta.protocol.methods_v2), 342

list_params() (in module in-
manta.protocol.methods), 325

list_projects() (in module in-
manta.protocol.methods), 325

list_settings() (in module in-
manta.protocol.methods), 325

list_users() (in module in-
manta.protocol.methods_v2), 343

list_versions() (in module in-
manta.protocol.methods), 325

Literal (class in inmanta.ast.type), 312
LiteralDict (class in inmanta.ast.type), 312
LiteralList (class in inmanta.ast.type), 312
load() (inmanta.module.Project method), 310
LocalIO (class in inmanta.agent.io.local), 304
Location (class in inmanta.ast.export), 352
Location (class in inmanta.model), 116
location (inmanta.ast.export.Error attribute), 351
login() (in module inmanta.protocol.methods_v2),

343
LogLevel (class in inmanta.const), 293
lsm.all()

built-in function, 377
lsm.context_v2_unwrapper()

built-in function, 377
lsm.current_state()

Index 515

Inmanta Documentation, Release 7.1.1.dev20240504011805

built-in function, 379
lsm.format()

built-in function, 379
lsm.fsm_to_dot()

built-in function, 380
lsm.has_current_state()

built-in function, 380
lsm.is_validating()

built-in function, 380
lsm.LifecycleTransferHandler (built-in class),

382
lsm.LifecycleTransferResource (built-in class),

382
lsm.render_dot()

built-in function, 380
lsm.ServiceInstanceHandler (built-in class), 382
lsm.ServiceInstanceResource (built-in class), 382
lsm.update_read_only_attribute()

built-in function, 380
lsm.validate_service_index()

built-in function, 380
lsm::attribute_modifier, 371
lsm::attribute_set_opt, 371
lsm::EmbeddedEntity, 371
lsm::EmbeddedEntity.__annotations, 371
lsm::EmbeddedEntity.__lsm_key_attributes,

371
lsm::InterServiceRelation, 371
lsm::labels, 371
lsm::LifecycleStateMachine, 371
lsm::LifecycleStateMachine.initial_state,

372
lsm::LifecycleStateMachine.name, 372
lsm::LifecycleStateMachine.render_graph,

372
lsm::LifecycleStateMachine.transfers, 372
lsm::LifecycleTransfer, 372
lsm::LifecycleTransfer.agent, 372
lsm::LifecycleTransfer.instance_id, 372
lsm::LifecycleTransfer.next_version, 372
lsm::LifecycleTransfer.purge_on_delete, 372
lsm::LifecycleTransfer.resources, 372
lsm::LifecycleTransfer.service_entity, 372
lsm::operation, 371
lsm::RelationAnnotations, 372
lsm::RelationAnnotations.annotations, 372
lsm::RelationshipMetadata, 372
lsm::RelationshipMetadata.modifier, 372
lsm::ServiceBase, 372
lsm::serviceBase, 377
lsm::ServiceBase.children, 373
lsm::ServiceBase.owned_resources, 373
lsm::ServiceBase.parent, 373
lsm::ServiceBase.purge_resources, 373
lsm::ServiceBase.resources, 373
lsm::ServiceEntity, 373
lsm::ServiceEntity.__annotations, 374
lsm::ServiceEntity.current_state, 374

lsm::ServiceEntity.entity_binding, 374
lsm::ServiceEntity.instance_id, 373
lsm::ServiceEntityBinding, 374
lsm::ServiceEntityBinding.allocation_spec,

374
lsm::ServiceEntityBinding.lifecycle, 374
lsm::ServiceEntityBinding.owned, 374
lsm::ServiceEntityBinding.owner, 374
lsm::ServiceEntityBinding.relation_to_owner,

374
lsm::ServiceEntityBinding.service_entity,

374
lsm::ServiceEntityBinding.service_entity_name,

374
lsm::ServiceEntityBinding.service_identity,

374
lsm::ServiceEntityBinding.service_identity_display_name,

374
lsm::ServiceEntityBinding.strict_modifier_enforcement,

374
lsm::ServiceEntityBindingV2, 375
lsm::ServiceEntityBindingV2.strict_modifier_enforcement,

375
lsm::ServiceInstance, 375
lsm::ServiceInstance.agent, 375
lsm::ServiceInstance.attributes, 375
lsm::ServiceInstance.instance_id, 375
lsm::ServiceInstance.purge_on_delete, 375
lsm::ServiceInstance.rejected_states, 375
lsm::ServiceInstance.service_entity, 375
lsm::ServiceInstance.skip_update_states,

375
lsm::setResourceSet, 377
lsm::State, 375
lsm::State.deleted, 376
lsm::State.export_resources, 375
lsm::State.label, 375
lsm::State.name, 375
lsm::State.purge_resources, 376
lsm::State.validate_others, 376
lsm::State.validate_self, 375
lsm::State.values, 376
lsm::stateConfig, 377
lsm::StateTransfer, 376
lsm::StateTransfer.api_set_state, 376
lsm::StateTransfer.auto, 376
lsm::StateTransfer.config_name, 376
lsm::StateTransfer.description, 376
lsm::StateTransfer.error, 377
lsm::StateTransfer.error_operation, 376
lsm::StateTransfer.on_delete, 376
lsm::StateTransfer.on_update, 376
lsm::StateTransfer.resource_based, 376
lsm::StateTransfer.source, 376
lsm::StateTransfer.target, 376
lsm::StateTransfer.target_operation, 376
lsm::StateTransfer.validate, 376

516 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

M
main.cf, 236
ManagedResource (class in inmanta.resources), 296
master (inmanta.module.InstallMode attribute), 307
message (inmanta.ast.export.Error attribute), 351
metadata (inmanta.module.ModuleLike property), 308
method() (inmanta.protocol.decorators method), 110
mkdir() (inmanta.agent.io.local.LocalIO method),

305
mock_process_env() (in module inmanta.env), 310
model_computed_fields (inmanta.ast.export.Error

attribute), 351
model_computed_fields (in-

manta.ast.export.Location attribute), 352
model_computed_fields (in-

manta.ast.export.Position attribute), 353
model_computed_fields (inmanta.ast.export.Range

attribute), 353
model_computed_fields (in-

manta.data.model.CompileData attribute),
351

model_config (inmanta.ast.export.Error attribute),
352

model_config (inmanta.ast.export.Location at-
tribute), 352

model_config (inmanta.ast.export.Position attribute),
353

model_config (inmanta.ast.export.Range attribute),
353

model_config (inmanta.data.model.CompileData at-
tribute), 351

model_fields (inmanta.ast.export.Error attribute),
352

model_fields (inmanta.ast.export.Location at-
tribute), 352

model_fields (inmanta.ast.export.Position attribute),
353

model_fields (inmanta.ast.export.Range attribute),
353

model_fields (inmanta.data.model.CompileData at-
tribute), 351

modify_environment() (in module in-
manta.protocol.methods), 326

modify_project() (in module in-
manta.protocol.methods), 326

module, 236
inmanta.model, 115
inmanta.protocol.methods, 318
inmanta.protocol.methods_v2, 330

Module (class in inmanta.module), 308
ModuleLike (class in inmanta.module), 308
ModuleMetadata (class in inmanta.module), 292
ModuleName (in module inmanta.module), 308
ModuleSource (class in inmanta.module), 309
ModuleV1 (class in inmanta.module), 308
ModuleV2 (class in inmanta.module), 309
ModuleV2Source (class in inmanta.module), 309

N
name (inmanta.ast.variables.Reference attribute), 311
net::Interface, 383
net::Interface.host, 383
net::Interface.mac, 383
net::Interface.mtu, 383
net::Interface.name, 383
net::Interface.vlan, 383
net::mac_addr, 383
net::vlan_id, 383
NotFound (class in inmanta.protocol.exceptions), 113
notify_change() (in module in-

manta.protocol.methods), 326
notify_change_get() (in module in-

manta.protocol.methods), 326
NullableType (class in inmanta.ast.type), 311
Number (class in inmanta.ast.type), 312

O
openstack.EndPoint (built-in class), 396
openstack.EndpointHandler (built-in class), 400
openstack.find_flavor()

built-in function, 396
openstack.find_image()

built-in function, 396
openstack.Flavor (built-in class), 396
openstack.FlavorHandler (built-in class), 399
openstack.FloatingIP (built-in class), 397
openstack.FloatingIPHandler (built-in class), 400
openstack.HostPort (built-in class), 397
openstack.HostPortHandler (built-in class), 400
openstack.Image (built-in class), 397
openstack.ImageHandler (built-in class), 399
openstack.Network (built-in class), 397
openstack.NetworkHandler (built-in class), 399
openstack.Project (built-in class), 397
openstack.ProjectHandler (built-in class), 400
openstack.Role (built-in class), 398
openstack.RoleHandler (built-in class), 400
openstack.Router (built-in class), 398
openstack.RouterHandler (built-in class), 399
openstack.RouterPort (built-in class), 398
openstack.RouterPortHandler (built-in class), 399
openstack.SecurityGroup (built-in class), 398
openstack.SecurityGroupHandler (built-in class),

400
openstack.Service (built-in class), 398
openstack.ServiceHandler (built-in class), 400
openstack.Subnet (built-in class), 398
openstack.SubnetHandler (built-in class), 399
openstack.User (built-in class), 399
openstack.UserHandler (built-in class), 400
openstack.VirtualMachine (built-in class), 399
openstack.VirtualMachineHandler (built-in

class), 399
openstack::AddressPair, 384
openstack::AddressPair.address, 384
openstack::AddressPair.mac, 384

Index 517

Inmanta Documentation, Release 7.1.1.dev20240504011805

openstack::admin_state, 384
openstack::agentConfig, 396
openstack::container_format, 384
openstack::direction, 384
openstack::disk_format, 384
openstack::EndPoint, 384
openstack::endPoint, 396
openstack::EndPoint.admin_url, 385
openstack::EndPoint.internal_url, 384
openstack::EndPoint.provider, 385
openstack::EndPoint.public_url, 384
openstack::EndPoint.region, 384
openstack::EndPoint.service, 385
openstack::EndPoint.service_id, 385
openstack::eth0Port, 396
openstack::fipAddr, 396
openstack::fipName, 396
openstack::Flavor, 385
openstack::Flavor.disk, 385
openstack::Flavor.ephemeral, 385
openstack::Flavor.extra_specs, 385
openstack::Flavor.flavor_id, 385
openstack::Flavor.is_public, 385
openstack::Flavor.name, 385
openstack::Flavor.provider, 385
openstack::Flavor.ram, 385
openstack::Flavor.rxtx_factor, 385
openstack::Flavor.swap, 385
openstack::Flavor.vcpus, 385
openstack::FloatingIP, 385
openstack::FloatingIP.address, 386
openstack::FloatingIP.external_network, 386
openstack::FloatingIP.force_ip, 386
openstack::FloatingIP.name, 385
openstack::FloatingIP.port, 386
openstack::FloatingIP.project, 386
openstack::FloatingIP.provider, 386
openstack::GroupRule, 386
openstack::GroupRule.remote_group, 386
openstack::Host, 386
openstack::Host.key_pair, 386
openstack::Host.project, 386
openstack::Host.provider, 386
openstack::Host.purge_on_delete, 386
openstack::Host.purged, 386
openstack::Host.security_groups, 386
openstack::Host.subnet, 386
openstack::Host.vm, 386
openstack::HostPort, 387
openstack::HostPort.dhcp, 387
openstack::HostPort.floating_ips, 387
openstack::HostPort.name, 387
openstack::HostPort.port_index, 387
openstack::HostPort.portsecurity, 387
openstack::HostPort.retries, 387
openstack::HostPort.subnet, 387
openstack::HostPort.vm, 387
openstack::HostPort.wait, 387

openstack::Image, 387
openstack::Image.container_format, 387
openstack::Image.disk_format, 388
openstack::Image.image_id, 388
openstack::Image.metadata, 388
openstack::Image.name, 387
openstack::Image.protected, 388
openstack::Image.provider, 388
openstack::Image.purge_on_delete, 388
openstack::Image.skip_on_deploy, 388
openstack::Image.uri, 387
openstack::Image.visibility, 388
openstack::IPrule, 387
openstack::IPrule.remote_prefix, 387
openstack::mac_addr, 384
openstack::Network, 388
openstack::Network.external, 388
openstack::Network.floating_ips, 388
openstack::Network.name, 388
openstack::Network.network_type, 388
openstack::Network.physical_network, 388
openstack::Network.project, 388
openstack::Network.provider, 388
openstack::Network.routers, 388
openstack::Network.segmentation_id, 388
openstack::Network.shared, 388
openstack::Network.subnets, 388
openstack::Network.vlan_transparent, 388
openstack::OpenStackResource, 389
openstack::OpenStackResource.send_event,

389
openstack::openstackVM, 396
openstack::Port, 389
openstack::Port.address, 389
openstack::Port.allowed_address_pairs, 389
openstack::Port.project, 389
openstack::Port.provider, 389
openstack::Project, 389
openstack::Project.description, 389
openstack::Project.enabled, 389
openstack::Project.floating_ips, 390
openstack::Project.name, 389
openstack::Project.networks, 389
openstack::Project.ports, 389
openstack::Project.provider, 389
openstack::Project.roles, 389
openstack::Project.routers, 389
openstack::Project.security_groups, 389
openstack::Project.subnets, 389
openstack::protocol, 384
openstack::Provider, 390
openstack::Provider.admin_url, 390
openstack::Provider.auto_agent, 390
openstack::Provider.connection_url, 390
openstack::Provider.endpoints, 390
openstack::Provider.flavors, 391
openstack::Provider.floating_ips, 390
openstack::Provider.images, 391

518 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

openstack::Provider.name, 390
openstack::Provider.networks, 390
openstack::Provider.password, 390
openstack::Provider.ports, 390
openstack::Provider.projects, 390
openstack::Provider.roles, 390
openstack::Provider.routers, 390
openstack::Provider.security_groups, 390
openstack::Provider.services, 390
openstack::Provider.subnets, 390
openstack::Provider.tenant, 390
openstack::Provider.token, 390
openstack::Provider.username, 390
openstack::Provider.users, 390
openstack::Provider.verify_cert, 390
openstack::Provider.virtual_machines, 391
openstack::providerRequire, 396
openstack::Role, 391
openstack::Role.project, 391
openstack::Role.provider, 391
openstack::Role.role, 391
openstack::Role.role_id, 391
openstack::Role.user, 391
openstack::roleImpl, 396
openstack::Route, 391
openstack::Route.destination, 391
openstack::Route.nexthop, 391
openstack::Route.router, 391
openstack::Router, 391
openstack::Router.admin_state, 392
openstack::Router.distributed, 392
openstack::Router.ext_gateway, 392
openstack::Router.ha, 392
openstack::Router.name, 392
openstack::Router.ports, 392
openstack::Router.project, 392
openstack::Router.provider, 392
openstack::Router.routes, 392
openstack::Router.subnets, 392
openstack::RouterPort, 392
openstack::RouterPort.name, 392
openstack::RouterPort.router, 392
openstack::RouterPort.subnet, 392
openstack::SecurityGroup, 392
openstack::SecurityGroup.description, 392
openstack::SecurityGroup.manage_all, 392
openstack::SecurityGroup.name, 392
openstack::SecurityGroup.project, 393
openstack::SecurityGroup.provider, 393
openstack::SecurityGroup.remote_group_rules,

393
openstack::SecurityGroup.retries, 392
openstack::SecurityGroup.rules, 393
openstack::SecurityGroup.virtual_machines,

393
openstack::SecurityGroup.wait, 392
openstack::SecurityRule, 393
openstack::SecurityRule.direction, 393

openstack::SecurityRule.group, 393
openstack::SecurityRule.ip_protocol, 393
openstack::SecurityRule.port, 393
openstack::SecurityRule.port_max, 393
openstack::SecurityRule.port_min, 393
openstack::Service, 393
openstack::Service.description, 393
openstack::Service.endpoint, 393
openstack::Service.name, 393
openstack::Service.provider, 393
openstack::Service.type, 393
openstack::sg, 396
openstack::Subnet, 393
openstack::Subnet.allocation_end, 394
openstack::Subnet.allocation_start, 394
openstack::Subnet.dhcp, 394
openstack::Subnet.disable_gateway_ip, 394
openstack::Subnet.dns_servers, 394
openstack::Subnet.gateway_ip, 394
openstack::Subnet.host_ports, 394
openstack::Subnet.name, 394
openstack::Subnet.network, 394
openstack::Subnet.network_address, 394
openstack::Subnet.project, 394
openstack::Subnet.provider, 394
openstack::Subnet.router, 394
openstack::Subnet.routers, 394
openstack::User, 394
openstack::User.email, 394
openstack::User.enabled, 394
openstack::User.name, 394
openstack::User.password, 394
openstack::User.provider, 394
openstack::User.roles, 395
openstack::VirtualMachine, 395
openstack::VirtualMachine.eth0_port, 395
openstack::VirtualMachine.host, 395
openstack::VirtualMachine.key_pair, 395
openstack::VirtualMachine.name, 395
openstack::VirtualMachine.ports, 395
openstack::VirtualMachine.project, 395
openstack::VirtualMachine.provider, 395
openstack::VirtualMachine.security_groups,

395
openstack::visibility, 384
openstack::VMAttributes, 395
openstack::VMAttributes.config_drive, 395
openstack::VMAttributes.flavor, 395
openstack::VMAttributes.image, 395
openstack::VMAttributes.metadata, 395
openstack::VMAttributes.personality, 395
openstack::VMAttributes.user_data, 395
orchestration, 236
other (inmanta.const.ResourceAction attribute), 294

P
parse_id() (inmanta.resources.Id class method), 296

Index 519

Inmanta Documentation, Release 7.1.1.dev20240504011805

parser (inmanta.ast.export.ErrorCategory attribute),
352

ParserException (class in inmanta.parser), 294
Path (in module inmanta.module), 309
PGRestore (class in inmanta.db.util), 317
plugin, 236
plugin (inmanta.ast.export.ErrorCategory attribute),

352
plugin() (in module inmanta.plugins), 295
PluginException (class in inmanta.plugins), 295
PluginMeta (class in inmanta.plugins), 295
PluginModuleFinder (class in inmanta.loader), 309
Position (class in inmanta.ast.export), 353
post() (inmanta.agent.handler.CRUDHandler

method), 302
pre() (inmanta.agent.handler.CRUDHandler method),

302
prerelease (inmanta.module.InstallMode attribute),

307
prestart() (inmanta.server.protocol.ServerSlice

method), 106
prestop() (inmanta.server.protocol.ServerSlice

method), 106
Primitive (class in inmanta.ast.type), 311
PROJECT

inmanta-cli-project-delete command
line option, 263

inmanta-cli-project-modify command
line option, 263

inmanta-cli-project-show command line
option, 264

project, 236
Project (class in inmanta.module), 310
project_create() (in module in-

manta.protocol.methods_v2), 343
project_delete() (in module in-

manta.protocol.methods_v2), 344
project_get() (in module in-

manta.protocol.methods_v2), 344
project_list() (in module in-

manta.protocol.methods_v2), 344
project_modify() (in module in-

manta.protocol.methods_v2), 344
ProjectMetadata (class in inmanta.module), 287
ProjectNotFoundException (class in in-

manta.module), 310
ProjectPipConfig (class in inmanta.module), 288
promote_desired_state_version() (in module in-

manta.protocol.methods_v2), 344
provider() (in module inmanta.agent.handler), 297
pull (inmanta.const.ResourceAction attribute), 294
PurgeableResource (class in inmanta.resources),

296
push (inmanta.const.ResourceAction attribute), 294
put() (inmanta.agent.io.local.LocalIO method), 305
put_partial() (in module in-

manta.protocol.methods_v2), 344
put_version() (in module in-

manta.protocol.methods), 326

R
Range (class in inmanta.ast.export), 352
range (inmanta.ast.export.Location attribute), 352
read() (inmanta.agent.io.local.LocalIO method), 305
read_binary() (inmanta.agent.io.local.LocalIO

method), 305
read_resource() (in-

manta.agent.handler.CRUDHandler
method), 303

readlink() (inmanta.agent.io.local.LocalIO method),
305

Reference (class in inmanta.ast.variables), 311
ReferenceValue (class in inmanta.model), 116
relation, 236
Relation (class in inmanta.model), 116
RelationAttribute (class in inmanta.ast.attribute),

307
release (inmanta.module.InstallMode attribute), 307
release_version() (in module in-

manta.protocol.methods), 327
remove() (inmanta.agent.io.local.LocalIO method),

306
remove() (inmanta.util.dict_path.DictPath method),

102
Report (class in inmanta.data), 316
reserve_version() (in module in-

manta.protocol.methods_v2), 345
reset() (inmanta.loader.PluginModuleFinder class

method), 309
resource, 236
Resource (class in inmanta.data), 316
Resource (class in inmanta.resources), 296
resource handler, 236
resource() (in module inmanta.resources), 296
resource_action_update() (in module in-

manta.protocol.methods), 327
resource_deploy_done() (in module in-

manta.protocol.methods_v2), 345
resource_deploy_start() (in module in-

manta.protocol.methods_v2), 345
resource_details() (in module in-

manta.protocol.methods_v2), 346
resource_did_dependency_change() (in module

inmanta.protocol.methods_v2), 346
resource_event() (in module in-

manta.protocol.methods), 327
resource_history() (in module in-

manta.protocol.methods_v2), 346
resource_list() (in module in-

manta.protocol.methods_v2), 347
resource_logs() (in module in-

manta.protocol.methods_v2), 348
resource_str() (inmanta.resources.Id method), 296
ResourceAction (class in inmanta.const), 293
ResourceAction (class in inmanta.data), 316

520 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

ResourceHandler (class in inmanta.agent.handler),
298

ResourceIdStr (in module inmanta.data.model), 317
ResourcePurged (class in inmanta.agent.handler),

297
resources_status() (in module in-

manta.protocol.methods_v2), 349
ResourceVersionIdStr (in module in-

manta.data.model), 317
rest.RESTCall (built-in class), 402
rest.RESTHandler (built-in class), 402
rest::RESTCall, 401
rest::RESTCall.agent, 401
rest::RESTCall.auth_password, 401
rest::RESTCall.auth_user, 401
rest::RESTCall.body, 401
rest::RESTCall.form_encoded, 401
rest::RESTCall.headers, 401
rest::RESTCall.method, 401
rest::RESTCall.return_codes, 401
rest::RESTCall.skip_on_fail, 401
rest::RESTCall.ssl_verify, 401
rest::RESTCall.url, 401
rest::RESTCall.url_id, 401
rest::RESTCall.validate_return, 401
rest::restCallID, 402
Result (class in inmanta.protocol.common), 313
result (inmanta.protocol.common.Result property),

313
resume_environment() (in module in-

manta.protocol.methods_v2), 349
return_value() (in-

manta.execute.proxy.DynamicProxy class
method), 317

rmdir() (inmanta.agent.io.local.LocalIO method),
306

run() (inmanta.agent.io.local.LocalIO method), 306
run_sync() (inmanta.agent.handler.CRUDHandler

method), 303
run_sync() (inmanta.plugins.Context method), 295
runtime (inmanta.ast.export.ErrorCategory attribute),

352
RuntimeException (class in inmanta.ast), 294

S
ServerError (class in inmanta.protocol.exceptions),

114
ServerSlice (class in inmanta.server.protocol), 106
service entity, 185
service instance, 185
set() (inmanta.module.Project class method), 310
set_cache() (inmanta.agent.handler.CRUDHandler

method), 303
set_element() (inmanta.util.dict_path.DictPath

method), 102
set_fact() (in module in-

manta.protocol.methods_v2), 349

set_fact() (inmanta.agent.handler.HandlerContext
method), 298

set_param() (in module inmanta.protocol.methods),
328

set_parameter() (in module in-
manta.protocol.methods_v2), 349

set_parameters() (in module in-
manta.protocol.methods), 328

set_password() (in module in-
manta.protocol.methods_v2), 350

set_setting() (in module in-
manta.protocol.methods), 328

set_state() (in module inmanta.protocol.methods),
329

set_status() (inmanta.agent.handler.HandlerContext
method), 298

ShutdownInProgress (class in in-
manta.protocol.exceptions), 114

SkipResource (class in inmanta.agent.handler), 297
ssh.get_private_key()

built-in function, 403
ssh.get_public_key()

built-in function, 403
ssh.get_putty_key()

built-in function, 403
ssh::Key, 402
ssh::Key.command, 402
ssh::Key.name, 402
ssh::Key.options, 402
ssh::Key.public_key, 402
ssh::Key.ssh_users, 402
ssh::SSHUser, 402
ssh::sshUser, 403
ssh::SSHUser.group, 403
ssh::SSHUser.home_dir, 403
ssh::SSHUser.host, 403
ssh::SSHUser.ssh_keys, 403
ssh::SSHUser.user, 403
start (inmanta.ast.export.Range attribute), 353
start() (inmanta.server.protocol.ServerSlice

method), 106
stat_file() (in module inmanta.protocol.methods),

329
stat_file() (inmanta.agent.handler.CRUDHandler

method), 303
stat_files() (in module inmanta.protocol.methods),

329
state, 186
state machine, 186
std.add_to_ip()

built-in function, 415
std.assert()

built-in function, 415
std.at()

built-in function, 415
std.attr()

built-in function, 415
std.capitalize()

Index 521

Inmanta Documentation, Release 7.1.1.dev20240504011805

built-in function, 415
std.contains()

built-in function, 415
std.count()

built-in function, 415
std.dict_get()

built-in function, 415
std.environment()

built-in function, 415
std.environment_name()

built-in function, 415
std.environment_server()

built-in function, 415
std.equals()

built-in function, 415
std.familyof()

built-in function, 415
std.file()

built-in function, 415
std.filter()

built-in function, 415
std.flatten()

built-in function, 415
std.generate_password()

built-in function, 416
std.get_env()

built-in function, 416
std.get_env_int()

built-in function, 416
std.getattr()

built-in function, 416
std.getfact()

built-in function, 416
std.hostname()

built-in function, 416
std.inlineif()

built-in function, 416
std.invert()

built-in function, 416
std.ip_address_from_interface()

built-in function, 416
std.ipindex()

built-in function, 416
std.is_base64_encoded()

built-in function, 416
std.is_instance()

built-in function, 416
std.is_unknown()

built-in function, 416
std.isset()

built-in function, 416
std.item()

built-in function, 416
std.key_sort()

built-in function, 416
std.len()

built-in function, 417
std.length()

built-in function, 417
std.limit()

built-in function, 417
std.list_files()

built-in function, 417
std.lower()

built-in function, 417
std.netmask()

built-in function, 417
std.network_address()

built-in function, 417
std.objid()

built-in function, 417
std.password()

built-in function, 417
std.prefixlen()

built-in function, 417
std.prefixlength_to_netmask()

built-in function, 417
std.print()

built-in function, 417
std.replace()

built-in function, 417
std.resources.AgentConfig (built-in class), 419
std.resources.AgentConfigHandler (built-in

class), 421
std.resources.Directory (built-in class), 419
std.resources.DirectoryHandler (built-in class),

421
std.resources.File (built-in class), 419
std.resources.Null (built-in class), 420
std.resources.NullProvider (built-in class), 420
std.resources.Package (built-in class), 419
std.resources.PosixFileProvider (built-in

class), 420
std.resources.Service (built-in class), 420
std.resources.ServiceService (built-in class),

421
std.resources.Symlink (built-in class), 420
std.resources.SymlinkProvider (built-in class),

421
std.resources.SystemdService (built-in class),

421
std.resources.YumPackage (built-in class), 420
std.select()

built-in function, 417
std.sequence()

built-in function, 417
std.server_ca()

built-in function, 418
std.server_port()

built-in function, 418
std.server_ssl()

built-in function, 418
std.server_token()

built-in function, 418
std.source()

built-in function, 418

522 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

std.split()
built-in function, 418

std.template()
built-in function, 418

std.timestamp()
built-in function, 418

std.to_number()
built-in function, 418

std.type()
built-in function, 418

std.unique()
built-in function, 418

std.unique_file()
built-in function, 418

std.upper()
built-in function, 418

std.validate_type()
built-in function, 418

std::AgentConfig, 406
std::agentConfig, 414
std::AgentConfig.agent, 406
std::AgentConfig.agentname, 406
std::AgentConfig.autostart, 406
std::AgentConfig.uri, 406
std::alfanum, 403
std::any_http_url, 403
std::any_url, 403
std::ascii_word, 404
std::base64, 404
std::config_agent, 404
std::ConfigFile, 407
std::ConfigFile.group, 407
std::ConfigFile.mode, 407
std::ConfigFile.owner, 407
std::Content, 407
std::Content.sorting_key, 407
std::Content.value, 407
std::date, 404
std::datetime, 404
std::DefaultDirectory, 407
std::DefaultDirectory.group, 407
std::DefaultDirectory.mode, 407
std::DefaultDirectory.owner, 407
std::Directory, 407
std::Directory.group, 407
std::Directory.host, 407
std::Directory.mode, 407
std::Directory.owner, 407
std::Directory.path, 407
std::Directory.purge_on_delete, 407
std::dirHost, 414
std::DiscoveryResource, 408
std::email_str, 404
std::Entity, 408
std::Entity.provides, 408
std::Entity.requires, 408
std::File, 408
std::File.content, 408

std::File.content_seperator, 408
std::File.group, 408
std::File.host, 408
std::File.mode, 408
std::File.owner, 408
std::File.path, 408
std::File.prefix_content, 408
std::File.purge_on_delete, 408
std::File.send_event, 408
std::File.suffix_content, 408
std::fileHost, 414
std::Host, 409
std::Host.directories, 409
std::Host.files, 409
std::Host.host_config, 409
std::Host.host_groups, 409
std::Host.ip, 409
std::Host.os, 409
std::Host.packages, 409
std::Host.remote_agent, 409
std::Host.remote_port, 409
std::Host.remote_user, 409
std::Host.repository, 409
std::Host.services, 409
std::Host.symlinks, 409
std::HostConfig, 409
std::HostConfig.host, 409
std::hostDefaults, 414
std::HostGroup, 410
std::HostGroup.hosts, 410
std::HostGroup.name, 410
std::hoststring, 404
std::http_url, 404
std::ipv4_address, 404
std::ipv4_interface, 404
std::ipv4_network, 404
std::ipv6_address, 404
std::ipv6_interface, 405
std::ipv6_network, 405
std::ipv_any_address, 405
std::ipv_any_interface, 405
std::ipv_any_network, 405
std::ManagedDevice, 410
std::ManagedDevice.name, 410
std::ManagedResource, 410
std::ManagedResource.managed, 410
std::MutableBool, 410
std::MutableBool.value, 410
std::MutableNumber, 410
std::MutableNumber.value, 411
std::MutableString, 411
std::MutableString.value, 411
std::name_email, 405
std::negative_float, 405
std::negative_int, 405
std::non_empty_string, 405
std::none, 414
std::OS, 411

Index 523

Inmanta Documentation, Release 7.1.1.dev20240504011805

std::OS.family, 412
std::OS.member, 412
std::OS.name, 412
std::OS.python_cmd, 412
std::OS.version, 412
std::Package, 412
std::Package.host, 412
std::Package.name, 412
std::Package.state, 412
std::package_state, 405
std::Packages, 412
std::Packages.host, 412
std::Packages.name, 412
std::Packages.state, 412
std::pkgHost, 415
std::pkgs, 415
std::port, 405
std::positive_float, 405
std::positive_int, 406
std::printable_ascii, 406
std::PurgeableResource, 412
std::PurgeableResource.purge_on_delete, 413
std::PurgeableResource.purged, 413
std::Reload, 413
std::reload, 415
std::Reload.reload, 413
std::Reload.send_event, 413
std::Resource, 413
std::Resource.send_event, 413
std::ResourceSet, 413
std::ResourceSet.name, 413
std::ResourceSet.resources, 413
std::Service, 413
std::Service.host, 413
std::Service.name, 413
std::Service.onboot, 413
std::Service.state, 413
std::service_state, 406
std::serviceHost, 415
std::symHost, 415
std::Symlink, 414
std::Symlink.host, 414
std::Symlink.purge_on_delete, 414
std::Symlink.send_event, 414
std::Symlink.source, 414
std::Symlink.target, 414
std::testing::NullResource, 414
std::testing::NullResource.agentname, 414
std::testing::NullResource.fail, 414
std::testing::NullResource.name, 414
std::testing::NullResource.send_event, 414
std::time, 406
std::uuid, 406
stop() (inmanta.server.protocol.ServerSlice method),

106
store (inmanta.const.ResourceAction attribute), 294
String (class in inmanta.ast.type), 312

symlink() (inmanta.agent.io.local.LocalIO method),
306

T
TableNotFound (class in inmanta.data.schema), 114
to_dict() (inmanta.model.Attribute method), 115
to_dict() (inmanta.model.DirectValue method), 116
to_dict() (inmanta.model.Entity method), 116
to_dict() (inmanta.model.Location method), 116
to_dict() (inmanta.model.ReferenceValue method),

116
to_dict() (inmanta.model.Relation method), 117
to_dto() (inmanta.data.Compile method), 315
to_int (inmanta.const.LogLevel property), 293
to_path() (in module inmanta.util.dict_path), 103
to_wild_path() (in module inmanta.util.dict_path),

103
TRACE (inmanta.const.LogLevel attribute), 293
transfer, 186
trigger, 186
trigger() (in module inmanta.protocol.methods), 329
trigger_agent() (in module in-

manta.protocol.methods), 329
Type (class in inmanta.ast.type), 311
type (inmanta.ast.attribute.Attribute property), 307
type (inmanta.ast.export.Error attribute), 352
type_string() (inmanta.ast.type.Type method), 311
TypedDict (class in inmanta.ast.type), 312
TypedList (class in inmanta.ast.type), 312
TYPES (in module inmanta.ast.type), 313

U
ubuntu.UbuntuService (built-in class), 421
UnauthorizedException (class in in-

manta.protocol.exceptions), 113
Union (class in inmanta.ast.type), 312
unknown, 237
Unknown (class in inmanta.execute.util), 297
unload() (inmanta.module.Module method), 308
unload_inmanta_plugins() (in module in-

manta.loader), 309
unwrap() (inmanta.execute.proxy.DynamicProxy class

method), 317
update_agent_map() (in module in-

manta.protocol.methods_v2), 350
update_changes() (in-

manta.agent.handler.HandlerContext
method), 298

update_notification() (in module in-
manta.protocol.methods_v2), 350

update_resource() (in-
manta.agent.handler.CRUDHandler
method), 303

upload_code_batched() (in module in-
manta.protocol.methods), 329

upload_file() (in module in-
manta.protocol.methods), 330

524 Index

Inmanta Documentation, Release 7.1.1.dev20240504011805

upload_file() (inmanta.agent.handler.CRUDHandler
method), 304

uri (inmanta.ast.export.Location attribute), 352
use_virtual_env() (inmanta.env.VirtualEnv

method), 311
user::execGroup, 422
user::execUser, 422
user::Group, 422
user::Group.host, 422
user::Group.name, 422
user::Group.system, 422
user::User, 422
user::User.group, 422
user::User.groups, 422
user::User.homedir, 422
user::User.host, 422
user::User.name, 422
user::User.shell, 422
user::User.system, 422

V
validate() (inmanta.ast.attribute.Attribute method),

307
validate() (inmanta.ast.type.Type method), 311
Value (class in inmanta.model), 117
VERSION

inmanta-cli-version-release command
line option, 265

versioned_resource_details() (in module in-
manta.protocol.methods_v2), 350

VirtualEnv (class in inmanta.env), 311

W
WARNING (inmanta.const.LogLevel attribute), 293
with_base_type() (inmanta.ast.type.Type method),

311

Y
yum::redhatRepo, 423
yum::Repository, 423
yum::Repository.baseurl, 423
yum::Repository.enabled, 423
yum::Repository.gpgcheck, 423
yum::Repository.gpgkey, 423
yum::Repository.host, 423
yum::Repository.metadata_expire, 423
yum::Repository.metalink, 423
yum::Repository.mirrorlist, 423
yum::Repository.name, 423
yum::Repository.skip_if_unavailable, 423
yum::validateInput, 423

Index 525

	Quickstart
	Prerequisites
	Setting up the LAB
	Connecting to the containers
	Create an Inmanta project and an environment
	Configuring SR Linux
	SR Linux interface configuration
	SR Linux OSPF configuration
	Deploy the configuration model
	Verifying the configuration
	Resetting the LAB environment
	Reusing existing modules
	Update the configuration model
	Modify or Create your own modules
	Module layout

	Next steps

	Installation
	Install Inmanta
	Install the software
	Step 1: Install the software
	Install the license

	Optional step 2: Setup SSL and authentication
	Step 3: Install PostgreSQL 13
	Step 4: Setup a PostgreSQL database for the Inmanta server
	Step 5: Set the database connection details
	Step 6: Set the server address
	Step 7: Configure ssh of the inmanta user
	Step 8: Configure the server bind address
	Step 9: Enable the required Inmanta extensions
	Step 10: Start the Inmanta server
	Optional Step 11: Setup influxdb for collection of performance metrics
	Optional Step 12: Configure logging

	Install Inmanta with Docker
	Pull the image
	Step 1: Log in to Cloudsmith registry
	Step 2: Pull the image

	Start the server with docker-compose
	Overwrite default server configuration
	Starting the ssh server
	Waiting for the database
	Setting environment variables
	Changing inmanta user/group id
	Log rotation

	Install Inmanta with Podman and Systemd
	Podman configuration
	Pull the image
	Step 1: Log in to container registry
	Step 2: Pull the image

	Prepare the orchestrator configuration
	Start the server with systemd
	Setting environment variables
	Log rotation
	Deploy postgresql with podman and systemd

	Configure agents
	Auto-started agents
	Configuring auto-started agents via environment settings
	Configuring the autostart_agent_map via the std::AgentConfig entity
	Special Requirements for remote std::File, std::Package, std::Service and exec::Run

	Manually-started agents
	Requirements
	Step 1: Installing the required Inmanta packages
	Step 2: Configuring the manually-started agent
	Step 3: Starting the manually-started agent

	Architecture
	Usage modes
	All in one
	Push to server
	Autonomous server

	Agent modes
	Resource deployment
	Repair
	Deploy changes
	Push changes

	Language Reference
	Modules
	Variables
	Literals values
	Arithmetic operations
	Primitive types
	Strings
	String interpolation
	String concatenation

	Conditions
	Function calls / Plugins
	Entities
	Relations
	Instantiation
	Referring to instances

	Refinements
	Indexes and queries
	For loop
	If statement
	Conditional expressions
	List comprehensions
	Transformations
	Templates

	Plug-ins

	Model developer documentation
	Developer Getting Started Guide
	Install VS Code and Inmanta extension
	Setting up Python virtual environments
	Setting up a project
	Working on a New Project
	Working on an Existing Project

	Set project sources
	V1 module source
	Pip index for V2 modules and V1 modules’ dependencies

	Setting up a module
	Working on a New Module
	Working on an Existing Module

	Running Test

	Project creation guide
	Create a new source project
	The main file

	Module creation guide
	Create a new source module

	Understanding Modules
	V2 module format
	The setup.cfg metadata file
	The pyproject.toml file
	The MANIFEST.in file

	V1 module format
	Module metadata

	Convert a module from V1 to V2 format
	Inmanta module template
	Extending Inmanta

	Installing modules
	Setting up the dev environment
	v1 modules
	v2 modules

	Working on the dev environment
	Module installation on the server
	Configure the Inmanta server to install modules from a private python package repository

	Inter-module dependencies

	Releasing and distributing modules
	V2 modules
	Distributing V2 modules

	V1 modules
	Development Versions
	Release Versions
	Distributing V1 modules
	Git repository distribution format

	V2 package distribution format

	Freezing a project

	Developing Plugins
	Adding new plugins
	Deprecate plugins

	Finalizers
	Adding new finalizers

	Developing South Bound Integrations
	Overview
	Resource
	Handler
	Using facts

	Built-in Handler utilities
	Logging
	Caching

	Test plugins
	Install the pytest-inmanta package
	Writing a test case

	Understanding Projects
	Model debugging
	Enabling the data trace
	Interpreting the data trace
	Root cause analysis
	Usage example
	Graphic visualization

	Model Design Guidelines
	Overview
	Keep close to the API
	Prefer modeling relations as relations

	Partial compiles
	Resource sets
	Partial compiles
	Constraints and rules
	Exporting a partial model to the server
	Limitations

	Modeling guidelines
	Service instance uniqueness
	Ownership
	Ownership through indexes
	Ownership through allocation

	Inter-resource set dependencies
	Testing

	Unmanaged Resources
	Terminology
	Example
	Sharing attributes

	Dict Path
	Writing DictPath expressions
	Using DictPath in code
	Example

	Platform developer documentation
	Creating a new server extension
	The package layout of a server extension
	Adding server slices to the extension
	Enable the extension
	The Inmanta extension template

	Database Schema Management
	New schema version definition
	Executing schema updates
	Testing database migrations

	Define API endpoints
	API Method
	API Handle

	Documentation writing
	Inmanta code documentation
	Modules
	Python core

	Sphinx tooling
	Install inmanta sphinx extension
	sphinxcontrib.inmanta.config
	sphinxcontrib.inmanta.dsl
	sphinx-inmanta-api

	Exceptions
	HTTP Exceptions
	Database Schema Related Exceptions

	Features
	Model Export Format
	Type Export Format
	Platform Developers Guide
	Dependencies
	Versioning
	Running tests

	Inmanta Lifecycle Service Manager
	LSM quickstart
	Overview setup
	Prerequisites
	Orchestration model
	Install the orchestration model onto the Inmanta server
	Check that the router is empty
	Create a new service instance

	Allocation
	Types of Allocation
	LSM internal allocation
	External lookup
	External inventory owns allocation
	External inventory with deallocation

	Allocation V2
	Example
	Allocation V2 features
	ContextV2
	AllocatorV2
	AllocationSpecV2

	Legacy: Set attributes on embedded entities
	Deleting of Embedded entities

	Allocation V3
	Create an allocator
	V2 to V3 migration
	Basic example
	Plugin
	Model

	In-depth example
	Plugin
	Model

	Embedded entities
	Modelling embedded entities
	Strict modifier enforcement
	Defining an embedded entity

	Attribute modifiers on a relationship
	Legacy: Embedded entities without strict modifier enforcement

	Inter-Service Relations
	delete-validating state

	Partial Compiles
	Implementation guidelines
	Supported scenarios
	How it works for unrelated services
	Example with Inter Service Relations
	How it works
	Resource sets
	Service Instance Selection

	Limitations
	Further Reading

	Troubleshooting
	Deployment failure
	Detect deployment failure
	Determine the root cause of the deployment failure
	Web Console
	Inmanta client
	Rest API

	Validation failure
	Detect validation failure
	Determine the cause of the validation failure
	Inmanta client
	Rest API

	Limitations
	A ServiceEntity cannot contain resource in the undefined state

	Lifecycle
	Lifecycle State Labels
	Lifecycle construction
	Creating/deleting and exporting/not-exporting states

	Attribute and entity metadata
	Attribute description
	Definition
	Usage
	Example

	Attribute modifier
	Definition
	Usage
	Example
	Supported values

	Annotations
	Definition
	Annotations on entities
	Example
	Annotations on simple attributes
	Example
	Annotations on relational attributes
	Example

	Validation types
	Supported forms
	Enumeration
	Syntax
	Examples

	Regular expressions
	Syntax
	Example

	Number constraints
	Syntax
	Example

	std::validate_type()
	Example

	Service Identity
	Specifying an identity
	Adding service identity to an existing entity
	Querying service instances using their service identity attribute

	State Transfer Transactional Behavior
	Self transitions
	Auto transition
	Operations
	Logging

	Service catalog
	Creating service entities

	Service Inventory
	CRUD operations

	Lifecycle Manager
	State machine

	Patterns
	Glossary
	Dict Path Library
	Partial Compiles

	Administrator documentation
	Operational Procedures
	Project Release for Production
	Context
	Procedure

	Upgrade of service model on the orchestrator
	Context
	Pre-Upgrade steps
	Upgrade procedure
	Post Upgrade procedure
	Upgrade abort/revert

	Deployment of a new service model to the orchestrator
	Context
	Procedure
	Extra careful deploy procedure

	Issue templates
	Project Release for Production
	Upgrade of service model on the orchestrator

	Diagnosing problems
	Configuration
	Inmanta server and Inmanta agent
	Inmanta CLI tool

	HA setup
	Setup a HA PostgreSQL cluster
	Prerequisites
	Configure the master node
	Configure the standby node
	Monitoring

	Failover PostgreSQL
	Promote a standby node to the new master node
	Add a standby node to a newly promoted master node

	Failover an Inmanta server
	Failover an Inmanta server to the warm standby PostgreSQL instance
	Start a new orchestrator on warm standby PostgreSQL instance

	Operational Procedures With LSM
	Upgrade of service model on the orchestrator
	Context
	Pre-Upgrade steps
	Upgrade procedure
	Post Upgrade procedure
	Upgrade abort/revert

	Deployment of a new service model to the orchestrator
	Context
	Procedure

	Issue templates
	Upgrade of service model on the orchestrator
	Install of service model on the orchestrator

	Setting up SSL and authentication
	SSL
	SSL: server side
	SSL: agents and compiler

	Authentication
	Setup server auth
	JWT auth configuration

	Built-in authentication provider
	Step 1: Enable authentication
	Step 2: Generate the JWT configuration
	Step 3: Create the initial user
	Step 4: Restart the orchestrator

	External authentication providers
	Keycloak configuration
	Step 1: Optionally create a new realm
	Step 2: Add a new client to keycloak
	Step 3: Configure inmanta server

	Custom claims

	Environment variables
	Supplying environment variables to the Inmanta server
	Supplying environment variables to an agent

	Logging
	Overview different log files
	Server log
	Resource action logs
	Agent logs

	Configure logging
	Configuration options in Inmanta config file
	Change log levels server log
	Log level manually started agent
	Log level auto-started agents
	Resource action logs
	Log level server-side compiles
	Log level on CLI

	Performance Metering
	Configuration summary
	Setup guide
	Reported Metrics
	API performance metrics
	Other Metrics

	Reverse proxy and Web Application Firewall
	Setup a reverse proxy
	Web Application Firewall

	Support Procedure
	Upgrading the orchestrator
	Upgrading the orchestrator in-place
	Upgrading by migrating from one orchestrator to another orchestrator
	Terminology
	Procedure

	Inmanta Web Console
	Browser support
	Proxy
	Examples

	Frequently asked questions
	How do I use Inmanta with a http/https proxy?
	I get a click related error/exception when I run inmanta-cli.
	The model does not compile and exits with “could not complete model”.

	Glossary
	Inmanta Reference
	Command Reference
	inmanta
	Named Arguments
	Sub-commands
	server
	Named Arguments

	agent
	Named Arguments

	compile
	Named Arguments

	list-commands
	help
	Positional Arguments

	modules (module)
	Named Arguments
	subcommand
	Sub-commands
	add
	Positional Arguments
	Named Arguments
	list
	Named Arguments
	do
	Positional Arguments
	Named Arguments
	install
	Positional Arguments
	Named Arguments
	status
	Named Arguments
	push
	Named Arguments
	verify
	Named Arguments
	commit
	Named Arguments
	create
	Positional Arguments
	Named Arguments
	freeze
	Named Arguments
	build
	Positional Arguments
	Named Arguments
	v1tov2
	Named Arguments
	release
	Named Arguments

	project
	Named Arguments
	subcommand
	Sub-commands
	freeze
	Named Arguments
	init
	Named Arguments
	install
	Named Arguments
	update
	Named Arguments

	deploy
	Named Arguments

	export
	Named Arguments

	inmanta-cli
	inmanta-cli
	action-log
	list
	show-messages

	agent
	list
	pause
	unpause

	environment
	create
	delete
	list
	modify
	recompile
	save
	setting
	delete
	get
	list
	set
	show

	lsm
	resources
	list
	service-entities
	list
	service-instances
	list

	monitor
	param
	get
	list
	set

	project
	create
	delete
	list
	modify
	show

	token
	bootstrap
	create

	version
	list
	release
	report

	Configuration Reference
	agent_rest_transport
	client_rest_transport
	cmdline_rest_transport
	compiler
	compiler_rest_transport
	config
	database
	deploy
	influxdb
	license
	lsm.callback
	server
	server_rest_transport
	unknown_handler
	web-ui

	Environment Settings Reference
	Compiler Configuration Reference
	project.yml
	Configure pip index
	pip.use-system-config
	Example scenario

	Migrate to project-wide pip config
	Breaking changes:
	Changes relative to inmanta-2023.4 (OSS):

	Module metadata files
	module.yml
	setup.cfg

	Programmatic API reference
	Constants
	Compiler exceptions
	Plugins
	Resources
	Handlers
	Export
	Attributes
	Modules
	Project
	Python Environment
	Variables
	Typing
	Protocol
	Data
	Domain conversion
	Rest API
	Server

	Inmanta Compile Data Reference
	Inmanta modules
	Module apt
	Entities
	Implementations
	Handlers

	Module aws
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module exec
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module ip
	Typedefs
	Entities
	Plugins

	Module lsm
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module net
	Typedefs
	Entities

	Module openstack
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module redhat
	Module rest
	Entities
	Implementations
	Resources
	Handlers

	Module ssh
	Entities
	Implementations
	Plugins

	Module std
	Typedefs
	Entities
	Implementations
	Plugins
	Resources
	Handlers

	Module ubuntu
	Handlers

	Module user
	Entities
	Implementations

	Module yum
	Entities
	Implementations

	REST API reference
	Compatibility
	System requirements
	Inmanta core and extensions versions

	Troubleshooting
	A resource is stuck in the state available
	The agent is down
	The agent is paused
	The agent is up

	The deployment of a resource fails
	Read the logs of a resource
	Check which attributes are undefined

	Agent doesn’t come up
	Auto-started agents
	Manually started agents
	Potential reasons why an agent doesn’t start

	Recompilation failed
	Logs show “empty model” after export
	Compilation fails
	Reason for compilation failure
	Relationship precedence policy
	Compose a relationship precedence policy

	Debugging

	Changelog
	Unreleased changes (2024-05-04)
	Upgrade notes
	Inmanta-core: unreleased changes (2024-05-04)
	New features
	Improvements
	Bug fixes

	Inmanta-license: unreleased changes (2024-05-04)
	Inmanta-lsm: unreleased changes (2024-05-04)
	New features
	Bug fixes

	Inmanta-support: unreleased changes (2024-05-04)
	Inmanta-ui: unreleased changes (2024-05-04)
	Web-console: unreleased changes (2024-05-04)
	New features
	Improvements
	Bug fixes

	Release 7.1.0 (2024-03-29)
	Upgrade notes
	Inmanta-core: release 11.1.0 (2024-03-29)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-license: release 4.0.1 (2024-03-29)
	Inmanta-lsm: release 4.1.0 (2024-03-29)
	New features
	Improvements
	Deprecation notes
	Bug fixes

	Inmanta-support: release 3.3.0 (2024-03-29)
	Improvements
	Bug fixes
	Other notes

	Inmanta-ui: release 5.1.1 (2024-03-29)
	Web-console: release 1.16.0 (2024-03-29)
	New features
	Improvements
	Bug fixes
	Other notes

	Release 7.0.3 (2024-02-09)
	Upgrade notes
	Inmanta-core: release 11.0.2 (2024-02-09)
	New features
	Known Issues

	inmanta-license: release 4.0.0
	inmanta-lsm: release 4.0.0
	inmanta-support: release 3.2.1
	inmanta-ui: release 5.1.0
	Web-console: release 1.15.3 (2024-02-09)
	Improvements

	Release 7.0.2 (2024-01-17)
	General changes
	Upgrade notes
	Bug fixes

	inmanta-core: release 11.0.1
	inmanta-license: release 4.0.0
	inmanta-lsm: release 4.0.0
	inmanta-support: release 3.2.1
	inmanta-ui: release 5.1.0
	Web-console: release 1.15.2 (2024-01-17)
	Bug fixes

	Release 7.0.1 (2024-01-04)
	Upgrade notes
	Inmanta-core: release 11.0.1 (2024-01-04)
	Bug fixes

	inmanta-license: release 4.0.0
	inmanta-lsm: release 4.0.0
	inmanta-support: release 3.2.1
	inmanta-ui: release 5.1.0
	Web-console: release 1.15.1 (2024-01-04)
	Bug fixes

	Release 7.0.0 (2023-12-11)
	General changes
	Upgrade notes
	Deprecation notes

	Inmanta-core: release 11.0.0 (2023-12-11)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-core: release 10.0.0 (2023-10-13)
	New features
	Improvements
	Upgrade notes
	Deprecation notes

	Inmanta-core: release 9.3.0 (2023-07-04)
	Upgrade notes
	Deprecation notes

	Inmanta-license: release 4.0.0 (2023-12-11)
	Bug fixes

	Inmanta-lsm: release 4.0.0 (2023-12-11)
	New features
	Upgrade notes

	inmanta-support: release 3.2.1
	Inmanta-ui: release 5.1.0 (2023-12-11)
	Inmanta-ui: release 5.0.0 (2023-10-13)
	web-console: release 1.15.0

	Release 6.5.0 (2023-12-11)
	Upgrade notes
	Inmanta-core: release 8.7.0 (2023-12-11)
	New features
	Improvements
	Deprecation notes
	Bug fixes
	Other notes

	Inmanta-license: release 3.1.2 (2023-12-11)
	Bug fixes

	Inmanta-lsm: release 3.5.0 (2023-12-11)
	Improvements
	Deprecation notes

	Inmanta-support: release 3.2.1 (2023-12-11)
	Improvements

	Inmanta-ui: release 4.1.0 (2023-12-11)
	Deprecation notes

	Web-console: release 1.15.0 (2023-12-11)
	New features
	Improvements
	Bug fixes

	Release 6.4.0 (2023-10-13)
	Upgrade notes
	Inmanta-core: release 8.6.0 (2023-10-13)
	New features
	Improvements
	Upgrade notes
	Bug fixes

	Inmanta-license: release 3.1.1 (2023-10-13)
	Bug fixes

	Inmanta-lsm: release 3.4.0 (2023-10-13)
	New features
	Improvements
	Upgrade notes
	Bug fixes

	Inmanta-support: release 3.2.0 (2023-10-13)
	New features
	Other notes

	Inmanta-ui: release 4.0.4 (2023-10-13)
	Web-console: release 1.14.0 (2023-10-13)
	Improvements
	Bug fixes
	Other notes

	Release 6.3.1 (2023-08-02)
	Upgrade notes
	inmanta-core: release 8.5.0
	inmanta-license: release 3.1.0
	Inmanta-lsm: release 3.3.1 (2023-08-02)
	Bug fixes

	inmanta-support: release 3.1.2
	inmanta-ui: release 4.0.3
	web-console: release 1.13.0

	Release 6.3.0 (2023-07-04)
	Upgrade notes
	Inmanta-core: release 8.5.0 (2023-07-04)
	New features
	Improvements
	Deprecation notes
	Bug fixes

	Inmanta-license: release 3.1.0 (2023-07-04)
	Bug fixes

	Inmanta-lsm: release 3.3.0 (2023-07-04)
	New features
	Improvements
	Deprecation notes
	Bug fixes

	Inmanta-support: release 3.1.2 (2023-07-04)
	Inmanta-ui: release 4.0.3 (2023-07-04)
	Improvements

	Web-console: release 1.13.0 (2023-07-04)
	Improvements
	Bug fixes

	Release 6.2.0 (2023-04-11)
	Upgrade notes
	Inmanta-core: release 8.3.0 (2023-04-11)
	New features
	Improvements
	Upgrade notes
	Bug fixes

	Inmanta-license: release 3.0.2 (2023-04-11)
	Inmanta-lsm: release 3.2.0 (2023-04-11)
	New features
	Improvements
	Bug fixes

	Inmanta-support: release 3.1.1 (2023-04-11)
	Bug fixes

	Inmanta-ui: release 4.0.2 (2023-04-11)
	Web-console: release 1.12.3 (2023-04-11)
	New features
	Improvements
	Bug fixes

	Web-console: release 1.12.2 (2023-02-17)
	Bug fixes

	Release 6.1.0 (2023-02-09)
	Upgrade notes
	Inmanta-core: release 8.2.0 (2023-02-09)
	Improvements

	Inmanta-core: release 8.1.0 (2023-02-06)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-license: release 3.0.1 (2023-02-09)
	Inmanta-lsm: release 3.1.0 (2023-02-09)
	New features
	Improvements
	Bug fixes

	Inmanta-support: release 3.1.0 (2023-02-09)
	New features

	Inmanta-ui: release 4.0.1 (2023-02-06)
	Web-console: release 1.12.1 (2023-02-09)
	Web-console: release 1.12.0 (2023-02-06)
	New features
	Improvements
	Bug fixes

	Release 6.0.0 (2022-12-02)
	Upgrade notes
	Inmanta-core: release 8.0.0 (2022-11-30)
	Deprecation notes

	Inmanta-core: release 7.1.0 (2022-09-29)
	Inmanta-core: release 7.0.0 (2022-08-05)
	Improvements
	Upgrade notes
	Deprecation notes

	Inmanta-license: release 3.0.0 (2022-12-02)
	Inmanta-lsm: release 3.0.0 (2022-12-02)
	Inmanta-support: release 3.0.0 (2022-12-02)
	Inmanta-ui: release 4.0.0 (2022-11-30)
	Deprecation notes

	Inmanta-ui: release 3.0.2 (2022-09-29)
	Inmanta-ui: release 3.0.1 (2022-08-05)
	Inmanta-ui: release 3.0.0 (2022-02-02)
	web-console: release 1.11.3

	Release 5.4.0 (2022-12-01)
	General changes
	New features
	Upgrade notes

	Inmanta-core: release 6.4.0 (2022-12-01)
	New features
	Improvements
	Deprecation notes
	Bug fixes

	Inmanta-license: release 2.0.5 (2022-12-01)
	Inmanta-lsm: release 2.4.0 (2022-12-01)
	New features
	Improvements
	Deprecation notes
	Bug fixes

	Inmanta-support: release 2.0.5 (2022-12-01)
	Inmanta-ui: release 2.1.0 (2022-12-01)
	Deprecation notes

	inmanta-dashboard: release 3.8.1
	Web-console: release 1.11.3 (2022-11-30)
	Improvements
	Bug fixes

	Release 5.3.0 (2022-09-30)
	General changes
	Upgrade notes
	Bug fixes

	Inmanta-core: release 6.3.0 (2022-09-30)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-license: release 2.0.4 (2022-09-30)
	Inmanta-lsm: release 2.3.0 (2022-09-30)
	New features

	Inmanta-support: release 2.0.4 (2022-09-30)
	Inmanta-ui: release 2.0.4 (2022-09-30)
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.11.2 (2022-09-29)
	Improvements
	Upgrade notes
	Bug fixes
	Other notes

	Release 5.2.0 (2022-08-16)
	Upgrade notes
	Inmanta-core: release 6.2.0 (2022-08-16)
	New features
	Improvements
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-license: release 2.0.3 (2022-08-16)
	Inmanta-lsm: release 2.2.0 (2022-08-16)
	New features
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-support: release 2.0.3 (2022-08-16)
	Bug fixes

	Inmanta-ui: release 2.0.3 (2022-08-16)
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.11.1 (2022-08-16)
	Bug fixes

	Web-console: release 1.11.0 (2022-08-05)
	New features

	Release 5.1.0 (2022-04-12)
	General changes
	Upgrade notes
	Other notes

	Inmanta-core: release 6.1.0 (2022-04-12)
	New features
	Deprecation notes
	Bug fixes

	Inmanta-license: release 2.0.2 (2022-04-12)
	Inmanta-lsm: release 2.1.0 (2022-04-12)
	New features
	Bug fixes

	Inmanta-support: release 2.0.2 (2022-04-12)
	Inmanta-ui: release 2.0.2 (2022-04-12)
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.10.0 (2022-04-12)
	New features

	Release 5.0.1 (2022-02-11)
	General changes
	New features
	Upgrade notes
	Deprecation notes

	Inmanta-core: release 6.0.1 (2022-02-11)
	Bug fixes

	Inmanta-core: release 6.0.0 (2022-02-02)
	New features
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-core: release 5.1.1 (2021-05-27)
	Bug fixes

	Inmanta-core: release 5.1.0 (2021-05-05)
	New features
	Deprecation notes
	Bug fixes
	Other notes

	Inmanta-core: release 5.0.0 (2021-03-15)
	Inmanta-license: release 2.0.1 (2022-02-11)
	Inmanta-lsm: release 2.0.1 (2022-02-11)
	New features
	Bug fixes

	Inmanta-support: release 2.0.1 (2022-02-11)
	Inmanta-ui: release 2.0.1 (2022-02-11)
	inmanta-dashboard: release 3.8.1
	Web-console: release 1.9.1 (2022-02-11)
	New features

	Web-console: release 1.9.0 (2022-02-02)
	New features

	Release 4.4.0 (2022-01-26)
	Upgrade notes
	Inmanta-core: release 4.4.0 (2022-01-25)
	New features
	Upgrade notes
	Bug fixes

	Inmanta-license: release 1.3.4 (2022-01-25)
	Inmanta-lsm: release 1.9.0 (2022-01-25)
	New features

	Inmanta-support: release 1.3.4 (2022-01-25)
	Inmanta-ui: release 1.4.1 (2022-01-25)
	Inmanta-dashboard: release 3.8.1 (2022-01-25)
	Web-console: release 1.8.0 (2022-01-25)
	New features
	Bug fixes

	Release 4.3.0 (2021-10-18)
	General changes
	Upgrade notes

	Inmanta-core: release 4.3.1 (2021-10-18)
	New features
	Upgrade notes
	Bug fixes

	Inmanta-license: release 1.3.3 (2021-10-18)
	New features

	Inmanta-lsm: release 1.8.0 (2021-10-18)
	New features
	Upgrade notes
	Bug fixes

	Inmanta-support: release 1.3.3 (2021-10-18)
	Inmanta-ui: release 1.4.0 (2021-10-18)
	Inmanta-dashboard: release 3.8.0 (2021-10-18)
	New features

	Web-console: release 1.7.0 (2021-10-18)
	New features

	Release 4.2.1 (2021-06-01)
	Inmanta-core: release 4.2.1 (2021-06-01)
	Bug fixes

	Inmanta-license: release 1.3.2 (2021-06-01)
	New features

	Inmanta-lsm: release 1.7.0 (2021-06-01)
	New features
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-support: release 1.3.2 (2021-06-01)
	Inmanta-ui: release 1.3.2 (2021-06-01)
	Inmanta-dashboard: release 3.7.0 (2021-06-01)
	Web-console: release 1.6.0 (2021-06-01)
	New features

	Release 4.2.0 (2021-05-05)
	General changes
	New features
	Bug fixes

	Inmanta-core: release 4.2.0 (2021-05-05)
	New features
	Deprecation notes
	Bug fixes
	Other notes

	Inmanta-license: release 1.3.2 (2021-05-05)
	New features

	Inmanta-lsm: release 1.7.0 (2021-05-05)
	New features
	Upgrade notes
	Deprecation notes
	Bug fixes

	Inmanta-support: release 1.3.2 (2021-05-05)
	Inmanta-ui: release 1.3.2 (2021-05-05)
	Inmanta-dashboard: release 3.7.0 (2021-05-05)
	Web-console: release 1.6.0 (2021-05-05)
	New features

	Release 4.1.0 (2021-03-19)
	inmanta-core: 4.1.0 (2021-03-19)
	Bug fixes
	New features

	inmanta-license: 1.3.1 (2021-03-19)
	Bug fixes

	inmanta-lsm: 1.6.0 (2021-03-19)
	New features
	Bug fixes

	inmanta-support: 1.3.1 (2021-03-19)
	inmanta-ui: 1.3.1 (2021-03-19)
	dashboard: 3.6.0 (2021-01-06)
	web-console: 1.5.0 (2021-03-19)

	Release 4.0.0 (2021-01-06)
	inmanta: 2020.6 (2021-01-06)
	New features
	Bug fixes
	Upgrade notes
	Other notes

	inmanta-license: 1.3.0 (2021-01-06)
	inmanta-lsm: 1.5.0 (2021-01-06)
	Bug fixes

	inmanta-support: 1.3.0 (2021-01-06)
	Bug fixes

	inmanta-ui: 1.3.0 (2021-01-06)
	dashboard: 3.6.0 (2021-01-06)
	web-console: 1.4.0 (2021-01-06)

	PDF version
	Python Module Index
	Index

